Eco-Efficient Geopolymer Bricks Without Firing and Mechanical Pressing
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Testing Procedures
3. Results and Discussion
3.1. Pilot Study Results
3.2. Main Testing Results
3.2.1. Weight per Unit Area
3.2.2. Water Absorption (WA)
3.2.3. Efflorescence
3.2.4. Ultra Sonic Pulse Velocity (UPV)
3.2.5. CS of GPM Brick
3.2.6. MOR of GPM Brick
3.2.7. Resistance to Acid Attack
3.2.8. Resistance to Salt Attack
3.2.9. SEM of GPM Bricks
3.2.10. Environmental Impact Assessment
3.2.11. Cost Analysis
4. Conclusions
- For the pilot study, the compressive strength (CS) of GPM cubes improved with increasing molarity of NaOH solution and curing durations as expected. The CS increased by about 34.7%, 53.5% and 60.5%, respectively, with curing duration from 14 to 28 days, 14–56 days, and 14–90 days. The optimum CS of GPM mixes was obtained at 70–80% replacements of CL with FA.
- For the main testing phase, the average weight per unit area and water absorption of GPM bricks were 1.2% and 13.4% lower than burnt clay bricks, respectively. Mix P80F14M (20% CL-80% FA; 14 M NaOH) exhibited the lowest weight per unit area, and Mix P80F16M (20% CL-80% FA; 16 M NaOH) demonstrated the lowest water absorption amongst the investigated GPM bricks.
- The average CS, modulus of rupture (MOR), and ultrasonic pulse velocity (UPV) of GPM bricks were 61.4%, 56.5%, and 57. 9% greater than burnt clay bricks, respectively. Mix P80F16M (20% CL-80% FA; 16 M NaOH) showed the highest CS and UPV, and Mix E70F14M (30% CL-70% FA; 14 M NaOH) exhibited the highest MOR amongst the GPM bricks.
- The GPM bricks exhibited higher resistance to both acidic and alkaline conditions as compared to conventional burnt clay bricks, e.g., 5.9% and 2% reduction in CS after immersing in 5% sulfuric acid solution and 3.5% NaCl solution, respectively. Moreover, GPM bricks exhibited slight efflorescence.
- The e-CO2 emissions and normalized cost of GPM brick were approximately 95% and 35% lower, respectively, than those of burnt clay bricks.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Er, Y.; Sutcu, M.; Gencel, O.; Totiç, E.; Erdogmus, E.; Cay, V.V.; Munir, M.J.; Kazmi, S.M.S. Recycling of metallurgical wastes in ceramics: A sustainable approach. Constr. Build. Mater. 2022, 349, 128713. [Google Scholar] [CrossRef]
- Erdogmus, E.; Sutcu, M.; Gencel, O.; Kazmi, S.M.S.; Munir, M.J.; Velasco, P.M.; Ozbakkaloglu, T. Enhancing thermal efficiency and durability of sintered clay bricks through incorporation of polymeric waste materials. Clean. Prod. 2023, 420, 138456. [Google Scholar] [CrossRef]
- Murmu, A.; Patel, A. Towards sustainable bricks production: An overview. Constr. Build. Mater. 2018, 165, 112–125. [Google Scholar] [CrossRef]
- Rauf, A.; Shakir, S.; Ncube, A.; Abd-ur-Rehman, H.M.; Janjua, A.K.; Khanum, S.; Khoja, A.H. Prospects towards sustainability: A comparative study to evaluate the environmental performance of brick making kilns in Pakistan. Environ. Impact Assess. Rev. 2020, 94, 106746. [Google Scholar] [CrossRef]
- Ferrara, P.L.; La Noce, M.; Sciuto, G. Sustainability of Green Building Materials: A Scientometric Review of Geopolymers from a Circular Economy Perspective. Sustainability 2023, 15, 16047. [Google Scholar] [CrossRef]
- Ifthikhar, S.; Rasid, K.; Zafar, I.; Alqathani, K.; Khan, M. Synthesis and Characteristics of sustainable geopolymer green clay bricks. Constr. Build. Mater. 2020, 2599, 119659. [Google Scholar] [CrossRef]
- Galán-Arboledas, R.; Cotes-Palomino, J.; Bueno, M.T.; Martínez-García, C. Evaluation of spent diatomite incorporation in clay based materials for Lightweight Bricks processing. Constr. Build. Mater. 2017, 144, 327–337. [Google Scholar] [CrossRef]
- Eliche-Quesada, D.; Felipe-Sesé, M.; López-Pérez, J.; Infantes-Molina, A. Characterization and evaluation of rice husk ash and wood ash in sustainable clay matrix bricks. Ceram. Int. 2017, 43, 463–475. [Google Scholar] [CrossRef]
- Buchner, T.; Konigsberger, M.; Jager, A.; Fussl, J. A validated multiscale model linking microstructural features of fired clay brick to its macroscopic multiaxial strength. Mech. Mater. 2022, 170, 104334. [Google Scholar] [CrossRef]
- Mukhtar, A.; Qazi, A.U.; Khan, Q.S.; Munir, M.J.; Kazmi, S.M.S.; Hameed, A. Feasibility of Using Coal Ash for the Production of Sustainable Bricks. Sustainability 2022, 14, 6692. [Google Scholar] [CrossRef]
- Preethi, R.K.; Reddy, B.V.V. Characteristics of geopolymer stabilized compressed earth bricks. Structures 2024, 61, 106007. [Google Scholar] [CrossRef]
- Khan, Q.S.; Mumtaz, T.; Qazi, A.U.; Pham, M.T. Influence of alkaline activators on mechanical properties of environmentally friendly geopolymer concrete under different curing regimes. Environ. Sci. Pollut. Res. 2024, 31, 60619–60639. [Google Scholar] [CrossRef]
- Gooi, S.; Mousa, A.A.; Kong, D. A critical review and gap analysis on the use of coal bottom ash as a substitute constituent in concrete. J. Clean. Prod. 2020, 268, 121752. [Google Scholar] [CrossRef]
- Tsega, E.; Mosisa, A.; Fufa, F. Effects of Firing Time and Temperature on Physical Properties of Fired Clay Bricks. Am. J. Civ. Eng. 2017, 5, 21–26. [Google Scholar] [CrossRef]
- Charai, M.; Sghiouri, H.; Mezrhab, A.; Karkri, M.; Hammouti, K. Comparative study of a clay before and after fired brick-making process. Mater. Today Proc. 2020, 31, S103–S108. [Google Scholar] [CrossRef]
- Kioupis, D.; Tsivilis, S.; Kakali, G. Development of green building materials through alkali activation of industrial wastes and by-products. Mater. Today Proc. 2018, 5, 27329–27336. [Google Scholar] [CrossRef]
- D’Angelo, G.; Fumo, M.; Merino, M.d.R.; Capasso, I.; Campanile, A.; Iucolano, F.; Caputo, D.; Liguori, B. Crushed Bricks: Demolition Waste as a Sustainable Raw Material for Geopolymers. Sustainability 2021, 13, 7572. [Google Scholar] [CrossRef]
- Youssef, N.; Lafhaj, Z.; Chapiseau, C. Economic Analysis of Geopolymer Brick Manufacturing: A French Case Study. Sustainability 2020, 12, 7403. [Google Scholar] [CrossRef]
- Ayeni, O.; Onwualu, A.P.; Boakye, E. Characterization and mechanical performance of metakaolin-based geopolymer for sustainable building applications. Constr. Build. Mater. 2021, 272, 121938. [Google Scholar] [CrossRef]
- Adam, A.; Horianto, X. The effect of temperature and duration of curing on the strength of fly ash based geopolymer mortar. Procedia Eng. 2014, 95, 410–414. [Google Scholar] [CrossRef]
- Ghafoor, M.T.; Khan, Q.S.; Qazi, A.U.; Sheikh, M.N.; Hadi, M.N.S. Influence of alkaline activators on the mechanical properties of fly ash based geopolymer concrete cured at ambient temperature. Constr. Build. Mater. 2021, 273, 121752. [Google Scholar] [CrossRef]
- Kanwal, S.; Khan, Q.S.; Sheikh, M.N.; Qazi, A.U.; Hadi, M.N.S. Axial compressive behavior of GPC filled FRP Tubes: Experimental and analytical investigations. Structures 2023, 55, 650–663. [Google Scholar] [CrossRef]
- Madani, H.; Ramezanianpour, A.A.; Shahbazinia, M.; Ahmadi, E. Geopolymer bricks made from less active waste materials. Constr. Build. Mater. 2020, 247, 118441. [Google Scholar] [CrossRef]
- Singh, S.; Aswath, M.U.; Ranganath, R.V. Performance assessment of bricks and prisms: Red mud based geopolymer composite. J. Build. Eng. 2020, 32, 101462. [Google Scholar] [CrossRef]
- Amin, S.K.; Sherbiny, S.A.; El-Magd, S.A.; Belal, A.; Abadir, M.F. Fabrication of geopolymer bricks using ceramic dust waste. Constr. Build. Mater. 2017, 157, 610. [Google Scholar] [CrossRef]
- Ibrahim, W.; Mastura, W.; Kamarudin, H.; Nizar, K.; Abdullah, M.M. Mechanical performances of fly ash geopolymer bricks. J. Comput. Theor. Nanosci. 2013, 19, 186–189. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, J.; Kaur, M. Synthesis of fly ash based geopolymer mortar considering different concentrations and combinations of alkaline activator solution. Ceram. Int. 2017, 44, 1534–1537. [Google Scholar] [CrossRef]
- Sukmak, P.; Hopibulsuk, S.; Shen, S.; Chindaprasit, P. Factors influencing strength development in clay fly ash geopolymers. Constr. Build. Mater. 2013, 47, 1125–1136. [Google Scholar] [CrossRef]
- Liu, J.; Shi, X.; Zhang, G.; Li, L. Study the mechanical properties of geopolymer under different curing conditions. Materials 2023, 13, 690. [Google Scholar] [CrossRef]
- Mahdi, S.N.; Babu, D.V.; Hossiney, N.; BaAbdullah, M.M. Strength and durability properties of geopolymer paver blocks made with fly ash and brick kiln rice husk ash. Case Stud. Constr. Mater. 2022, 16, e00800. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Rattanasak, U. Fire-resistant geopolymer bricks synthesized from high-calcium fly ash with outdoor heat exposure. Clean Technol. Environ. Policy 2018, 20, 5. [Google Scholar] [CrossRef]
- ASTM D6913/D6913M-17; Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D4318-18; Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM C311/C311M-19; Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM C618-19; Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM C67-21; Standard Test Methods for Sampling and Testing Brick and Structural Clay Tile. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM C830-16; Standard Test Methods for Apparent Porosity, Liquid Absorption, Apparent Specific Gravity, and Bulk Density of Refractory Shapes by Vacuum Pressure. ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM C597-16; Standard Test Method for Pulse Velocity Through Concrete. ASTM International: West Conshohocken, PA, USA, 2016.
- Shakir, A.; Naganathan, S.; Mustapha, N. Properties of bricks made using fly ash, quarry dust and billet scale. Constr. Build. Mater. 2013, 41, 131–138. [Google Scholar] [CrossRef]
- Mohamed, O.A.; Al Khattab, R.; Al Hawat, W. Effect of relative GGBS/fly contents and alkaline solution concentration on compressive strength development of geopolymer mortars subjected to sulfuric acid. Sci. Rep. 2022, 12, 5634. [Google Scholar] [CrossRef] [PubMed]
- Kalombe, R.M.; Ojumu, V.T.; Eze, C.P.; Nyale, S.M.; Kevern, J.; Petrik, L.F. Fly Ash-Based Geopolymer Building Materials for Green and Sustainable Development. Materials 2020, 13, 5699. [Google Scholar] [CrossRef] [PubMed]
- Aiken, T.; Kwasny, J.; Sha, W.; Soutsos, M. Effect of slag content and activator dosage on resistance of fly ash geopolymer binders to sulphuric attack. Cem. Concr. Res. 2018, 50, 104161. [Google Scholar] [CrossRef]
- ASTM C62-21; Standard Specification for Building Brick (Solid Masonry Units Made from Clay or Shale). ASTM International: West Conshohocken, PA, USA, 2021.
- IS 1077-92; Common Burnt Clay Building Bricks—Specification. Bureau of Indian Standards: New Delhi, India, 1992.
- CNS382-R2002; Building with Ordinary Brick. National Standard Republic of China: Beijing, China, 2007.
- Wang, Y.; Liu, X.; Zhang, W.; Li, Z.; Zhang, Y.; Li, Y.; Ren, Y. Effects of Si/Al ratio on the efflorescence and properties of fly ash based geopolymer. J. Clean. Prod. 2020, 244, 118852. [Google Scholar] [CrossRef]
- Assi, L.N.; Deaver, E.E.; Elbatanouny, M.K.; Ziehl, P. Investigation of early compressive strength of fly ash-based geopolymer concrete. Constr. Build. Mater. 2016, 112, 807–815. [Google Scholar] [CrossRef]
- Horpibulsuk, S.; Yangsukkaseam, N.; Chinkulkijniwat, A.; Du, Y. Compressibility and permeability of Bangkok clay compared with kaolinite and bentonite. Appl. Clay Sci. 2011, 52, 150–159. [Google Scholar] [CrossRef]
- Rafeet, A.; Vinai, R.; Soutsos, M.; Sha, W. Effects of slag substitution on physical and mechanical properties of fly ash-based alkali activated binders (AABs). Cem. Concr. Res. 2019, 122, 118–135. [Google Scholar] [CrossRef]
- Noor-E-Khuda, S.; Albermani, F. Mechanical properties of clay masonry units: Destructive and ultrasonic testing. Constr. Build. Mater. 2019, 219, 111–120. [Google Scholar] [CrossRef]
- Bakharev, T. Resistance of geopolymer materials to acid attack. Cem. Concr. Res. 2005, 35, 658–670. [Google Scholar] [CrossRef]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- Khan, M.Z.N.; Shaikh, F.U.A.; Hao, Y.; Hao, H. Synthesis of high strength ambient cured geopolymer composite by using low calcium fly ash. Constr. Build. Mater. 2016, 125, 809–820. [Google Scholar] [CrossRef]
- Shang, J.; Dai, J.G.; Zhao, T.J.; Guo, S.Y.; Zhang, P.; Mu, B. Alternation of traditional cement mortars using fly ash-based geopolymer mortars modified by slag. J. Clean. Prod. 2018, 203, 746–756. [Google Scholar] [CrossRef]
- Qazi, A.U.; Khan, Q.S.; Ahmad, H.A.; Pham, T.M. Axial behavior of FRP confined concrete using locally available low-cost wraps. Sustainability 2022, 14, 9989. [Google Scholar] [CrossRef]
- Turner, L.K.; Collins, F.G. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- Park, S.; Wu, S.; Liu, Z.; Pyo, S. The role of supplementary cementitious materials (SCMs) in ultra-high performance concrete (UHPC): A review. Materials 2021, 14, 1472. [Google Scholar] [CrossRef] [PubMed]
- Dabaieh, M.; Heinonen, J.; El-Mahdy, D.; Hassan, D.M. A comparative study of life cycle carbon emissions and embodied energy between sun-dried bricks and fired clay bricks. J. Clean. Prod. 2020, 275, 122998. [Google Scholar] [CrossRef]























| Mix-ID | FA (kg/m3) | NaOH (kg/m3) | Water (kg/m3) | Na2SiO3 (kg/m3) | |
|---|---|---|---|---|---|
| 12 M | 100%CL0%FA | 0.00 | 55.73 | 98.67 | 231.67 |
| 90%CL10%FA | 154.40 | ||||
| 80%CL20%FA | 308.79 | ||||
| 70%CL30%FA | 463.33 | ||||
| 60%CL40%FA | 617.62 | ||||
| 50%CL50%FA | 772.02 | ||||
| 40%CL60%FA | 926.42 | ||||
| 30%CL70%FA | 1080.82 | ||||
| 20%CL80%FA | 1235.21 | ||||
| 10%CL90%FA | 1389.61 | ||||
| 0%CL100%FA | 1543.97 | ||||
| 14 M | 100%CL0%FA | 0.00 | 62.21 | 92.17 | 231.67 |
| 90%CL10%FA | 154.40 | ||||
| 80%CL20%FA | 308.79 | ||||
| 70%CL30%FA | 463.33 | ||||
| 60%CL40%FA | 617.62 | ||||
| 50%CL50%FA | 772.02 | ||||
| 40%CL60%FA | 926.42 | ||||
| 30%CL70%FA | 1080.82 | ||||
| 20%CL80%FA | 1235.21 | ||||
| 10%CL90%FA | 1389.61 | ||||
| 0%CL100%FA | 1543.97 | ||||
| 16 M | 100%CL0%FA | 0.00 | 68.51 | 85.85 | 231.67 |
| 90%CL10%FA | 154.40 | ||||
| 80%CL20%FA | 308.79 | ||||
| 70%CL30%FA | 463.33 | ||||
| 60%CL40%FA | 617.62 | ||||
| 50%CL50%FA | 772.02 | ||||
| 40%CL60%FA | 926.42 | ||||
| 30%CL70%FA | 1080.82 | ||||
| 20%CL80%FA | 1235.21 | ||||
| 10%CL90%FA | 1389.61 | ||||
| 0%CL100%FA | 1543.97 |
| Mix ID | CL-FA | Molarity of NaOH Solution | FA (kg/m3) | CL (kg/m3) | NaOH Solution (kg/m3) | Na2SiO3 (kg/m3) | |
|---|---|---|---|---|---|---|---|
| Solids | Water | ||||||
| Mix P70F12M | 30%CL70%FA | 12 | 1189 | 510 | 52 | 118 | 255 |
| Mix P80F14M | 20%CL80%FA | 14 | 1359 | 340 | 73 | 97 | 255 |
| Mix P80F16M | 20%CL80%FA | 16 | 1359 | 340 | 83 | 87 | 255 |
| Mix E60F12M | 40%CL60%FA | 12 | 1019 | 680 | 52 | 118 | 255 |
| Mix E70F14M | 30%CL70%FA | 14 | 1189 | 510 | 73 | 97 | 255 |
| Mix E60F16M | 40%CL60%FA | 16 | 1019 | 679 | 83 | 87 | 255 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Javed, M.H.; Khan, Q.S.; Qazi, A.U.; Kazmi, S.M.S.; Munir, M.J. Eco-Efficient Geopolymer Bricks Without Firing and Mechanical Pressing. Sustainability 2026, 18, 762. https://doi.org/10.3390/su18020762
Javed MH, Khan QS, Qazi AU, Kazmi SMS, Munir MJ. Eco-Efficient Geopolymer Bricks Without Firing and Mechanical Pressing. Sustainability. 2026; 18(2):762. https://doi.org/10.3390/su18020762
Chicago/Turabian StyleJaved, Muhammad Hassan, Qasim Shaukat Khan, Asad Ullah Qazi, Syed Minhaj Saleem Kazmi, and Muhammad Junaid Munir. 2026. "Eco-Efficient Geopolymer Bricks Without Firing and Mechanical Pressing" Sustainability 18, no. 2: 762. https://doi.org/10.3390/su18020762
APA StyleJaved, M. H., Khan, Q. S., Qazi, A. U., Kazmi, S. M. S., & Munir, M. J. (2026). Eco-Efficient Geopolymer Bricks Without Firing and Mechanical Pressing. Sustainability, 18(2), 762. https://doi.org/10.3390/su18020762

