Efficient Separation of Per- and Polyfluoroalkyl Substances (PFAS) by Organic Framework Membranes: Advances, Mechanisms, and Challenges
Abstract
1. Introduction
2. Fabrication Strategies and Structural Design of OFMs for PFAS Removal
2.1. MMMs
2.2. TFN Membranes
2.2.1. Integration of Organic Framework into PA Layer
2.2.2. Capillary-Assisted Interfacial Polymerization
2.2.3. Defect Repair Strategy for Framework Materials
2.3. Functionalized Support Layer
2.4. Continuous OFMs
3. Separation Mechanisms of OFMs for PFAS Removal
3.1. Separation via Physical and Chemical Mechanisms
3.1.1. Size Exclusion: Precise Rejection Based on Uniform and Tunable Pore Sizes
3.1.2. Electrostatic Repulsion: Leveraging Surface Charge and the Donnan Effect
3.1.3. Adsorption and Specific Host–Guest Interactions
3.2. Catalytic Destruction: Beyond Separation
4. PFAS Removal Performance of OFMs
4.1. High-Performance Membranes: Combining High Rejection with Ideal Permeability
4.2. Highly Selective/Specialized Separation Membranes: Targeting Specific Application Scenarios
4.3. Membranes with Performance Trade-Offs: Areas for Future Development
5. Challenges and Future Perspectives
5.1. Materials Targeting High Durability and Strategies for Enhanced Stability
5.2. Rapid and Scalable Fabrication Routes
5.3. Sustainability and Environmental Compatibility
5.4. Pilot-Scale Long-Term Studies Targeting Practical Applications
5.5. Regulation-Driven Materials Design: Emphasis on Short-Chain PFAS
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Evich, M.G.; Davis, M.J.B.; McCord, J.P.; Acrey, B.; Awkerman, J.A.; Knappe, D.R.U.; Lindstrom, A.B.; Speth, T.F.; Tebes-Stevens, C.; Strynar, M.J.; et al. Per- and polyfluoroalkyl substances in the environment. Science 2022, 375, 512. [Google Scholar] [CrossRef]
- Glüge, J.; Scheringer, M.; Cousins, I.T.; DeWitt, J.C.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Trier, X.; Wang, Z.Y. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ. Sci. Proc. Imp. 2020, 22, 2345–2373. [Google Scholar] [CrossRef]
- Adarsh, N.N.; Wriedt, M. PFAS concentration and destruction. Nat. Water 2024, 2, 1145–1146. [Google Scholar] [CrossRef]
- Scheringer, M. Persistence and spatial range as endpoints of an exposure-based assessment of organic chemicals. Environ. Sci. Technol. 1996, 30, 1652–1659. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Ma, Y.F. The path to complete defluorination of PFAS. Nat. Water 2023, 1, 313–314. [Google Scholar] [CrossRef]
- Podder, A.; Sadmani, A.H.M.A.; Reinhart, D.; Chang, N.B.; Goel, R. Per and poly-fluoroalkyl substances (PFAS) as a contaminant of emerging concern in surface water: A transboundary review of their occurrences and toxicity effects. J. Hazard. Mater. 2021, 419, 126361. [Google Scholar] [CrossRef]
- Gaballah, S.; Swank, A.; Sobus, J.R.; Howey, X.M.; Schmid, J.; Catron, T.; McCord, J.; Hines, E.; Strynar, M.; Tal, T. Evaluation of Developmental Toxicity, Developmental Neurotoxicity, and Tissue Dose in Zebrafish Exposed to GenX and Other PFAS. Environ. Health Perspect. 2020, 128, 047005. [Google Scholar] [CrossRef]
- Zhi, Y.; Lu, X.; Munoz, G.; Yeung, L.W.Y.; De Silva, A.O.; Hao, S.; He, H.; Jia, Y.; Higgins, C.P.; Zhang, C. Environmental Occurrence and Biotic Concentrations of Ultrashort-Chain Perfluoroalkyl Acids: Overlooked Global Organofluorine Contaminants. Environ. Sci. Technol. 2024, 58, 21393–21410. [Google Scholar] [CrossRef] [PubMed]
- Gagliano, E.; Sgroi, M.; Falciglia, P.P.; Vagliasindi, F.G.A.; Roccaro, P. Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration. Water Res. 2020, 171, 115381. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.N.; Sha, S.; Luo, J.Y.; Huang, Z.R.; Jackie, X.Z. Treatment train approaches for the remediation of per- and polyfluoroalkyl substances (PFAS): A critical review. J. Hazard. Mater. 2020, 386, 121963. [Google Scholar] [CrossRef]
- Venkatesh Reddy, C.; Kumar, R.; Chakrabortty, P.; Karmakar, B.; Pottipati, S.; Kundu, A.; Jeon, B.-H. A critical science mapping approach on removal mechanism and pathways of per- and poly-fluoroalkyl substances (PFAS) in water and wastewater: A comprehensive review. Chem. Eng. J. 2024, 492, 152272. [Google Scholar] [CrossRef]
- Li, D.N.; Lee, C.S.; Zhang, Y.; Das, R.; Akter, F.; Venkatesan, A.K.; Hsiao, B.S. Efficient removal of short-chain and long-chain PFAS by cationic nanocellulose. J. Mater. Chem. A 2023, 11, 9868–9883. [Google Scholar] [CrossRef]
- Appleman, T.D.; Higgins, C.P.; Quiñones, O.; Vanderford, B.J.; Kolstad, C.; Zeigler-Holady, J.C.; Dickenson, E.R.V. Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems. Water Res. 2014, 51, 246–255. [Google Scholar] [CrossRef]
- Flores, C.; Ventura, F.; Martin-Alonso, J.; Caixach, J. Occurrence of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in N.E. Spanish surface waters and their removal in a drinking water treatment plant that combines conventional and advanced treatments in parallel lines. Sci. Total Environ. 2013, 461–462, 618–626. [Google Scholar] [CrossRef]
- Park, H.B.; Kamcev, J.; Robeson, L.M.; Elimelech, M.; Freeman, B.D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 2017, 356, 6343. [Google Scholar] [CrossRef]
- Quiñones, O.; Snyder, S.A. Occurrence of Perfluoroalkyl Carboxylates and Sulfonates in Drinking Water Utilities and Related Waters from the United States. Environ. Sci. Technol. 2009, 43, 9089–9095. [Google Scholar] [CrossRef]
- Thompson, J.; Eaglesham, G.; Reungoat, J.; Poussade, Y.; Bartkow, M.; Lawrence, M.; Mueller, J.F. Removal of PFOS, PFOA and other perfluoroalkyl acids at water reclamation plants in South East Queensland Australia. Chemosphere 2011, 82, 9–17. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Y.Y.; Xu, H.; Ding, M.M.; Gao, L. MXene (TiTCX)-reinforced thin-film polyamide nanofiltration membrane for short-chain perfluorinated compounds removal. Process Saf. Environ. 2022, 168, 275–284. [Google Scholar] [CrossRef]
- El Meragawi, S.; Akbari, A.; Hernandez, S.; Mirshekarloo, M.S.; Bhattacharyya, D.; Tanksale, A.; Majumder, M. Enhanced permselective separation of per-fluorooctanoic acid in graphene oxide membranes by a simple PEI modification. J. Mater. Chem. A 2020, 8, 24800–24811. [Google Scholar] [CrossRef]
- Song, Y.P.; Zhu, C.J.; Ma, S.Q. Advanced porous organic polymer membranes: Design, fabrication, and energy-saving applications. Energy Chem. 2022, 4, 100079. [Google Scholar] [CrossRef]
- Liu, M.-L.; Chen, Y.; Hu, C.; Zhang, C.-X.; Fu, Z.-J.; Xu, Z.; Lee, Y.M.; Sun, S.-P. Microporous membrane with ionized sub-nanochannels enabling highly selective monovalent and divalent anion separation. Nat. Commun. 2024, 15, 7271. [Google Scholar] [CrossRef]
- Xue, Q.; Zhu, J.Y.; Meng, W.Q.; Zhang, K.S. Effect of MXene Nanosheet Dispersed Phases on the Fabrication of Polyamide Nanofiltration Membranes. Acs. Appl. Eng. Mater. 2022, 1, 679–689. [Google Scholar] [CrossRef]
- Goh, S.H.; Lau, H.S.; Yong, W.F. Metal-Organic Frameworks (MOFs)-Based Mixed Matrix Membranes (MMMs) for Gas Separation: A Review on Advanced Materials in Harsh Environmental Applications. Small 2022, 18, 2107536. [Google Scholar] [CrossRef]
- Cheng, Y.D.; Datta, S.J.; Zhou, S.; Jia, J.T.; Shekhah, O.; Eddaoudi, M. Advances in metal-organic framework-based membranes. Chem. Soc. Rev. 2022, 51, 8300–8350. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.; Pang, K.; Feng, Y.N.; Han, L.L.; Morsali, A.; Li, X.Y.; Liu, T.F. Hydrogen-bonded organic frameworks in solution enables continuous and high-crystalline membranes. Nat. Commun. 2024, 15, 634. [Google Scholar] [CrossRef] [PubMed]
- Asif, M.B.; Kim, S.; Nguyen, T.S.; Mahmood, J.; Yavuz, C.T. Covalent Organic Framework Membranes and Water Treatment. J. Am. Chem. Soc. 2024, 146, 3567–3584. [Google Scholar] [CrossRef]
- Elmerhi, N.; Kumar, S.; Jaoude, M.A.; Shetty, D. Covalent Organic Framework-derived Composite Membranes for Water Treatment. Chem. Asian J. 2024, 19, e202300944. [Google Scholar] [CrossRef]
- Qu, Z.; Lai, C.; Zhao, G.; Knebel, A.; Fan, H.; Meng, H. Pore engineering in covalent organic framework membrane for gas separation. Adv. Membr. 2022, 2, 100037. [Google Scholar] [CrossRef]
- Taher, M.N.; Al-Mutwalli, S.A.; Barisci, S.; Koseoglu-Imer, D.Y.; Dumée, L.F.; Shirazi, M.M.A. Progress on remediation of per- and polyfluoroalkyl substances (PFAS) from water and wastewater using membrane technologies: A review. J. Water Process Eng. 2024, 59, 104858. [Google Scholar] [CrossRef]
- Minhas, S.; Pandey, R.P.; Hasan, S.W. Emerging nanomaterials incorporated in membranes for polyfluoroalkyl substances (PFAS) removal from water: A review. J. Environ. Manag. 2025, 373, 123888. [Google Scholar] [CrossRef]
- Das, S.; Ronen, A. A Review on Removal and Destruction of Per- and Polyfluoroalkyl Substances (PFAS) by Novel Membranes. Membranes 2022, 12, 662. [Google Scholar] [CrossRef]
- Geleta, T.A.; Maggay, I.V.; Chang, Y.; Venault, A. Recent Advances on the Fabrication of Antifouling Phase-Inversion Membranes by Physical Blending Modification Method. Membranes 2023, 13, 58. [Google Scholar] [CrossRef]
- Su, Y.F.; Li, D.Y.; Shan, M.X.; Feng, X.Q.; Gascon, J.; Wang, Y.; Zhang, Y.T. Uniformly Distributed Mixed Matrix Membranes via a Solution Processable Strategy for Propylene/Propane Separation. Angew. Chem. Int. Ed. 2024, 63, e202316093. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.H.; Huang, Z.; Gao, L.; Gray, S.; Xie, Z.L. Study of MOF incorporated dual layer membrane with enhanced removal of ammonia and per-/poly-fluoroalkyl substances (PFAS) in landfill leachate treatment. Sci. Total Environ. 2022, 806, 151207. [Google Scholar] [CrossRef]
- Minhas, S.A.; Pandey, R.P.; Jaoude, M.A.; Hasan, S.W. MOF/Polydopamine-modified MXene based mixed matrix membrane for per- and polyfluoroalkyl substances removal from real wastewater. Sep. Purif. Technol. 2025, 370, 133139. [Google Scholar] [CrossRef]
- Zhang, W.X.; Li, Y.H.; Xing, Z.; Zhao, M.H.; Fu, Y.; Wang, S.S.; Wu, Y.; Zeng, J.H.; Li, X.Y.; Ma, H.P. Ionic COF Composite Membranes for Selective Perfluoroalkyl Substances Separation. Macromol. Rapid Commun. 2023, 44, 2200718. [Google Scholar] [CrossRef]
- Lin, M.H.; Liu, J.; Zhou, W.Y.; Deng, C.; Du, Y.H.; Dong, L.C.; Zhou, C.L. Mixed matrix membranes based on controllable synthesized one-dimensional HOFs for molecular separation. J. Membr. Sci. 2025, 734, 124503. [Google Scholar] [CrossRef]
- Bi, Y.J.; Meng, X.M.; Tan, Z.J.; Geng, Q.Q.; Peng, J.X.; Yong, Q.Z.; Sun, X.J.; Guo, M.M.; Wang, X.P. A novel ZIF-L/PEI thin film nanocomposite membrane for removing perfluoroalkyl substances (PFASs) from water: Enhanced retention and high flux. Sci. Total Environ. 2024, 925, 171727. [Google Scholar] [CrossRef] [PubMed]
- Pilevar, M.; Jafarian, H.; Behzadnia, N.; Liang, Q.L.; Maleki, S.E.; Aktij, S.A.; Sadrzadeh, M.; Terry, L.; Elliott, M.; Firouzjaei, M.D. Customizing surface grafting and interlayer functionalization for PFOA separation in polyamide membranes. Water Res. X 2025, 27, 100358. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Tong, X.; Kim, J.; Tong, T.Z.; Huang, C.H.; Chen, Y.S. Capillary-Assisted Fabrication of Thin-Film Nanocomposite Membranes for Improved Solute-Solute Separation. Environ. Sci. Technol. 2022, 56, 5849–5859. [Google Scholar] [CrossRef]
- Zhang, K.P.; Cheng, P.; Liu, Y.L.; Xia, S.J. Efficient removal of per- and polyfluoroalkyl substances by a metal-organic framework membrane with high selectivity and stability. Water Res. 2024, 265, 122276. [Google Scholar] [CrossRef]
- Koli, M.; Kanwar, B.; Wickramasinghe, S.R.; Singh, S.P. Tailoring nanofiltration membranes with MOF 303 modified support layer for enhanced PFAS and heavy metal separation. Desalination 2025, 616, 119392. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Min, X.P.; Xia, W.L.; Qiang, Z.Q.; Khandge, R.S.; Yu, H.K.; Wang, J.W.; Wang, Y.; Ma, X.L. Anionic covalent organic framework membranes for the removal of per-and polyfluoroalkyl substances with enhanced selectivity. J. Membr. Sci. 2024, 705, 122925. [Google Scholar] [CrossRef]
- Chen, S.; Wahiduzzaman, M.; Ji, T.; Liu, Y.; Li, Y.; Wang, C.; Sun, Y.; He, G.; Maurin, G.; Wang, S.; et al. Oriented Titanium-MOF Membrane for Hydrogen Purification. Angew. Chem. Int. Ed. 2025, 64, e202413701. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wan, Z.; Li, Y.; He, X.; Caro, J.; Huang, A. Anisotropic Gas Separation in Oriented ZIF-95 Membranes Prepared by Vapor-Assisted In-Plane Epitaxial Growth. Angew. Chem. Int. Ed. 2020, 59, 20858–20862. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.H.; Peydayesh, M.; Mezzenga, R. Membrane-based technologies for per- and poly-fluoroalkyl substances (PFASs) removal from water: Removal mechanisms, applications, challenges and perspectives. Environ. Int. 2021, 157, 106876. [Google Scholar] [CrossRef]
- Bortoluzzi, A.C.; Faitao, J.A.; Di Luccio, M.; Dallago, R.M.; Steffens, J.; Zabot, G.L.; Tres, M.V. Dairy wastewater treatment using integrated membrane systems. J. Environ. Chem. Eng. 2017, 5, 4819–4827. [Google Scholar] [CrossRef]
- He, Y.L.; Zhou, J.Q.; Li, Y.; Yang, Y.D.; Sessler, J.L.; Chi, X.D. Fluorinated Nonporous Adaptive Cages for the Efficient Removal of Perfluorooctanoic Acid from Aqueous Source Phases. J. Am. Chem. Soc. 2024, 146, 6225–6230. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.K.; Ma, X.M.; Shetty, D.; Nadagouda, M.N. Recent advances in covalent organic frameworks for PFAS removal: A comparative review on 2D and 3D architectures. Chem. Eng. J. 2025, 519, 164298. [Google Scholar] [CrossRef]
- Li, R.; Adarsh, N.N.; Lu, H.; Wriedt, M. Metal-organic frameworks as platforms for the removal of per- and polyfluoroalkyl substances from contaminated waters. Matter 2022, 5, 3161–3193. [Google Scholar] [CrossRef]
- Chen, C.; Lu, L.; Fei, L.Y.; Xu, J.J.; Wang, B.Y.; Li, B.S.; Shen, L.G.; Lin, H.J. Membrane-catalysis integrated system for contaminants degradation and membrane fouling mitigation: A review. Sci. Total Environ. 2023, 904, 166220. [Google Scholar] [CrossRef]
- Hou, C.; Chen, W.Q.; Fu, L.H.; Zhang, S.F.; Liang, C.; Wang, Y. Efficient degradation of perfluorooctanoic acid by electrospun lignin-based bimetallic MOFs nanofibers composite membranes with peroxymonosulfate under solar light irradiation. Int. J. Biol. Macromol. 2021, 174, 319–329. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, M.Z.; Hou, C.; Chen, W.Q.; Li, S.S.; Ren, R.K.; Li, Z.J. Efficient degradation of perfluorooctanoic acid by solar photo-electro-Fenton like system fabricated by MOFs/carbon nanofibers composite membrane. Chem. Eng. J. 2021, 414, 128940. [Google Scholar] [CrossRef]
- Si, G.-R.; He, T.; Kong, X.-J.; Xie, L.-H.; Li, J.-R. Stable Metal–Organic Frameworks for Air and Water Pollution Control. Acc. Mater. Res. 2025, 6, 1006–1019. [Google Scholar] [CrossRef]
- Ji, Y.-L.; Gu, B.-X.; Huo, H.-Q.; Xie, S.-J.; Peng, H.; Zhang, W.-H.; Yin, M.-J.; Xiong, B.; Lu, H.; Villalobos, L.F.; et al. Roll-to-roll fabrication of large-area metal–organic framework-based membranes for high-performance aqueous separations. Nat. Water 2024, 2, 183–192. [Google Scholar] [CrossRef]
- Lu, D.; Zhao, Z.; Xiang, X.; Li, T.; Geng, Y.; Wu, M.; Li, Y.; Xu, S.; Zhang, C.; Gao, Z.; et al. A smart framework to design membranes for organic micropollutants removal. Nat. Sustain. 2025, 8, 1177–1189. [Google Scholar] [CrossRef]
- Hu, F.; Meng, L.; Wang, M.; Zhang, Y.; Xu, Z. Roles of naturally occurring biogenic iron-manganese oxides (BFMO) in PMS-based environmental remediation: A complete electron transfer pathway. J. Environ. Sci. 2025, 155, 795–805. [Google Scholar] [CrossRef]
- Liu, L.; An, X.; Bai, J.; Zhang, Y.; Lan, H.; Liu, H.; Qu, J. Electro-activated dual-affinity membrane for efficiently removing per- and polyfluoroalkyl substances from drinking water. Nat. Water 2025, 3, 1198–1207. [Google Scholar] [CrossRef]









| Membrane | Organic Framework | PFAS Type | PFAS Rejection/Degradation Rate (%) | Water Permeance (LMH/bar) | Primary Separation Mechanisms | Reference |
|---|---|---|---|---|---|---|
| MOF-303-TFC | MOF | PFOS, PFOA a | 92.1 ± 0.6, 91.8 ± 0.6 | 7.91–14.72 | Size Exclusion, Electrostatics | [42] |
| Cu-TCPP MOF-PAm | MOF | 11 types of PFAS | 84.2–94.0 | 21.4 | Size Exclusion, Adsorption, Electrostatics | [41] |
| AlFu MOF/PVA (PSA5) | MOF | 28 types of PFAS b | >98.4 (Total) | 41 | Electrostatics, Diffusion Hindrance | [34] |
| ZIF-L/PEI (M-5) | MOF | 6 types of PFAS | 35.5–100 | 47.56 | Size Exclusion, Electrostatics, Hydrogen Bonding | [38] |
| Ag-MOF (UI-MOF) | MOF | PFOA | 88.9 | 13.7 | Size Exclusion, Electrostatics | [39] |
| Ag-MOF (US-MOF) | MOF | PFOA | 92.8 | 12.1 | Size Exclusion, Electrostatics | [39] |
| Ag-MOF (DS-MOF) | MOF | PFOA | 93.4 | 9.8 | Size Exclusion, Electrostatics | [39] |
| DMMIL/CA | MOF | PFOA, PFHpA, PFHxA c | 55–91.4 | 7.8 | Hydrogen Bonding, Electrostatics | [35] |
| CAIP-MOF (UiO-66-NCIM) | MOF | 8 types of PFAS | 50–99 | 18.7 | Size Exclusion | [40] |
| Co-Fe MOF(PVA) | MOF | PFOA | 89.6 (Deg. 3 h) | - | Catalytic Degradation | [52] |
| Co-Fe MOF (CNF) | MOF | PFOA | 99.0 (Deg. 2 h) | - | Catalytic Degradation | [53] |
| TpPa-SO3H COF | COF | PFOS, PFOA, PFBS, PFBA | 90–99 | 11.5–37.9 | Electrostatics, Size Exclusion | [43] |
| PAN@iCOFs | COF | PFOS-K/PFOS-QAI, PFOS-A | >99, <3 | 749.4–838.5 | Dual-Charge Electrostatics | [36] |
| HOF-F/CA | HOF | PFDoA, PFOA | 95.4, 78.3 | 175 | F-F Interaction, Size Exclusion | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, J.; Zhao, B.; Yang, H. Efficient Separation of Per- and Polyfluoroalkyl Substances (PFAS) by Organic Framework Membranes: Advances, Mechanisms, and Challenges. Membranes 2026, 16, 19. https://doi.org/10.3390/membranes16010019
Zhang J, Zhao B, Yang H. Efficient Separation of Per- and Polyfluoroalkyl Substances (PFAS) by Organic Framework Membranes: Advances, Mechanisms, and Challenges. Membranes. 2026; 16(1):19. https://doi.org/10.3390/membranes16010019
Chicago/Turabian StyleZhang, Jiawei, Baosheng Zhao, and Hao Yang. 2026. "Efficient Separation of Per- and Polyfluoroalkyl Substances (PFAS) by Organic Framework Membranes: Advances, Mechanisms, and Challenges" Membranes 16, no. 1: 19. https://doi.org/10.3390/membranes16010019
APA StyleZhang, J., Zhao, B., & Yang, H. (2026). Efficient Separation of Per- and Polyfluoroalkyl Substances (PFAS) by Organic Framework Membranes: Advances, Mechanisms, and Challenges. Membranes, 16(1), 19. https://doi.org/10.3390/membranes16010019

