Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (761)

Search Parameters:
Keywords = energy and cost-efficient manufacturing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1677 KB  
Article
Energy Leaders: The Catalyst for Strategic Energy Management
by Kalie Miera, Indraneel Bhandari, Subodh Chaudhari, Senthil Sundaramoorthy and Thomas Wenning
Energies 2026, 19(3), 618; https://doi.org/10.3390/en19030618 - 25 Jan 2026
Abstract
This study investigates the crucial role energy leaders play in driving strategic energy management (SEM) and accelerating cost savings within a manufacturing organization and consequently, the industrial sector. Whereas energy efficiency can be seen as an innovative business practice with irrefutable cost benefits, [...] Read more.
This study investigates the crucial role energy leaders play in driving strategic energy management (SEM) and accelerating cost savings within a manufacturing organization and consequently, the industrial sector. Whereas energy efficiency can be seen as an innovative business practice with irrefutable cost benefits, its effective implementation requires strategic leadership and a structured approach. This research analyzes data collected from 120 participants representing 71 companies attending the Energy Bootcamp events organized by the U.S. Department of Energy’s (DOE) Better Plants program. The collected data focused on the state of SEM implementation, the presence and responsibilities of energy leaders, and the formation and function of energy teams. The findings reveal a significant gap between the perceived importance of SEM and its actual adoption, highlighting the need for strong leadership to drive behavioral changes by championing energy efficiency initiatives. Results indicate that effective energy leaders possess a diverse skill set, including the ability to secure top management buy-in, foster a culture of energy consciousness, and collaborate across departments. This study emphasizes the importance of empowering energy leaders with clearly defined roles and responsibilities as well as the authority to build and lead cross-functional energy teams. Furthermore, integrating energy management into existing organizational structures and leveraging readily available resources are identified as key factors for successful implementation. This research underscores how dedicated leadership and effective SEM practices help achieve industrial energy efficiency goals, providing practical insights for organizations seeking to improve performance and contribute to a resilient future. Full article
Show Figures

Figure 1

23 pages, 376 KB  
Article
The Green Side of the Machine: Industrial Robots and Corporate Energy Efficiency in China
by Ze Chen and Yuxuan Wang
Sustainability 2026, 18(3), 1193; https://doi.org/10.3390/su18031193 - 24 Jan 2026
Viewed by 129
Abstract
In the context of the ongoing digital revolution in manufacturing and the simultaneous advancement toward dual carbon objectives, this study investigates the role of intelligent technological advancements, particularly industrial robotics, in improving firm-level energy efficiency. Utilizing panel data from Chinese listed companies spanning [...] Read more.
In the context of the ongoing digital revolution in manufacturing and the simultaneous advancement toward dual carbon objectives, this study investigates the role of intelligent technological advancements, particularly industrial robotics, in improving firm-level energy efficiency. Utilizing panel data from Chinese listed companies spanning the period 2012–2023, the research assesses the relationship between exposure to industrial robots and corporate energy efficiency metrics. The empirical analysis demonstrates that greater exposure to industry-level robotization substantially boosts corporate energy performance, verifying that intelligent modernization and green transition can be mutually reinforcing. This positive effect is particularly pronounced among superstar firms, in more competitive industries, and for capital-intensive enterprises. Mechanism analysis reveals that, first, robotization processes generate a scale effect that effectively dilutes the fixed energy consumption per unit of product. Second, the diffusion of robots intensifies market competition, creating a competition effect that compels all firms within the industry to optimize costs and management with a focus on energy conservation. This study demonstrates that enhancing human capital within organizations significantly amplifies the beneficial impact of robotic integration on energy efficiency metrics. By providing empirical data from an emerging market context, this research not only elucidates the role of industrial robots but also offers policy-relevant insights for developed economies navigating the concurrent challenges of industrial modernization and environmental sustainability. Full article
Show Figures

Figure 1

28 pages, 1402 KB  
Article
Solid-State Transformers in the Global Clean Energy Transition: Decarbonization Impact and Lifecycle Performance
by Nikolay Hinov
Energies 2026, 19(2), 558; https://doi.org/10.3390/en19020558 - 22 Jan 2026
Viewed by 50
Abstract
The global clean energy transition requires power conversion technologies that combine high efficiency, operational flexibility, and reduced environmental impact over their entire service life. Solid-state transformers (SSTs) have emerged as a promising alternative to conventional line-frequency transformers, offering bidirectional power flow, high-frequency isolation, [...] Read more.
The global clean energy transition requires power conversion technologies that combine high efficiency, operational flexibility, and reduced environmental impact over their entire service life. Solid-state transformers (SSTs) have emerged as a promising alternative to conventional line-frequency transformers, offering bidirectional power flow, high-frequency isolation, and advanced control capabilities that support renewable integration and electrified infrastructures. This paper presents a comparative life cycle assessment (LCA) of conventional transformers and SSTs across representative power-system applications, including residential and industrial distribution networks, electric vehicle fast-charging infrastructure, and transmission–distribution interface substations. The analysis follows a cradle-to-grave approach and is based on literature-derived LCA data, manufacturer specifications, and harmonized engineering assumptions applied consistently across all case studies. The results show that, under identical assumptions, SST-based solutions are associated with indicative lifecycle CO2 emission reductions of approximately 10–30% compared to conventional transformers, depending on power rating and operating profile (≈90–1000 t CO2 over 25 years across the four cases). These reductions are primarily driven by lower operational losses and reduced material intensity, while additional system-level benefits arise from enhanced controllability and compatibility with renewable-rich and hybrid AC/DC grids. The study also identifies key challenges that influence the sustainability performance of SSTs, including higher capital cost, thermal management requirements, and the long-term reliability of power-electronic components. Overall, the results indicate that SSTs represent a relevant enabling technology for future low-carbon power systems, while highlighting the importance of transparent assumptions and lifecycle-oriented evaluation when comparing emerging grid technologies. Full article
(This article belongs to the Special Issue Challenges and Opportunities in the Global Clean Energy Transition)
Show Figures

Figure 1

57 pages, 4130 KB  
Review
Critical Review of Recent Advances in AI-Enhanced SEM and EDS Techniques for Metallic Microstructure Characterization
by Gasser Abdelal, Chi-Wai Chan and Sean McLoone
Appl. Sci. 2026, 16(2), 975; https://doi.org/10.3390/app16020975 - 18 Jan 2026
Viewed by 187
Abstract
This critical review explores the transformative impact of artificial intelligence (AI), particularly machine learning (ML) and computer vision (CV), on scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) for metallic microstructure analysis, spanning research from 2010 to 2025. It critically evaluates how [...] Read more.
This critical review explores the transformative impact of artificial intelligence (AI), particularly machine learning (ML) and computer vision (CV), on scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) for metallic microstructure analysis, spanning research from 2010 to 2025. It critically evaluates how AI techniques balance automation, accuracy, and scalability, analysing why certain methods (e.g., Vision Transformers for complex microstructures) excel in specific contexts and how trade-offs in data availability, computational resources, and interpretability shape their adoption. The review examines AI-driven techniques, including semantic segmentation, object detection, and instance segmentation, which automate the identification and characterisation of microstructural features, defects, and inclusions, achieving enhanced accuracy, efficiency, and reproducibility compared to traditional manual methods. It introduces the Microstructure Analysis Spectrum, a novel framework categorising techniques by task complexity and scalability, providing a new lens to understand AI’s role in materials science. The paper also evaluates AI’s role in chemical composition analysis and predictive modelling, facilitating rapid forecasts of mechanical properties such as hardness and fracture strain. Practical applications in steelmaking (e.g., automated inclusion characterisation) and case studies on high-entropy alloys and additively manufactured metals underscore AI’s benefits, including reduced analysis time and improved quality control. Extending prior reviews, this work incorporates recent advancements like Vision Transformers, 3D Convolutional Neural Networks (CNNs), and Generative Adversarial Networks (GANs). Key challenges—data scarcity, model interpretability, and computational demands—are critically analysed, with representative trade-offs from the literature highlighted (e.g., GANs can substantially augment effective dataset size through synthetic data generation, typically at the cost of significantly increased training time). Full article
(This article belongs to the Special Issue Advances in AI and Multiphysics Modelling)
Show Figures

Figure 1

20 pages, 3938 KB  
Article
Comparative Structural and Hydraulic Assessment of a DN3000 Double Eccentric Butterfly Valve Blade Using a Coupled CFD–FEM Approach
by Xolani Prince Hadebe, Bernard Xavier Tchomeni Kouejou, Alfayo Anyika Alugongo and Desejo Filipeson Sozinando
Appl. Mech. 2026, 7(1), 7; https://doi.org/10.3390/applmech7010007 - 15 Jan 2026
Viewed by 157
Abstract
Large-diameter butterfly valves are essential control components in high-flow hydraulic systems, where blade geometry directly impacts operational reliability, energy efficiency, and lifecycle cost. This study presents an integrated structural–hydraulic optimization of a DN3000 Boving butterfly valve blade rated for a maximum operating pressure [...] Read more.
Large-diameter butterfly valves are essential control components in high-flow hydraulic systems, where blade geometry directly impacts operational reliability, energy efficiency, and lifecycle cost. This study presents an integrated structural–hydraulic optimization of a DN3000 Boving butterfly valve blade rated for a maximum operating pressure of 10 bar with comparative analysis of a conventional flat blade and an optimized curved blade. The work applies a CFD–FEM framework specifically to DN3000 Southern African valves, which is rare in the literature. Numerical simulations evaluated stress distribution, deformation, pressure losses, and flow stability under design and hydrostatic test conditions. The curved blade achieved a 58.6% reduction in peak von Mises stress, a 50% reduction in weight, a 22% reduction in load loss, and a 33% reduction in actuation torque requirements, while maintaining seal integrity. Cost analysis revealed a 50% reduction in material costs and simplification of manufacturing. The results confirm that the introduction of curvature significantly improves structural strength and hydraulic efficiency, thus providing a reproducible framework for the design of lighter and more economical valves in hydropower, municipal and industrial applications. Full article
Show Figures

Figure 1

22 pages, 8822 KB  
Article
Potential Recovery and Recycling of Condensate Water from Atlas Copco ZR315 FF Industrial Air Compressors
by Ali Benmoussa, Zakaria Chalhe, Benaissa Elfahime and Mohammed Radouani
Inventions 2026, 11(1), 10; https://doi.org/10.3390/inventions11010010 - 14 Jan 2026
Viewed by 226
Abstract
This research examines the feasibility of recovering and recycling condensate water, a waste byproduct generated by Atlas Copco ZR315 FF industrial air compressors utilizing oil-free rotary screw technology with integrated dryers. Given the growing severity of global water scarcity, finding alternative water sources [...] Read more.
This research examines the feasibility of recovering and recycling condensate water, a waste byproduct generated by Atlas Copco ZR315 FF industrial air compressors utilizing oil-free rotary screw technology with integrated dryers. Given the growing severity of global water scarcity, finding alternative water sources is essential for sustainable industrial practices. This study specifically evaluates the potential of capturing and treating compressed air condensate as a viable method for water recovery. The investigation analyzes both the quantity and quality of condensate water produced by the ZR315 FF unit. It contrasts this recovery approach with traditional water production methods, such as desalination and atmospheric water generation (AWG) via dehumidification. The findings demonstrate that recovering condensate water from industrial air compressors is a cost-effective and energy-efficient substitute for conventional water production, especially in water-stressed areas like Morocco. The results show a significant opportunity to reduce industrial water usage and provide a sustainable source of process water. This research therefore supports the application of circular economy principles in industrial water management and offers practical solutions for overcoming water scarcity challenges within manufacturing environments. Full article
Show Figures

Figure 1

26 pages, 4662 KB  
Article
Eco-Efficient Geopolymer Bricks Without Firing and Mechanical Pressing
by Muhammad Hassan Javed, Qasim Shaukat Khan, Asad Ullah Qazi, Syed Minhaj Saleem Kazmi and Muhammad Junaid Munir
Sustainability 2026, 18(2), 762; https://doi.org/10.3390/su18020762 - 12 Jan 2026
Viewed by 188
Abstract
Kiln-fired clay bricks are energy-intensive and carbon-heavy. This study develops and validates kiln-free, pressure-free, and ambient-cured geopolymer (GPM) bricks made from uncalcined clay and Class F fly ash. A two-stage experimental program screened 33 mixes (12–16 M NaOH and 396 cubes tested at [...] Read more.
Kiln-fired clay bricks are energy-intensive and carbon-heavy. This study develops and validates kiln-free, pressure-free, and ambient-cured geopolymer (GPM) bricks made from uncalcined clay and Class F fly ash. A two-stage experimental program screened 33 mixes (12–16 M NaOH and 396 cubes tested at 14–90 days) and then scaled six optimized mixes to 90 full-size bricks for mechanical, durability, and microstructural evaluation. Bricks with an optimal mix of 20–30% clay and 70–80% fly ash achieved a compressive strength of up to 32.5 MPa, satisfying ASTM C62 (for severe weathering) requirements. Relative to fired clay units, GPM bricks delivered +61% average compressive strength (up to +91%), +56.5% average modulus of rupture (up to +103%), 6–29% lower water absorption, and 42–84% higher UPV while their strength losses after 28-day immersion in 5% H2SO4 or 3.5% NaCl were only ~3–5%. SEM confirmed a dense N-A-S-H gel matrix with reduced porosity. Eco-efficiency analysis showed ~95% lower embodied CO2 (0.26–0.31 vs. 5.5 kg eCO2 per brick) and ~35% lower cost per MPa of strength than fired clay bricks. The findings demonstrate a practical, low-carbon brick manufactured without mechanical pressing or heat curing, delivering verified performance and durability under ambient conditions. Full article
Show Figures

Figure 1

25 pages, 1514 KB  
Article
Policy Transmission Mechanisms and Effectiveness Evaluation of Territorial Spatial Planning in China
by Luge Wen, Yucheng Sun, Tianjiao Zhang and Tiyan Shen
Land 2026, 15(1), 145; https://doi.org/10.3390/land15010145 - 10 Jan 2026
Viewed by 220
Abstract
This study is situated at the critical stage of comprehensive implementation of China’s territorial spatial planning system, addressing the strategic need for planning evaluation and optimization. We innovatively construct a Computable General Equilibrium Model for China’s Territorial Spatial Planning (CTSPM-CHN) that integrates dual [...] Read more.
This study is situated at the critical stage of comprehensive implementation of China’s territorial spatial planning system, addressing the strategic need for planning evaluation and optimization. We innovatively construct a Computable General Equilibrium Model for China’s Territorial Spatial Planning (CTSPM-CHN) that integrates dual factors of construction land costs and energy consumption costs. Through designing two policy scenarios of rigid constraints and structural optimization, we systematically simulate and evaluate the dynamic impacts of different territorial spatial governance strategies on macroeconomic indicators, residents’ welfare, and carbon emissions, revealing the multidimensional effects and operational mechanisms of territorial spatial planning policies. The findings demonstrate the following: First, strict implementation of land use scale control from the National Territorial Planning Outline (2016–2030) could reduce carbon emission growth rate by 12.3% but would decrease annual GDP growth rate by 0.8%, reflecting the trade-off between environmental benefits and economic growth. Second, industrial land structure optimization generates significant synergistic effects, with simulation results showing that by 2035, total GDP under this scenario would increase by 4.8% compared to the rigid constraint scenario, while carbon emission intensity per unit GDP would decrease by 18.6%, confirming the crucial role of structural optimization in promoting high-quality development. Third, manufacturing land adjustment exhibits policy thresholds: moderate reduction could lower carbon emission peak by 9.5% without affecting economic stability, but excessive cuts would lead to a 2.3 percentage point decline in industrial added value. Based on systematic multi-scenario analysis, this study proposes optimized pathways for territorial spatial governance: the planning system should transition from scale control to a structural optimization paradigm, establishing a flexible governance mechanism incorporating anticipatory constraint indicators; simultaneously advance efficiency improvement in key sector land allocation and energy structure decarbonization, constructing a coordinated “space–energy” governance framework. These findings provide quantitative decision-making support for improving territorial spatial governance systems and advancing ecological civilization construction. Full article
Show Figures

Figure 1

42 pages, 2357 KB  
Review
Advances in Materials and Manufacturing for Scalable and Decentralized Green Hydrogen Production Systems
by Gabriella Stefánia Szabó, Florina-Ambrozia Coteț, Sára Ferenci and Loránd Szabó
J. Manuf. Mater. Process. 2026, 10(1), 28; https://doi.org/10.3390/jmmp10010028 - 9 Jan 2026
Cited by 1 | Viewed by 326
Abstract
The expansion of green hydrogen requires technologies that are both manufacturable at a GW-to-TW power scale and adaptable for decentralized, renewable-driven energy systems. Recent advances in proton exchange membrane, alkaline, and solid oxide electrolysis reveal persistent bottlenecks in catalysts, membranes, porous transport layers, [...] Read more.
The expansion of green hydrogen requires technologies that are both manufacturable at a GW-to-TW power scale and adaptable for decentralized, renewable-driven energy systems. Recent advances in proton exchange membrane, alkaline, and solid oxide electrolysis reveal persistent bottlenecks in catalysts, membranes, porous transport layers, bipolar plates, sealing, and high-temperature ceramics. Emerging fabrication strategies, including roll-to-roll coating, spatial atomic layer deposition, digital-twin-based quality assurance, automated stack assembly, and circular material recovery, enable high-yield, low-variance production compatible with multi-GW power plants. At the same time, these developments support decentralized hydrogen systems that demand compact, dynamically operated, and material-efficient electrolyzers integrated with local renewable generation. The analysis underscores the need to jointly optimize material durability, manufacturing precision, and system-level controllability to ensure reliable and cost-effective hydrogen supply. This paper outlines a convergent approach that connects critical-material reduction, high-throughput manufacturing, a digitalized balance of plant, and circularity with distributed energy architectures and large-scale industrial deployment. Full article
Show Figures

Figure 1

16 pages, 2104 KB  
Article
Evaluation and Comparison of Multi-Power Source Coupling Technologies for Vehicles Based on Driving Dynamics
by Haoyi Zhang, Hong Tan, Linjie Ren and Xinglong Liu
Sustainability 2026, 18(2), 602; https://doi.org/10.3390/su18020602 - 7 Jan 2026
Viewed by 143
Abstract
With the growing consumer demand for enhanced driving dynamics in vehicles, optimizing powertrain configurations to balance performance, energy efficiency, and cost has become a critical challenge. Traditional internal combustion engine vehicles (ICEVs) suffer from significant energy consumption and cost penalties when improving acceleration [...] Read more.
With the growing consumer demand for enhanced driving dynamics in vehicles, optimizing powertrain configurations to balance performance, energy efficiency, and cost has become a critical challenge. Traditional internal combustion engine vehicles (ICEVs) suffer from significant energy consumption and cost penalties when improving acceleration performance. This study systematically evaluates the trade-offs between dynamic performance, energy consumption, and direct manufacturing costs across six powertrain configurations: ICEV, 48 V mild hybrid (48 V), hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV), range-extended electric vehicle (REV), and battery electric vehicle (BEV). By developing a comprehensive parameterized model, we quantify the impacts of acceleration improvement on vehicle mass, energy consumption, and costs. Key findings reveal that electrified powertrains (PHEV, REV, BEV) exhibit superior cost-effectiveness and energy efficiency. For instance, improving 0–100 km/h acceleration time from 9 to 5 s reduces direct manufacturing costs by only 5.72% for BEV versus 13.38% for ICEV, while PHEV achieves a balanced compromise with 3.40% lower fuel consumption and 10.43% cost increase compared to conventional counterparts. Mechanistic analysis attributes these advantages to higher power density of electric motors and simplified energy transmission in electrified systems. This work provides data-driven insights for consumers and automakers to prioritize powertrain technologies under dynamic performance requirements, highlighting PHEV with driving range of 50 km as the optimal choice for harmonizing driving experience, energy economy, and affordability. The results of this study assist automakers in optimizing the technology pathways of vehicle powertrain, within the consumer demand for dynamic performance. This plays a crucial role in advancing the automotive industry’s overall fuel consumption and energy consumption, thereby contributing to sustainable development. Full article
Show Figures

Figure 1

31 pages, 2782 KB  
Article
From Innovation to Circularity: Mapping the Engines of EU Sustainability and Energy Transition
by Catalin Gheorghe, Nicoleta Stelea and Oana Panazan
Sustainability 2026, 18(1), 467; https://doi.org/10.3390/su18010467 - 2 Jan 2026
Viewed by 405
Abstract
This study investigates how economic development interacts with sustainability performance in the European Union, focusing on the structural and technological factors that shape progress in the green transition. Using Eurostat data for 27 EU member states over the period 2015–2023, the analysis employs [...] Read more.
This study investigates how economic development interacts with sustainability performance in the European Union, focusing on the structural and technological factors that shape progress in the green transition. Using Eurostat data for 27 EU member states over the period 2015–2023, the analysis employs panel econometric models (Pooled Ordinary Least Squares, Fixed Effects, and Random Effects) to explore how circular economy performance, innovation capacity, human capital, and renewable energy use influence environmental and economic outcomes across member states. The results show that R&D intensity and skilled human resources are key drivers of sustainability. Higher levels of circular material use and resource productivity contribute to long-term competitiveness. In contrast, uneven progress in renewable energy deployment points to persistent regional disparities and possible structural constraints that limit convergence. Northern and Western Europe record the strongest advances in innovation and environmental efficiency, whereas Southern and Eastern regions remain affected by industrial legacies and lower absorptive capacity. The findings highlight that, in the short term, renewable energy expansion may involve adjustment costs and potential trade-offs with economic competitiveness in less technologically developed economies. This study provides new comparative evidence on the differentiated pathways of the green transition across the EU. Policy implications suggest the need to reinforce R&D investment, expand circular manufacturing, and support an inclusive technological transition consistent with the European Green Deal and the United Nations 2030 Agenda. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

37 pages, 20692 KB  
Article
Integration Method for IEC 61850 into Legacy and Modern PLC Systems
by Arthur Kniphoff da Cruz, Christian Siemers, Lorenz Däubler and Ana Clara Hackenhaar Kellermann
Automation 2026, 7(1), 7; https://doi.org/10.3390/automation7010007 - 1 Jan 2026
Viewed by 385
Abstract
In the classic energy sector, as well as in the manufacturing and process industries, Programmable Logic Controller (PLC) systems are used for electrical substation control. However, PLCs frequently do not support the communication protocols defined on the standard International Electrotechnical Commission (IEC) 61850. [...] Read more.
In the classic energy sector, as well as in the manufacturing and process industries, Programmable Logic Controller (PLC) systems are used for electrical substation control. However, PLCs frequently do not support the communication protocols defined on the standard International Electrotechnical Commission (IEC) 61850. Therefore, this paper presents a vendor-independent method for the integration of Protection and Control (P&C) Intelligent Electronic Devices (IEDs), components of the substation bay level, in PLCs from the substation station level. The method can be used with legacy and modern controllers that offer an open communication interface, where the use of Transmission Control Protocol/Internet Protocol (TCP/IP) is supported. Since many legacy systems offer an open communication interface, this method makes it possible to reuse PLCs, bringing cost efficiency and ecological benefits. The method can be used in a single or redundant way since redundancy is always required in power distribution control. A prototype was developed for the integration over IEC 61850 Manufacturing Message Specification (MMS), and its functional validation is presented in this paper. This solution, besides reducing hardware and software acquisition costs, also contributes to a reduction in electronic waste (E-Waste) and the achievement of Sustainable Development Goals (SDGs). Full article
(This article belongs to the Special Issue Substation Automation, Protection and Control Based on IEC 61850)
Show Figures

Figure 1

19 pages, 4005 KB  
Review
Efficient Separation of Per- and Polyfluoroalkyl Substances (PFAS) by Organic Framework Membranes: Advances, Mechanisms, and Challenges
by Jiawei Zhang, Baosheng Zhao and Hao Yang
Membranes 2026, 16(1), 19; https://doi.org/10.3390/membranes16010019 - 1 Jan 2026
Viewed by 434
Abstract
Per- and polyfluoroalkyl substances (PFAS) represent a class of highly persistent environmental contaminants with exceptional chemical stability. Efficient removal of PFAS from water poses a significant challenge for the chemical industry and constitutes a critical requirement for sustainable environmental development. Membrane technology has [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) represent a class of highly persistent environmental contaminants with exceptional chemical stability. Efficient removal of PFAS from water poses a significant challenge for the chemical industry and constitutes a critical requirement for sustainable environmental development. Membrane technology has demonstrated considerable potential in water treatment due to its low energy consumption and environmentally friendly characteristics. This review comprehensively summarizes recent advances in emerging metal–organic framework (MOF)-, covalent organic framework (COF)-, and hydrogen-bonded organic framework (HOF)-based membranes for highly efficient separation and catalytic degradation of PFAS. We provide a detailed analysis of design strategies for various organic framework membranes (OFMs) and their synergistic separation mechanisms, including size exclusion, electrostatic interactions, adsorption, as well as catalytic degradation based on advanced oxidation processes. Furthermore, we systematically evaluate the performance and applicability of these membranes in practical aquatic environments. Finally, this review outlines future directions toward developing integrated “separation-degradation” membrane processes for practical applications by discussing current challenges concerning material stability, manufacturing costs, and long-term operational efficiency. This review aims to provide theoretical guidance and technical insights for developing next-generation high-performance membranes for PFAS removal. Full article
Show Figures

Graphical abstract

31 pages, 2435 KB  
Article
Comparative Life Cycle Analysis of Battery Electric Vehicle and Fuel Cell Electric Vehicle for Last-Mile Transportation
by Jieyi Zhang, Zhong Shuo Chen, Xinrui Zhang, Heran Zhang and Ruobin Gao
Energies 2026, 19(1), 136; https://doi.org/10.3390/en19010136 - 26 Dec 2025
Viewed by 574
Abstract
This study investigates whether Battery Electric Vehicles (BEVs) or Fuel Cell Electric Vehicles (FCEVs) represent the superior alternative to conventional vehicles for last-mile delivery, with a particular focus on large enterprises that prioritize both economic feasibility and environmental performance. Life Cycle Assessment and [...] Read more.
This study investigates whether Battery Electric Vehicles (BEVs) or Fuel Cell Electric Vehicles (FCEVs) represent the superior alternative to conventional vehicles for last-mile delivery, with a particular focus on large enterprises that prioritize both economic feasibility and environmental performance. Life Cycle Assessment and Life Cycle Cost methodologies are applied to evaluate both technologies across the full cradle-to-grave life cycle within a unified framework. The functional unit is defined as one kilometer traveled by a BEV or FCEV in last-mile transportation, and the system boundary includes vehicle manufacturing, operation, maintenance, and end-of-life treatment. The environmental impacts are assessed using the ReCiPe 2016 Midpoint (H) method implemented in OpenLCA 2.0.4, and normalization follows the standards provided by the official ReCiPe 2016 framework. The East China Power Grid serves as the baseline electricity mix for the operational stage. Regarding GHG emissions, FCEVs demonstrate a 12.36% reduction in carbon dioxide (CO2) emissions compared to BEVs. This reduction is particularly significant during the operational phase, where FCEVs can lower CO2 emissions by 53.51% per vehicle relative to BEVs, largely due to hydrogen energy’s higher efficiency and durability. In terms of economic costs, BEVs hold a slight advantage over FCEVs, costing approximately 0.8 RMB/km/car less. However, during the manufacturing phase, FCEVs present greater environmental challenges. It is recommended that companies fully consider which environmental issues they wish to make a greater contribution to when selecting vehicle types. This study provides insight and implications for large companies with financial viability concerns about environmental impact regarding selecting the two types of vehicles for last-mile transportation. The conclusions offer guidance for companies assessing which vehicle technology better aligns with their long-term operational and sustainability priorities. It can also help relevant practitioners and researchers to develop solutions to last-mile transportation from the perspective of different enterprise sizes. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

44 pages, 5834 KB  
Article
Smart Hybrid Maintenance as a Pathway to Energy-Efficient Manufacturing
by Sebastian Dudzik, Gabriela Gic-Grusza, Dawid Pilc and Piotr Szeląg
Energies 2026, 19(1), 132; https://doi.org/10.3390/en19010132 - 26 Dec 2025
Viewed by 348
Abstract
The growing demand for energy-efficient and sustainable manufacturing requires maintenance strategies that extend beyond reliability optimization toward active energy management. This study proposes a Smart Hybrid Maintenance System (SHMS) that integrates Reliability-Centered Maintenance (RCM) and Condition-Based Maintenance (CBM) principles with energy performance assessment. [...] Read more.
The growing demand for energy-efficient and sustainable manufacturing requires maintenance strategies that extend beyond reliability optimization toward active energy management. This study proposes a Smart Hybrid Maintenance System (SHMS) that integrates Reliability-Centered Maintenance (RCM) and Condition-Based Maintenance (CBM) principles with energy performance assessment. The framework combines classical reliability indicators (MTBF, MTTR, and Availability) with energy-oriented Key Performance Indicators (EEI, EENS, and OEE) to quantify the relationship between machine degradation, operational availability, and energy efficiency. The methodology was validated using two datasets: NASA N-CMAPSS for simulation-based benchmarking and the Smart RDM industrial environment for real process data. Results demonstrate that predictive maintenance supported by the Hybrid Risk Index (HRI) reduces unplanned downtime by up to 12%, corresponding to a 7–9% decrease in specific energy consumption and a measurable improvement in the Energy Efficiency Index. By embedding energy metrics into predictive maintenance decision-making, the SHMS enables dual optimization of reliability and energy performance. The proposed approach not only enhances equipment availability and cost efficiency but also supports industrial decarbonization targets, positioning predictive maintenance as a key enabler of energy-aware and sustainable manufacturing aligned with Industry 5.0 objectives. Full article
(This article belongs to the Special Issue Improvements of the Electricity Power System: 3rd Edition)
Show Figures

Graphical abstract

Back to TopTop