From Innovation to Circularity: Mapping the Engines of EU Sustainability and Energy Transition
Abstract
1. Introduction
2. Literature Review
2.1. Conceptual Foundations
2.2. European and International Policy Frameworks
2.3. Indicators Used in the Literature
2.4. Research Gaps and Working Hypotheses
3. Data and Variables
3.1. Variable Description and Definitions
3.2. Descriptive Statistics and Sample Profile
4. Methodological Framework
4.1. Empirical Model and Estimation Strategy
4.2. Variable Transformation and Robustness Procedures
4.3. Diagnostic and Model Reliability Tests
5. Results
5.1. Correlation Analysis
5.2. Visualization of Partial Regression Relationships
5.3. Coefficient Analysis
5.4. Panel Estimation Results
5.5. Fixed Effects Regression Results and Model Selection
5.6. Influential Observation Analysis
5.7. Robustness and Additional Results
5.8. Regional Patterns in the EU Green Transition
- Northern Europe (Finland, Sweden, Denmark) demonstrates a balanced yet moderate profile. The region records positive results for CEIGSR (0.54) but slightly below average values for ACCUR (−0.36) and INDID (−1.06). This suggests that despite mature institutions and resource efficiency, specialization in capital-intensive sectors constrains diversification. The slightly negative CEIPC (−0.14) points to relative stability rather than rapid gains in environmental competitiveness.
- North-East Europe displays a moderately positive trajectory. A small surplus in CEIGSR (0.22) contrasts with negative scores in ACCUR (−0.24), INDID (−0.61), and CEIPC (−0.83), revealing persistent weaknesses in innovation diffusion and circular economy adaptation. The region’s progress remains limited by institutional capacity and absorptive constraints.
- North-Western Europe (Ireland, the Netherlands, Belgium) stands out as the EU’s leading cluster. It registers the highest CEIGSR (0.75) and exceptional innovation and competitiveness scores (ACCUR = 1.12; CEIPC = 1.47), alongside a positive INDID (0.56). This combination reflects a self-reinforcing model of innovation growth, where R&D, technological infrastructure, and environmental performance form a cycle.
- Western Europe (France, Luxembourg) maintains consistently strong outcomes, with all indicators above the EU average (CEIGSR = 0.60; ACCUR = 0.73; INDID = 0.57; CEIPC = 1.49). The region’s policy coherence and institutional strength underpin its ability to couple technological progress with sustainability, enhancing resilience amid energy and geopolitical challenges.
- Central Europe (Germany, Austria, Czechia, Slovakia, Hungary, Slovenia, Croatia) shows a mixed performance, with slightly below average CEIGSR (−0.35) and CEIPC (−0.24), but near average ACCUR (−0.06) and INDID (−0.08). Despite industrial modernization and substantial EU investment, reliance on energy intensive sectors continues to moderate transition speed.
- Eastern Europe (Poland) presents a dual profile: robust economic expansion (CEIGSR = 0.60) but limited circular economy performance (ACCUR = 0.04; CEIPC = −0.97) and low industrial diversification (INDID = −0.78). Although EU funding has supported reforms, dependence on fossil-based energy and slow innovation diffusion hinder convergence.
- Southern Europe (Italy, Malta, Cyprus) exhibits heterogeneous outcomes. Despite below-average CEIGSR (−0.50), the region achieves strong industrial diversification (INDID = 1.39) and positive scores in ACCUR (0.38) and CEIPC (0.41). Nonetheless, high energy import dependency and fiscal constrains limit its transition potential.
- South-Eastern Europe (Romania, Bulgaria, Greece) ranks lowest, with uniformly negative values (CEIGSR = −0.22; ACCUR = −0.97; INDID = −0.51; CEIPC = −0.99). Persistent gaps in innovation capability and circular economy implementation reflect structural weaknesses and slower institutional modernization. However, targeted EU mechanisms, such as the Just Transition Fund and cohesion policy instruments, may gradually mitigate these disparities.
- South-Western Europe (Spain, Portugal) achieves intermediate results. Although CEIGSR (−0.79) and ACCUR (−0.57) are below average, the region records positive INDID (0.63) and near-average CEIPC (0.10). The results indicate that renewable deployment and industrial restructuring are improving sustainability, albeit at a moderate pace.
6. Discussions
7. Concluding Remarks and Future Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| UN | United Nations |
| EU | European Union |
| EGD | European Green Deal |
| EI | Energy Intensity |
| P-OLS | Pooled Ordinary Least Squares |
| FE | Fixed Effects |
| RE | Random Effects |
| COVID-19 | Coronavirus Disease 2019 |
| EKC | Environmental Kuznets Curve |
| SDGs | Sustainable development goals |
| CO2 | Carbon dioxide |
| HRST | Human resources in science and technology |
| GERD | Gross domestic expenditure on R&D |
| GHG | Greenhouse gas |
| GDP | Gross domestic product |
| DE | Digital Economy |
| GTFP | Digital transformation and sustainable total factor productivity |
| EU ETS | European Union’s emissions trading scheme |
| GMM | Generalized method of moments |
| CCE | Common correlated effects |
| CS-ARDL | Cross-sectionally augmented autoregressive distributed lag |
| ESG | Environmental, social, and governance |
| CEIGSR | Greenhouse gases emissions from production activities |
| ACCUR | Circular material use rate |
| INDID | Energy imports dependency |
| CEIPC | Resource productivity |
| INDREN | Share of energy from renewable sources |
| INDEI | Energy intensity |
| GERDTOT | GERD by sector of performance |
| TEC | GDP Per Capita in PPS |
| TIPSUN | Unemployment rate |
| TIN | Digitalization intensity |
| UNEP | United Nations Environment Programme |
References
- Brundtland, G.H. Our common future—Call for action. Environ. Conserv. 1987, 14, 291–294. [Google Scholar] [CrossRef]
- United Nations. Agenda 21; United Nations: New York, NY, USA, 1992; Available online: https://sustainabledevelopment.un.org/outcomedocuments/agenda21 (accessed on 1 October 2025).
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development (A/RES/70/1); United Nations: New York, NY, USA, 2015; Available online: https://sdgs.un.org/2030agenda (accessed on 2 October 2025).
- European Commission. The European Green Deal (COM(2019) 640 Final); European Commission: Brussels, Belgium, 2019; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52019DC0640 (accessed on 2 October 2025).
- Chatzistamoulou, N.; Koundouri, P. Is green transition in Europe fostered by energy and environmental efficiency feedback loops? The role of eco-innovation, renewable energy and green taxation. Environ. Resour. Econ. 2024, 87, 1445–1472. [Google Scholar] [CrossRef]
- Caglar, A.E.; Avci, S.B.; Ahmed, Z.; Gökçe, N. Assessing the role of green investments and green innovation in ecological sustainability: From a climate action perspective on European countries. Sci. Total Environ. 2024, 928, 172527. [Google Scholar] [CrossRef] [PubMed]
- Grashof, N.; Basilico, S. Divergent paths for green transition: Regional disparities in technology diversification. Reg. Stud. 2025, 59, 2363327. [Google Scholar] [CrossRef]
- Rodríguez-Pose, A.; Bartalucci, F. The green transition and its potential territorial discontents. Camb. J. Reg. Econ. Soc. 2024, 17, 339–358. [Google Scholar] [CrossRef]
- Peiro-Palomino, J.; Gianmoena, L.; Picazo-Tadeo, A.J.; Rios, V. Is social capital a driver of the green transition in the European Union? Ecol. Econ. 2025, 230, 108500. [Google Scholar] [CrossRef]
- Deberdt, R.; Le Billon, P. Green transition’s necropolitics: Inequalities, climate extractivism, and carbon classes. Antipode 2024, 56, 1264–1288. [Google Scholar] [CrossRef]
- Ferrari, A.; Nispi Landi, V. Will the green transition be inflationary? Expectations matter. IMF Econ. Rev. 2024, 73, 1195–1258. [Google Scholar] [CrossRef]
- Shang, Y.; Sang, S.; Tiwari, A.K.; Khan, S.; Zhao, X. Impacts of renewable energy on climate risk: A global perspective for energy transition in a climate adaptation framework. Appl. Energy 2024, 362, 122994. [Google Scholar] [CrossRef]
- Huang, C.; Lin, B. How digital economy index selection and model uncertainty will affect energy green transition. Energy Econ. 2024, 136, 107774. [Google Scholar] [CrossRef]
- Li, P. Digital Technologies, Environmental Governance and Environmental Performance: Empirical Evidence from China. Eng. Econ. 2024, 35, 236–248. [Google Scholar] [CrossRef]
- Crespo, N.F.; Crespo, C.F.; Silva, G.M. Every cloud has a silver lining: The role of business digitalization and early internationalization strategies to overcome cloudy times. Technol. Forecast. Soc. Chang. 2024, 200, 123084. [Google Scholar] [CrossRef]
- Yadav, A.; Mahalik, M.K. Does renewable energy development reduce energy import dependency in emerging economies? Evidence from CS-ARDL and panel causality approach. Energy Econ. 2024, 131, 107356. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). Towards a Green Economy: Pathways to Sustainable Development and Poverty Eradication; UNEP: Nairobi, Kenya, 2011; Available online: https://sustainabledevelopment.un.org/content/documents/126GER_synthesis_en.pdf (accessed on 3 October 2025).
- Deif, A.M. A system model for green manufacturing. J. Clean Prod. 2011, 19, 1553–1559. [Google Scholar] [CrossRef]
- Dornfeld, D.A. Moving towards green and sustainable manufacturing. Int. J. Precis. Eng. Manuf.-Green Technol. 2014, 1, 63–66. [Google Scholar] [CrossRef]
- Gandhi, N.S.; Thanki, S.J.; Thakkar, J.J. Ranking of drivers for integrated lean-green manufacturing for Indian manufacturing SMEs. J. Clean Prod. 2018, 171, 675–689. [Google Scholar] [CrossRef]
- Leal, P.H.; Marques, A.C. The evolution of the environmental Kuznets curve hypothesis assessment: A literature review under a critical analysis perspective. Heliyon 2022, 8, e11521. [Google Scholar] [CrossRef]
- Martínez-Sánchez, A.; Vicente-Oliva, S.; Pérez-Pérez, M. The relationship between R&D, the absorptive capacity of knowledge, human resource flexibility and innovation: Mediator effects on industrial firms. J. Bus. Res. 2020, 118, 431–440. [Google Scholar] [CrossRef]
- Dubey, R.; Gunasekaran, A.; Childe, S.J.; Wamba, S.F.; Papadopoulos, T. The impact of big data on world-class sustainable manufacturing. Int. J. Adv. Manuf. Technol. 2016, 84, 631–645. [Google Scholar] [CrossRef]
- Dincer, I.; Acar, C. Innovation in hydrogen production. Int. J. Hydrog. Energy 2017, 42, 14843–14864. [Google Scholar] [CrossRef]
- Gedam, V.V.; Raut, R.D.; Lopes de Sousa Jabbour, A.B.; Narkhede, B.E.; Grebinevych, O. Sustainable manufacturing and green human resources: Critical success factors in the automotive sector. Bus. Strateg. Environ. 2021, 30, 1296–1313. [Google Scholar] [CrossRef]
- European Commission. A New Circular Economy Action Plan: For a Cleaner and More Competitive Europe (COM(2020) 98 Final); European Commission: Brussels, Belgium, 2020; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0098 (accessed on 6 October 2025).
- European Commission. Fit for 55’: Delivering the EU’s 2030 Climate Target on the Way to Climate Neutrality (COM(2021) 550 Final); European Commission: Brussels, Belgium, 2021; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021DC0550 (accessed on 6 October 2025).
- Kim, J.; Jaumotte, F.; Panton, A.J.; Schwerhoff, G. Energy security and the green transition. Energy Policy 2025, 198, 114409. [Google Scholar] [CrossRef]
- Tijanić, L.; Kersan-Škabić, I. Tracking the Green Transition in the European Union Within the Framework of EU Cohesion Policy: Current Results and Future Paths. Econ. 2025, 13, 37. [Google Scholar] [CrossRef]
- Wang, F.; Debel, M.T. Investing in the relationship between industrial output, renewable energy, and sustainable economic development in Ethiopia: Does clean energy matter? Energy Policy 2025, 207, 114844. [Google Scholar] [CrossRef]
- Axt, M.; Baldassarre, B.; Kirchherr, J. Towards greater circularity in the hydrogen technology value chain. Ecol. Econ. 2025, 236, 108679. [Google Scholar] [CrossRef]
- Duca, I.; Dumitrescu, B.A.; Tănăsescu, P.; Leonida, I.; Bozagiu, A.-M.; Poleac, D. Geopolitical Risk and Firm Profitability in Complex Socio-Economic Systems: A Heterogeneous Dynamics Perspective. Systems 2025, 13, 945. [Google Scholar] [CrossRef]
- Sachs, J.; Kroll, C.; Lafortune, G.; Fuller, G.; Woelm, F. Sustainable Development Report 2021; Cambridge University Press: Cambridge, UK, 2021; Available online: https://www.cambridge.org/core/books/sustainable-development-report-2021/2843BDD9D08CDD80E6875016110EFDAE (accessed on 8 October 2025).
- Lu, H.; Pan, Y.; Fan, R.; Guan, W. Green credit policy and heavily polluting enterprises’ green transition. Int. Rev. Financ. Anal. 2025, 103, 104162. [Google Scholar] [CrossRef]
- Rahko, J. Vertical spillovers and the energy intensity of European industries. Energy Econ. 2025, 141, 108053. [Google Scholar] [CrossRef]
- Algieri, B.; Aquino, A.; Succurro, M. Green-go: A green innovation competitiveness index. Sustain. Futures 2025, 10, 101062. [Google Scholar] [CrossRef]
- Silva, P.M.; Moutinho, V.F.; Gaspar, P.M. Do labour productivity, capital productivity and education influence the technical efficiency of entrepreneurial outcomes? Evidence from europe. J. Int. Entrep. 2024, 23, 373–414. [Google Scholar] [CrossRef]
- Liu, Y.; Lei, P.; He, D. Endogenous green technology progress, green transition and carbon emissions. Int. Rev. Econ. Financ. 2024, 91, 69–82. [Google Scholar] [CrossRef]
- Crnčec, D.; Penca, J.; Lovec, M. The COVID-19 pandemic and the EU: From a sustainable energy transition to a green transition? Energy Policy 2023, 175, 113453. [Google Scholar] [CrossRef]
- Laimon, M.; Yusaf, T. Towards energy freedom: Exploring sustainable solutions for energy independence and self-sufficiency using integrated renewable energy-driven hydrogen system. Renew. Energy 2024, 222, 119948. [Google Scholar] [CrossRef]
- Burger, P.; Šlampiaková, L. Examining the connection between economic sectors, the unemployment rate and real GDP per capita–the case of EU countries. Cogent Econ. Financ. 2025, 13, 2532679. [Google Scholar] [CrossRef]
- Banelienė, R.; Strazdas, R.; González-Tejero, C.B.; Gavrila Gavrila, S. Green innovation for competitiveness: Impact on GDP growth in the European Union. Contemp. Econ. 2023, 17, 92–108. [Google Scholar] [CrossRef]
- Martí-Ballester, C.P. Do European renewable energy mutual funds foster the transition to a low-carbon economy? Renew. Energy 2019, 143, 1299–1309. [Google Scholar] [CrossRef]
- Yanovski, B.; Tahri, I.; Lessmann, K. Green transition and macroeconomic stabilization. J. Econ. Behav. Organ. 2024, 221, 586–601. [Google Scholar] [CrossRef]
- Cheilas, P.T.; Daglis, T.; Xidonas, P.; Michaelides, P.G.; Konstantakis, K.N. Financial dynamics, green transition and hydrogen economy in Europe. Int. Rev. Econ. Financ. 2024, 94, 103370. [Google Scholar] [CrossRef]
- Dini, G.; Focacci, C.N. Green jobs, intertemporal preferences, and social pressure: An experiment for a green transition of the labour market. Environ. Econ. Policy Stud. 2025, 27, 265–303. [Google Scholar] [CrossRef]
- Boix-Fayos, C.; De Vente, J. Challenges and potential pathways towards sustainable agriculture within the European Green Deal. Agric. Syst. 2023, 207, 103634. [Google Scholar] [CrossRef]
- Naqvi, B.; Rizvi, S.K.A.; Mirza, N.; Umar, M. Financial market development: A potentiating policy choice for the green transition in G7 economies. Int. Rev. Financ. Anal. 2023, 87, 102577. [Google Scholar] [CrossRef]
- Huang, C.; Du, A.M.; Lin, B. How does the digital economy affect the green transition: The role of industrial intelligence and E-commerce. Res. Int. Bus. Financ. 2025, 73, 102541. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, P.; Zhao, H. Green innovation through trade: The impact of European Union emissions trading scheme on Chinese exporters. . J. Int. Money Financ. 2024, 149, 103215. [Google Scholar] [CrossRef]
- Hoicka, C.E.; Lowitzsch, J.; Brisbois, M.C.; Kumar, A.; Camargo, L.R. Implementing a just renewable energy transition: Policy advice for transposing the new European rules for renewable energy communities. Energy Policy 2021, 156, 112435. [Google Scholar] [CrossRef]
- Gatto, A.; Mattera, R.; Panarello, D. For whom the bell tolls. A spatial analysis of the renewable energy transition determinants in Europe in light of the Russia-Ukraine war. J. Environ. Manag. 2024, 352, 119833. [Google Scholar] [CrossRef]
- Aydin, M.; Sogut, Y.; Erdem, A. The role of environmental technologies, institutional quality, and globalization on environmental sustainability in European Union countries: New evidence from advanced panel data estimations. Environ. Sci. Pollut. Res. 2024, 31, 10460–10472. [Google Scholar] [CrossRef]
- Guliyev, H.; Tatoğlu, F.Y. The relationship between renewable energy and economic growth in European countries: Evidence from panel data model with sharp and smooth changes. Renew. Energ. Focus 2023, 46, 185–196. [Google Scholar] [CrossRef]
- Baltagi, B.H. Econometric Analysis of Panel Data, 6th ed.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Hsiao, C. Analysis of Panel Data, 3rd ed.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Arellano, M.; Bond, S. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef]
- Rahat, B.; Nguyen, P. The impact of ESG profile on firm’s valuation in emerging markets. Int. Rev. Financ. Anal. 2024, 95, 103361. [Google Scholar] [CrossRef]
- Sharif, A.; Kartal, M.T.; Bekun, F.V.; Pata, U.K.; Foon, C.L.; Depren, S.K. Role of green technology, environmental taxes, and green energy towards sustainable environment: Insights from sovereign Nordic countries by CS-ARDL approach. Gondwana Res. 2023, 117, 194–206. [Google Scholar] [CrossRef]
- Kanwal, M.; Khan, H. Does carbon asset add value to clean energy market? Evidence from EU. Green Financ. 2021, 3, 495. [Google Scholar] [CrossRef]
- Khan, R.Z.; Razak, L.A.; Premaratne, G. Green Growth and Sustainability: A Systematic Literature Review on Theories, Measures and Future Directions. Clean Responsible Consum. 2025, 17, 100274. [Google Scholar] [CrossRef]
- Wilcox, R.R. Introduction to Robust Estimation and Hypothesis Testing, 3rd ed.; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Gea-Bermúdez, J.; Jensen, I.G.; Münster, M.; Koivisto, M.; Kirkerud, J.G.; Chen, Y.K.; Ravn, H. The role of sector coupling in the green transition: A least-cost energy system development in Northern-central Europe towards 2050. Appl. Energy 2021, 289, 116685. [Google Scholar] [CrossRef]
- Carfora, A.; Scandurra, G. Boosting green energy transition to tackle energy poverty in Europe. Energy Res. Soc. Sci. 2024, 110, 103451. [Google Scholar] [CrossRef]
- Quttainah, M.A.; Ayadi, I. The impact of digital integration on corporate sustainability: Emissions reduction, environmental innovation, and resource efficiency in the European. J. Innov. Knowl. 2024, 9, 100525. [Google Scholar] [CrossRef]
- Ionescu, R.V.; Zlati, M.L.; Antohi, V.M.; Susanu, I.O.; Cristache, N. A new approach on renewable energy as a support for regional economic development among the European Union. Technol. Forecast. Soc. Change 2022, 184, 121998. [Google Scholar] [CrossRef]
- Talebzadehhosseini, S.; Garibay, I. The interaction effects of technological innovation and path-dependent economic growth on countries overall green growth performance. J. Clean Prod. 2022, 333, 130134. [Google Scholar] [CrossRef]
- Huang, H.; Mbanyele, W.; Fan, S.; Zhao, X. Digital financial inclusion and energy-environment performance: What can learn from China. Struct. Change Econ. Dyn. 2022, 63, 342–366. [Google Scholar] [CrossRef]
- Abid, I. Revisiting growth dynamics in G7: An econometric critique of AI, education and industrialization interactions. J. Econom. Adm. Sci. 2025, 1–18, in press. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, Y. A dynamic multi-objective optimization model for inner-industry carbon responsibility allocation based on carbon tax and carbon offsets accounting. Appl. Energy 2025, 377, 124571. [Google Scholar] [CrossRef]
- Eurostat. Eurostat Database; European Commission: Luxembourg 2015–2023. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 23 September 2025).
- Lei, X.; Chen, X.; Zhang, B. Unleashing the spillover potential: Exploring the role of technology-seeking investment in driving green innovation of host countries. Technol. Forecast. Soc. Change 2024, 200, 123200. [Google Scholar] [CrossRef]
- Kennedy, S.; Linnenluecke, M.K. Circular economy and resilience: A research agenda. Bus. Strateg. Environ. 2022, 31, 2754–2765. [Google Scholar] [CrossRef]
- Khalique, A.; Wang, Y.; Ahmed, K. Europe’s environmental dichotomy: The impact of regulations, climate investments, and renewable energy on carbon mitigation in the EU-22. Energy Policy 2025, 198, 114498. [Google Scholar] [CrossRef]
- Hameed, T.; Alemayehu, F.K.; Kumbhakar, S.C. Green innovation in Norwegian firms: Navigating the complexity of productivity and performance. Technol. Forecast. Soc. Change 2024, 209, 123786. [Google Scholar] [CrossRef]
- Erdogan, S.; Akalin, G. Empirical Evidence on the Impact of Technological Innovation and Human Capital on Improving and Enhancing Environmental Sustainability. Sustainability 2025, 17, 7840. [Google Scholar] [CrossRef]
- Li, Z.; Liu, J. Impact of supply chain digitalization, business enterprise R&D expenditure and government budget allocations for R&D: A roadmap towards carbon neutrality. Energy Econ. 2025, 141, 108057. [Google Scholar] [CrossRef]
- Imran, M.; Khan, M.K.; Alam, S.; Wahab, S.; Tufail, M.; Jijian, Z. The implications of the ecological footprint and renewable energy usage on the financial stability of South Asian countries. Financ. Innov. 2024, 10, 102. [Google Scholar] [CrossRef]
- Lin, W.; Wang, C.W.; Li, Y.J.; Chen, J.Y. From green to digital: Exploring the role of ecological footprints on cybersecurity risk. Energy Econ. 2025, 146, 108546. [Google Scholar] [CrossRef]
- Moridian, A.; Radulescu, M.; Kumar, P.; Radu, M.T.; Mohammad, J. New insights on immigration, fiscal policy and unemployment rate in EU countries–A quantile regression approach. Heliyon 2024, 10, e33519. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, E. Economic growth, energy consumption and CO2 emissions: A replication. Energy Econ. 2025, 147, 108538. [Google Scholar] [CrossRef]
- Skare, M.; Gavurova, B.; Rigelsky, M. Quantification of the impact of innovations in industry and infrastructure for sustainable circular economy production and consumption. J. Innov. Knowl. 2024, 9, 100456. [Google Scholar] [CrossRef]
- Kharazi, A.; Hopkinson, P.; Zils, M.; Kobayashi, T. A dynamic production network approach to model resource productivity shocks from policy interventions in the UK. Int. Econ. Econ. Policy 2025, 22, 63. [Google Scholar] [CrossRef]
- Petrović, P.; Lobanov, M.M. The impact of R&D expenditures on CO2 emissions: Evidence from sixteen OECD countries. J. Clean Prod. 2020, 248, 119187. [Google Scholar] [CrossRef]
- Firtescu, B.N.; Bostan, I.; Grosu, M.; Droj, L.; Mihalciuc, C.C. Increasing the share of renewable energy sources (RESs) in the specific portfolio by using the taxation mechanism: Study at the level of EU states. Econ. Anal. Policy 2025, 85, 1534–1549. [Google Scholar] [CrossRef]
- Asteriou, D.; Hall, S.G. Applied Econometrics, 4th ed.; Palgrave Macmillan: London, UK, 2021. [Google Scholar]
- Gujarati, D.N.; Porter, D.C. Basic Econometrics, 5th ed.; McGraw-Hill: New York, NY, USA, 2009. [Google Scholar]
- Hausman, J.A. Specification tests in econometrics. Econometrica 1978, 46, 1251–1271. [Google Scholar] [CrossRef]
- Gelman, A.; Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Cook, R.D. Detection of influential observations in linear regression. Technometrics 1977, 19, 15–18. [Google Scholar] [CrossRef]
- O’Donovan, N. Turning less into more: Measuring real GDP growth in the green transition. Ecol. Econ. 2024, 224, 108293. [Google Scholar] [CrossRef]
- Xu, L.; Dabuo, F.T.; Madzikanda, B.; Appiah-Twum, F. Beyond bits and bytes: Examining the dynamic influence of digital economy on ecological footprint in OECD economies. J. Clean Prod. 2024, 482, 144141. [Google Scholar] [CrossRef]
- Wang, B.; Yu, M.; Zhu, Y.; Bao, P. Unveiling the driving factors of carbon emissions from industrial resource allocation in China: A spatial econometric perspective. Energy Policy 2021, 158, 112557. [Google Scholar] [CrossRef]
- Ai, H.; Tan, X.; Mangla, S.K.; Emrouznejad, A.; Liu, F.; Song, M. Renewable energy transition and sustainable development: Evidence from China. Energy Econ. 2025, 143, 108232. [Google Scholar] [CrossRef]
- Shoaib, M.; Qadeer, N.; Zámečník, R.; Javed, M.; Nawal, A. Towards a greener tomorrow: Investigating the nexus of GHRM, technology innovation, and employee green behavior in driving sustainable performance. Cogent Econ. Financ. 2025, 12, 2442095. [Google Scholar] [CrossRef]
- Aydin, M.; Degirmenci, T.; Gurdal, T.; Yavuz, H. The role of green innovation in achieving environmental sustainability in European Union countries: Testing the environmental Kuznets curve hypothesis. Gondwana Res. 2023, 118, 105–116. [Google Scholar] [CrossRef]





| Author(s)/Year | Context and Objective | Indicators Used | Econometric Method | Main Findings |
|---|---|---|---|---|
| Tijanić & Kersan-Škabić [29] | Measuring the green transition in Cohesion Policy 2021–2027. | European Structural and Investment Funds, low-carbon domains, adaptation, resource efficiency. | Desk research and secondary data. | Monitoring frameworks and underscores the challenges of measurement. |
| Naqvi et al. [48] | G7: clean energy, green-oriented industry, sustainable trade, and the role of finance. | Emissions; indicators of green energy, industry, and trade; financing. | Panel econometric model with a moderation effect on environmental outcomes. | Green energy and industry improve environmental quality, whereas green trade shows mixed effects. |
| Ferrari & Landi [11] | Inflationary effects of the carbon tax. | Emissions, prices, taxation shocks. | New Keynesian and Dynamic Stochastic General Equilibrium models. | Transition tends to be disinflationary in the medium perspective; in the short perspective, it may be inflationary. |
| Yanovski et al. [44] | Goods–labor–finance–monetary policy loop in the green transition. | Real output, inflation, inequality. | Keynes–Metzler–Goodwin disequilibrium model. | Low carbon-tax level does not destabilize the macroeconomy; investment is pivotal. |
| Cheilas et al. [45] | Hydrogen-based transition in the EU-25. | Electricity production and consumption, Greenhouse gas (GHG) emissions, Gross domestic product (GDP) per capita, environmental tax revenue. | Panel Autoregressive Distributed Lag model and simulations. | Higher renewable electricity reduces household consumption but raises consumption in transport, industry, and public sectors. |
| Grashof & Basilico [7] | Regional diversification into green technologies. | Green patents; Eurostat regional data. | Patent analysis and relatedness mapping. | Regions with related technological capabilities diversify easily into green technologies. |
| Crnčec et al. [39] | COVID-19’s impact on the Green Deal. | Policy instruments and governance features. | Comparative policy analysis. | EU response accelerates the transition, while biodiversity integration remains limited. |
| Peiró-Palomino et al. [9] | Social capital and air quality (EU, 230 regions). | Social capital, air quality, quality of government. | Panel models with robustness checks and endogeneity controls. | Social capital improves environmental performance through better institutions and stricter policies. |
| Dini & Focacci [46] | Incentives to apply for green jobs. | Job-choice preferences, social pressure. | Survey experiment and probabilistic model. | Mild social pressure increases the probability of choosing green jobs by 24.4%. |
| Huang & Lin [13] | The relationship connecting the digital economy (DE) and renewable energy transition. | Principal Component Analysis index, patterns of energy use, energy mix, and energy efficiency. | Panel data (2013–2017). | An optimized DE index provides evidence that digitalization acts as a catalyst for the green transition. |
| Huang et al. [49] | Digital transformation and sustainable total factor productivity (GTFP). | GTFP, industrial intelligence, e-commerce. | Two-way FE. | U-shaped DE–GTFP relationship, efficiency as main channel. |
| Liu et al. [38] | Endogenous green technology and emissions. | Technology level, growth, emissions. | Theoretical model with predictions. | Inverted-U emissions path; after the peak, advances in green technology dominate emissions reductions. |
| Boix-Fayos & de Vente [47] | Sustainable agriculture within the EGD/Farm-to-Fork. | Policy synthesis and global data. | Review and policy mapping. | Combining sustainable intensification with agroecology; calls for a holistic approach. |
| Liu et al. [50] | European Union’s emissions trading scheme (EU ETS) and green patents among Chinese exporters. | Green-patent applications, EU exports. | Difference-in-differences (firm level). | EU ETS raises the probability of green patenting. |
| Hoicka et al. [51] | Renewable Energy Communities. | Financing/ownership models, inclusion. | Policy analysis with cases. | Renewable Energy Community can mobilize local capital but require inclusive governance for a just transition. |
| Gatto et al. [52] | Perceptions of the EU renewable energy transition during the war-induced energy crisis. | Eurobarometer data; spatial variables. | Spatially clustered regressions. | North–South perception gaps; political and industrial cohesion are critical. |
| Martí-Ballester [43] | Performance of EU energy/renewable funds. | Returns, Total Expense Ratio, Socially Responsible Investment. | Conditional vs. unconditional models. | Renewable funds perform in line with market (conditional models). |
| Shang et al. [12] | Renewable energy and climate risk (84 countries). | Share of renewables; CO2/methane/nitric oxide emissions; particulate matter smaller than 2.5 μm; biodiversity. | Panel (2006–2019) with robustness tests. | Renewables lower climate risk via reduced pollutants and fossil-fuel use. |
| Aydin et al. [53] | Environmental technologies, institutional quality, globalization. | Low-Carbon Footprint /Low-Carbon Consumption, R&D, growth. | Common Correlated Effects Mean Group estimator and Dynamic Common Correlated Effects estimator (1990–2019). | Environmental technologies improve environmental quality. |
| Guliyev & Tatoğlu [54] | Renewables and economic growth in Europe (1970–2019). | Renewables, capital, human capital. | Panel with Bai–Perron breakpoints, time-varying FE. | Growth effect of renewables is time-varying; modeling structural breaks is essential. |
| Code | Indicator (Description) | Unit | Transformation | Expected Sign vs. SI | Source |
|---|---|---|---|---|---|
| CEIGSR | GHG emissions relative to GDP/carbon intensity | tCO2e/€ or index | ln/index 2015 = 100 | − (higher = more pressure) | Eurostat [71]; Sachs et al. [33] |
| ACCUR | Circular material use rate | % | level | + | Eurostat [71]; Skare et al. [82] |
| INDID | Energy import dependency | % imports | level | − | Eurostat [71]; Yadav and Mahalik, [16] |
| CEIPC | Resource productivity (GDP/material consumption) | €/kg | ln | + | Eurostat [71]; Kharazi et al. [83] |
| TEC | GDP Per Capita (PPS) | PPS index | ln (deflated) | + | Eurostat [71]; Burger and Šlampiaková, [41] |
| HRST | Human resources in science and technology | % active population | level | + | Eurostat [71]; Gedam et al. [25] |
| GERDTOT | R&D expenditure | % of GDP | ln (1 + x) | + | Eurostat [71]; Petrović and Lobanov [84] |
| TIN | Business digitalization | % of firms | level | + | Eurostat [71]; Crespo et al. [15] |
| TIPSUN | Unemployment rate | % | level | −/0 (ambiguous) | Eurostat [71]; Sachs et al. [33]; Silva et al. [37] |
| INDREN | Share of renewable energy | % | level | + | Eurostat [71]; Firtescu et al. [85] |
| INDEI | Energy intensity | kgoe/€ | ln | − | Eurostat [71]; Rahko, [35] |
| Mean | Median | Max. | Min. | Std. Dev. | Skewness | Kurtosis | Jarque–Bera | Probability | IQR | |
|---|---|---|---|---|---|---|---|---|---|---|
| CEIGSR | 0.000 | 0.311 | 2.706 | 1.284 | 1.000 | 1.090 | 3.459 | 55.861 | 0.000 | 1.268 |
| ACCUR | 0.000 | 0.245 | 2.996 | 1.216 | 1.000 | 1.083 | 3.615 | 57.064 | 0.000 | 1.162 |
| INDID | 0.000 | 0.049 | 1.798 | 2.330 | 1.000 | 0.191 | 2.471 | 4.794 | 0.091 | 1.443 |
| CEIPC | 0.000 | 0.323 | 2.722 | 1.344 | 1.000 | 0.753 | 2.726 | 26.374 | 0.000 | 1.525 |
| TEC | 0.000 | 0.262 | 3.992 | 1.173 | 1.000 | 2.205 | 8.537 | 563.727 | 0.000 | 1.019 |
| HRST | 0.000 | 0.075 | 2.160 | 2.181 | 1.000 | 0.036 | 2.229 | 6.753 | 0.034 | 1.644 |
| GERDTOT | 0.000 | 0.386 | 4.770 | 0.523 | 1.000 | 3.314 | 14.418 | 1960.790 | 0.000 | 0.587 |
| TIN | 0.000 | 0.113 | 2.344 | 1.699 | 1.000 | 0.455 | 2.401 | 13.367 | 0.001 | 1.516 |
| TIPSUN | 0.000 | 0.243 | 4.159 | 1.312 | 1.000 | 1.931 | 7.581 | 403.863 | 0.000 | 0.891 |
| INDREN | 0.000 | 0.301 | 3.282 | 1.479 | 1.000 | 1.018 | 3.817 | 54.157 | 0.000 | 1.261 |
| INDEI | 0.000 | 0.108 | 2.612 | 2.215 | 1.000 | 0.453 | 3.084 | 9.309 | 0.010 | 1.259 |
| Variable | Name | (Intercept) | TEC | HRST | GERDTOT | TIN | TIPSUN | INDREN | INDEI |
|---|---|---|---|---|---|---|---|---|---|
| CEIGSR | Estimate | 0.000 | 0.421 | 0.226 | 0.177 | 0.001 | 0.054 | 0.178 | 0.106 |
| SE | 0.138 | 0.131 | 0.149 | 0.122 | 0.156 | 0.117 | 0.165 | 0.179 | |
| tStat | 0.000 | 3.212 | 1.517 | 1.447 | 0.005 | 0.462 | 1.084 | 0.596 | |
| p-Value | 1.000 | 0.001 | 0.131 | 0.149 | 0.996 | 0.644 | 0.279 | 0.551 | |
| ACCUR | Estimate | 0.000 | 0.218 | 0.484 | 0.311 | 0.047 | 0.118 | 0.338 | 0.114 |
| SE | 0.144 | 0.218 | 0.289 | 0.193 | 0.139 | 0.076 | 0.177 | 0.125 | |
| tStat | 0.000 | 0.996 | 1.675 | 1.609 | 0.334 | 1.557 | 1.905 | 0.910 | |
| p-Value | 1.000 | 0.320 | 0.095 | 0.109 | 0.739 | 0.121 | 0.058 | 0.364 | |
| INDID | Estimate | 0.000 | 0.177 | 0.104 | 0.048 | 0.075 | 0.254 | 0.529 | 0.130 |
| SE | 0.136 | 0.191 | 0.256 | 0.097 | 0.153 | 0.078 | 0.143 | 0.164 | |
| tStat | 0.000 | 0.926 | 0.406 | 0.498 | 0.491 | 3.245 | 3.712 | 0.793 | |
| p-Value | 1.000 | 0.355 | 0.685 | 0.619 | 0.624 | 0.001 | 0.000 | 0.428 | |
| CEIPC | Estimate | 0.000 | 0.463 | 0.241 | 0.281 | 0.040 | 0.196 | 0.282 | 0.092 |
| SE | 0.100 | 0.156 | 0.205 | 0.129 | 0.094 | 0.068 | 0.128 | 0.084 | |
| tStat | 0.000 | 2.978 | 1.176 | 2.181 | 0.424 | 2.867 | 2.205 | 1.104 | |
| p-Value | 1.000 | 0.003 | 0.241 | 0.030 | 0.672 | 0.004 | 0.028 | 0.271 |
| CEIGSR | ACCUR | |||||
|---|---|---|---|---|---|---|
| Name | Estimate | SE | p-Value | Estimate | SE | p-Value |
| (Intercept) | 0.077 | 0.194 | 0.692 | 0.208 | 0.228 | 0.362 |
| Year_2015 | 0.038 | 0.061 | 0.538 | 0.069 | 0.073 | 0.345 |
| Year_2016 | 0.030 | 0.065 | 0.648 | 0.082 | 0.078 | 0.293 |
| Year_2017 | 0.091 | 0.073 | 0.212 | 0.086 | 0.087 | 0.324 |
| Year_2018 | 0.134 | 0.086 | 0.120 | 0.142 | 0.103 | 0.170 |
| Year_2019 | 0.109 | 0.101 | 0.285 | 0.235 | 0.121 | 0.053 |
| Year_2020 | 0.087 | 0.110 | 0.431 | 0.269 | 0.132 | 0.042 |
| Year_2021 | 0.075 | 0.125 | 0.550 | 0.318 | 0.149 | 0.034 |
| Year_2022 | 0.194 | 0.147 | 0.188 | 0.365 | 0.176 | 0.039 |
| Year_2023 | 0.187 | 0.163 | 0.251 | 0.516 | 0.195 | 0.009 |
| TEC | 0.218 | 0.094 | 0.021 | 0.211 | 0.112 | 0.061 |
| HRST | 0.033 | 0.097 | 0.733 | 0.271 | 0.116 | 0.020 |
| GERDTOT | 0.103 | 0.113 | 0.361 | 0.027 | 0.134 | 0.842 |
| TIN | 0.200 | 0.044 | 0.000 | 0.133 | 0.053 | 0.013 |
| TIPSUN | 0.032 | 0.042 | 0.450 | 0.001 | 0.051 | 0.990 |
| INDREN | 0.367 | 0.096 | 0.000 | 0.134 | 0.115 | 0.244 |
| INDEI | 0.463 | 0.071 | 0.000 | 0.308 | 0.085 | 0.000 |
| INDID | CEIPC | |||||
| (Intercept) | 0.033 | 0.184 | 0.858 | 0.041 | 0.140 | 0.770 |
| Year_2015 | 0.060 | 0.064 | 0.351 | 0.003 | 0.031 | 0.912 |
| Year_2016 | 0.002 | 0.068 | 0.973 | 0.016 | 0.034 | 0.626 |
| Year_2017 | 0.022 | 0.076 | 0.767 | 0.022 | 0.038 | 0.565 |
| Year_2018 | 0.037 | 0.089 | 0.676 | 0.047 | 0.045 | 0.295 |
| Year_2019 | 0.131 | 0.105 | 0.211 | 0.057 | 0.054 | 0.286 |
| Year_2020 | 0.053 | 0.113 | 0.640 | 0.119 | 0.058 | 0.043 |
| Year_2021 | 0.094 | 0.129 | 0.465 | 0.114 | 0.067 | 0.088 |
| Year_2022 | 0.136 | 0.152 | 0.370 | 0.077 | 0.079 | 0.334 |
| Year_2023 | 0.017 | 0.167 | 0.920 | 0.007 | 0.087 | 0.939 |
| TEC | 0.032 | 0.097 | 0.745 | 0.350 | 0.050 | 0.000 |
| HRST | 0.145 | 0.099 | 0.145 | 0.321 | 0.052 | 0.000 |
| GERDTOT | 0.163 | 0.112 | 0.148 | 0.355 | 0.066 | 0.000 |
| TIN | 0.057 | 0.046 | 0.220 | 0.015 | 0.023 | 0.518 |
| TIPSUN | 0.008 | 0.044 | 0.852 | 0.014 | 0.022 | 0.520 |
| INDREN | 0.282 | 0.097 | 0.004 | 0.057 | 0.053 | 0.282 |
| INDEI | 0.050 | 0.073 | 0.497 | 0.049 | 0.038 | 0.191 |
| CEIGSR | ACCUR | ||||||
| df | p-Value | Decision | df | p-Value | Decision | ||
| 7.99873615 | 8.000 | 0.434 | Fail to reject RE (p ≥ 0.05) | 10.64024004 | 8.000 | 0.223 | Fail to reject RE (p ≥ 0.05) |
| Country | Year | CooksD | Country | Year | CooksD | ||
| Estonia | 2014 | 0.046 | Germany | 2021 | 0.032 | ||
| Estonia | 2017 | 0.039 | Germany | 2019 | 0.028 | ||
| Estonia | 2016 | 0.038 | Germany | 2022 | 0.027 | ||
| Denmark | 2021 | 0.030 | Netherlands | 2023 | 0.023 | ||
| Malta | 2017 | 0.027 | Germany | 2018 | 0.022 | ||
| INDID | CEIPC | ||||||
| df | p-Value | Decision | df | p-Value | Decision | ||
| 2.075968328 | 8.000 | 0.979 | Fail to reject RE (p ≥ 0.05) | 5.780228119 | 8.000 | 0.672 | Fail to reject RE (p ≥ 0.05) |
| Country | Year | CooksD | Country | Year | CooksD | ||
| Malta | 2017 | 0.025 | Netherlands | 2022 | 0.039 | ||
| Malta | 2016 | 0.021 | Netherlands | 2023 | 0.039 | ||
| Malta | 2018 | 0.019 | Netherlands | 2021 | 0.035 | ||
| Malta | 2014 | 0.018 | Germany | 2021 | 0.028 | ||
| Malta | 2019 | 0.017 | Germany | 2017 | 0.028 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Gheorghe, C.; Stelea, N.; Panazan, O. From Innovation to Circularity: Mapping the Engines of EU Sustainability and Energy Transition. Sustainability 2026, 18, 467. https://doi.org/10.3390/su18010467
Gheorghe C, Stelea N, Panazan O. From Innovation to Circularity: Mapping the Engines of EU Sustainability and Energy Transition. Sustainability. 2026; 18(1):467. https://doi.org/10.3390/su18010467
Chicago/Turabian StyleGheorghe, Catalin, Nicoleta Stelea, and Oana Panazan. 2026. "From Innovation to Circularity: Mapping the Engines of EU Sustainability and Energy Transition" Sustainability 18, no. 1: 467. https://doi.org/10.3390/su18010467
APA StyleGheorghe, C., Stelea, N., & Panazan, O. (2026). From Innovation to Circularity: Mapping the Engines of EU Sustainability and Energy Transition. Sustainability, 18(1), 467. https://doi.org/10.3390/su18010467

