Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,808)

Search Parameters:
Keywords = energy and choice

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 1314 KiB  
Review
Dry Anaerobic Digestion of Selectively Collected Biowaste: Technological Advances, Process Optimization and Energy Recovery Perspectives
by Beata Bień, Anna Grobelak, Jurand Bień, Daria Sławczyk, Kamil Kozłowski, Klaudia Wysokowska and Mateusz Rak
Energies 2025, 18(17), 4475; https://doi.org/10.3390/en18174475 - 22 Aug 2025
Abstract
Given the increasing volume of selectively collected bio-waste and the requirement to increase waste treatment system energy efficiency, dry anaerobic digestion (DAD) represents a more sustainable choice for the treatment of municipal organic fraction instead of conventional technologies. The current paper provides an [...] Read more.
Given the increasing volume of selectively collected bio-waste and the requirement to increase waste treatment system energy efficiency, dry anaerobic digestion (DAD) represents a more sustainable choice for the treatment of municipal organic fraction instead of conventional technologies. The current paper provides an overview of the existing knowledge on DAD of green waste or kitchen waste collected selectively. Key substrates characteristics (chemical composition, methane potential), novel reactor design and process conditions relevant to effective digestion at elevated dry matter content are considered. Of special interest is the process intensification techniques, impact of contamination and co-fermentation opportunity with other biodegradable wastes. This article also discusses energy and economic performance of DAD plants and puts their environmental burden in perspective versus other bio-waste treatment processes. The current legislation and DAD’s role in the circular economy are also considered. Selectively collected biowaste has significant energy potential and dry anaerobic digestion is an effective technology, especially in areas with limited water availability, offering both waste volume reduction and minimized energy losses. The aim of this work is to introduce the potential of this technology as a sustainable option within the context of renewable energy and modern waste management. Full article
(This article belongs to the Special Issue New Challenges in Biogas Production from Organic Waste)
Show Figures

Figure 1

12 pages, 735 KiB  
Article
Accurate and Scalable Quantum Hydrodynamic Simulations of Plasmonic Nanostructures Within OFDFT
by Qihong Hu, Runfeng Liu, Xinyu Shan, Xiaoyun Wang, Hong Yang, Heping Zhao and Yonggang Huang
Nanomaterials 2025, 15(16), 1288; https://doi.org/10.3390/nano15161288 - 21 Aug 2025
Viewed by 150
Abstract
Quantum hydrodynamic theory (QHT) provides a computationally efficient alternative to time-dependent density functional theory for simulating plasmonic nanostructures, but its predictive power depends critically on the choice of ground-state electron density and energy functional. To construct ground-state densities, we adopt orbital-free density functional [...] Read more.
Quantum hydrodynamic theory (QHT) provides a computationally efficient alternative to time-dependent density functional theory for simulating plasmonic nanostructures, but its predictive power depends critically on the choice of ground-state electron density and energy functional. To construct ground-state densities, we adopt orbital-free density functional theory and numerically evaluate the effect of different exchange–correlation functionals and kinetic energy functionals. A suitable energy functional to reproduce both the DFT-calculated work function and charge density is identified. In the excited-state part, we adopt this obital-free ground-state density and investigate how variations in the von Weizsäcker kinetic energy fraction within the Laplacian-level functional affect the resonance energy and oscillator strengths. The appropriate functional form is identified, achieving an accuracy comparable to that reported in previous studies. Applied to sodium nanodimers, our approach captures nonlinear density responses at sub-nanometer gaps. This work extends QHT beyond idealized geometries and offers a robust path toward efficient quantum plasmonic modeling. Full article
(This article belongs to the Special Issue New Trends in Plasma Technology for Nanomaterials and Applications)
Show Figures

Figure 1

30 pages, 3477 KiB  
Article
Dynamic Task Scheduling Based on Greedy and Deep Reinforcement Learning Algorithms for Cloud–Edge Collaboration in Smart Buildings
by Ping Yang and Jiangmin He
Electronics 2025, 14(16), 3327; https://doi.org/10.3390/electronics14163327 - 21 Aug 2025
Viewed by 192
Abstract
Driven by technologies such as the Internet of Things and artificial intelligence, smart buildings have developed rapidly, and the demand for processing massive amounts of data has risen sharply. Traditional cloud computing is confronted with challenges such as high network latency and large [...] Read more.
Driven by technologies such as the Internet of Things and artificial intelligence, smart buildings have developed rapidly, and the demand for processing massive amounts of data has risen sharply. Traditional cloud computing is confronted with challenges such as high network latency and large bandwidth pressure. Although edge computing can effectively reduce latency, it has problems such as resource limitations and difficulties with cluster collaboration. Therefore, cloud–edge collaboration has become an inevitable choice to meet the real-time and reliability requirements of smart buildings. In view of the problems with the existing task scheduling methods in the smart building scenario, such as ignoring container compatibility constraints, the difficulty in balancing global optimization and real-time performance, and the difficulty in adapting to the dynamic environments, this paper proposes a two-stage cloud-edge collaborative dynamic task scheduling mechanism. Firstly, a task scheduling system model supporting container compatibility was constructed, aiming to minimize system latency and energy consumption while ensuring the real-time requirements of tasks were met. Secondly, for this task-scheduling problem, a hierarchical and progressive solution was designed: In the first stage, a Resource-Aware Cost-Driven Greedy algorithm (RACDG) was proposed to enable edge nodes to quickly generate the initial task offloading decision. In the second stage, for the tasks that need to be offloaded in the initial decision-making, a Proximal Policy Optimization algorithm based on Action Masks (AMPPO) is proposed to achieve global dynamic scheduling. Finally, in the simulation experiments, the comparison with other classical algorithms shows that the algorithm proposed in this paper can reduce the system delay by 26–63.7%, reduce energy consumption by 21.7–66.9%, and still maintain a task completion rate of more than 91.3% under high-load conditions. It has good scheduling robustness and application potential. It provides an effective solution for the cloud–edge collaborative task scheduling of smart buildings. Full article
Show Figures

Figure 1

11 pages, 542 KiB  
Article
The Frequency, Preferences, and Determinants of Energy Drink Consumption Among Young Polish People After the Introduction of the Ban on Sales to Minors
by Patrycja Musz, Wiktoria Smorąg, Gabriela Ryś, Krzysztof Gargasz and Ewelina Polak-Szczybyło
Nutrients 2025, 17(16), 2689; https://doi.org/10.3390/nu17162689 - 20 Aug 2025
Viewed by 220
Abstract
Background: In Poland, the consumption of energy drinks among young people has changed significantly following the introduction of a ban on sales to minors. This regulatory measure was intended to address growing concerns about the health effects of high caffeine consumption among [...] Read more.
Background: In Poland, the consumption of energy drinks among young people has changed significantly following the introduction of a ban on sales to minors. This regulatory measure was intended to address growing concerns about the health effects of high caffeine consumption among teenagers. The aim of the study was to assess the frequency, preferences, and determinants of energy drink consumption among Polish adolescents aged 15–17 years, following the introduction of the legal ban on the sale of energy drinks to minors. Methods: The study was conducted in Poland in 2024, following the introduction of a law prohibiting the sale of energy drinks to minors. The study group consisted of 999 high school students aged 15–17 who completed an anonymous, author-designed survey. Data were then collected and analyzed for descriptive statistics, and chi-square tests were used for categorical variables, Mann–Whitney U tests and Kruskal–Wallis tests for group comparisons, and Spearman’s rank correlation for ordinal data. Results: In total, 52% of respondents declared that they consume energy drinks, and 68% reported a reduced intake after the introduction of the regulations prohibiting sales to minors. These drinks are more frequently consumed by males. Additionally, age and frequency of consumption were positively correlated. The factors most often influencing the choice of energy drinks were price, taste, package size, caffeine content, composition, and recommendations from friends. Conclusions: Although a large percentage of minors still consume energy drinks, the new regulations have had an impact on reducing their intake. Full article
(This article belongs to the Special Issue Caffeinated Beverage Consumption: Health Benefits and Risks)
Show Figures

Figure 1

36 pages, 4370 KiB  
Review
A State-of-the-Art Review on Nuclear Reactor Concepts and Associated Advanced Manufacturing Techniques
by Lisa May and Martin Werz
Energies 2025, 18(16), 4359; https://doi.org/10.3390/en18164359 - 15 Aug 2025
Viewed by 671
Abstract
The political commitment to reaching carbon-free energy generation by the year 2050 has led to an increased expansion of renewable energy power plants. As renewable energy generation is intermittent and current energy storage options are limited, a diversified energy grid including nuclear power [...] Read more.
The political commitment to reaching carbon-free energy generation by the year 2050 has led to an increased expansion of renewable energy power plants. As renewable energy generation is intermittent and current energy storage options are limited, a diversified energy grid including nuclear power is the preferable choice for most nations. Many innovative reactor concepts are being pursued in research and development, aiming to supplement fluctuating energy sources. However, it is yet unclear if these technologies can be economically deployed in time. This paper presents the current political views and events concerning the global expansion of nuclear energy, focusing on Europe and the USA. Further, the most important safety aspects of large nuclear power plants are discussed. Moreover, knowledge and definition gaps regarding the applicability of established procedures for innovative reactor concepts are included. The authors highlight that advanced manufacturing techniques play a key role in the economic and technical realization of innovative reactor concepts. The present work is intended to provide insight into current developments in nuclear technology while providing more detail on safety aspects and innovative manufacturing methods. Full article
(This article belongs to the Section B4: Nuclear Energy)
Show Figures

Figure 1

27 pages, 4110 KiB  
Article
Millisecond Laser Oblique Hole Processing of Alumina Ceramics
by Yuyang Chen, Xianshi Jia, Zhou Li, Chuan Guo, Ranfei Guo, Kai Li, Cong Wang, Wenda Cui, Changqing Song, Kai Han and Ji’an Duan
Nanomaterials 2025, 15(16), 1261; https://doi.org/10.3390/nano15161261 - 15 Aug 2025
Viewed by 215
Abstract
Alumina ceramic substrates are ideal materials for next-generation microelectronic systems and devices, widely used in aerospace, 5G communications, and LED lighting. High-quality hole processing is essential for system interconnection and device packaging. Millisecond lasers have emerged as a promising choice for hole processing [...] Read more.
Alumina ceramic substrates are ideal materials for next-generation microelectronic systems and devices, widely used in aerospace, 5G communications, and LED lighting. High-quality hole processing is essential for system interconnection and device packaging. Millisecond lasers have emerged as a promising choice for hole processing in alumina ceramic due to their high processing efficiency. However, existing research has rarely explored the mechanisms and processing techniques of millisecond laser oblique hole formation. This study systematically investigates the dynamic evolution of oblique hole processing in alumina ceramic through theoretical simulations, online detection, and process experiments. Through the simulation model, we have established the relationship between material temperature and hole depth. By analyzing the ablation phenomena on the upper and lower surfaces of the ceramic during the transient interaction process between the millisecond laser and the ceramic, the material removal mechanism in this process is elucidated. Additionally, this study examines the millisecond laser oblique hole processing technology by analyzing the influence of various laser parameters on hole formation. It reveals that appropriately increasing the single-pulse energy of millisecond lasers can optimize the material removal rate and hole taper. Ultimately, the formation mechanism of millisecond laser oblique hole processing in alumina ceramics is comprehensively summarized. The results provide theoretical and methodological guidance for high-speed laser drilling of alumina ceramic substrates. Full article
Show Figures

Graphical abstract

27 pages, 2995 KiB  
Article
Photovoltaic System for Residential Energy Sustainability in Santa Elena, Ecuador
by Angela García-Guillén, Marllelis Gutiérrez-Hinestroza, Lucrecia Moreno-Alcívar, Lady Bravo-Montero and Gricelda Herrera-Franco
Environments 2025, 12(8), 281; https://doi.org/10.3390/environments12080281 - 15 Aug 2025
Viewed by 676
Abstract
The instability of the energy supply, growing demand and the need to reduce carbon emissions are priority challenges in developing countries such as Ecuador, where power outages affect productivity and generate economic losses. Therefore, solar energy is positioned as a sustainable alternative. The [...] Read more.
The instability of the energy supply, growing demand and the need to reduce carbon emissions are priority challenges in developing countries such as Ecuador, where power outages affect productivity and generate economic losses. Therefore, solar energy is positioned as a sustainable alternative. The objective of this study is to evaluate a pilot photovoltaic (PV) system for residential housing in coastal areas in the Santa Elena province, Ecuador. The methodology included the following: (i) criteria for the selection of three representative residential housings; (ii) design of a distributed generation system using PVsyst software; and (iii) proposal of strategic guidelines for the design of PV systems. This proposed system proved to be environmentally friendly, achieving reductions of between 16.4 and 32 tonnes of CO2 in the first 10 years. A return on investment (ROI) of 16 years was achieved for the low-demand (L) scenario, with 4 years for the medium-demand (M) scenario and 2 years for the high-demand (H) scenario. The sensitivity analysis showed that the Levelized Cost of Energy (LCOE) is more variable in the L scenario, requiring more efficient designs. It is proposed to diversify the Ecuadorian energy matrix through self-supply PV systems, which would reduce electricity costs by 6% of consumption (L scenario), 30% (M scenario), and 100% (H scenario). Although generation is concentrated during the day, the net metering scheme enables compensation for nighttime consumption without the need for batteries, thereby improving the system’s profitability. The high solar potential and high tariffs make the adoption of sustainable energy solutions a justifiable choice. Full article
Show Figures

Figure 1

27 pages, 1605 KiB  
Article
Using Hydro-Pneumatic Energy Storage for Improving Offshore Wind-Driven Green Hydrogen Production—A Preliminary Feasibility Study in the Central Mediterranean Sea
by Oleksii Pirotti, Diane Scicluna, Robert N. Farrugia, Tonio Sant and Daniel Buhagiar
Energies 2025, 18(16), 4344; https://doi.org/10.3390/en18164344 - 14 Aug 2025
Viewed by 426
Abstract
This paper presents a preliminary feasibility study for integrating hydro-pneumatic energy storage (HPES) with off-grid offshore wind turbines and green hydrogen production facilities—a concept termed HydroGenEration (HGE). This study compares the performance of this innovative concept system with an off-grid direct wind-to-hydrogen plant [...] Read more.
This paper presents a preliminary feasibility study for integrating hydro-pneumatic energy storage (HPES) with off-grid offshore wind turbines and green hydrogen production facilities—a concept termed HydroGenEration (HGE). This study compares the performance of this innovative concept system with an off-grid direct wind-to-hydrogen plant concept without energy storage, both under central Mediterranean wind conditions. Numerical simulations were conducted at high temporal resolution, capturing 10-min fluctuations of open field measured wind speeds at an equivalent offshore wind turbine (WT) hub height over a full 1-year, seasonal cycle. Key findings demonstrate that the HPES system of choice, namely the Floating Liquid Piston Accumulator with Sea Water under Compression (FLASC) system, significantly reduces Proton Exchange Membrane (PEM) electrolyser (PEMEL) On/Off cycling (with a 66% reduction in On/Off events), while maintaining hydrogen production levels, despite the integration of the energy storage system, which has a projected round-trip efficiency of 75%. The FLASC-integrated HGE solution also marginally reduces renewable energy curtailment by approximately 0.3% during the 12-month timeframe. Economic analysis reveals that while the FLASC HPES system does introduce an additional capital cost into the energy chain, it still yields substantial operational savings exceeding EUR 3 million annually through extended PEM electrolyser lifetime and improved operational efficiency. The Levelized Cost of Hydrogen (LCOH) for the FLASC-integrated HGE system, which is estimated to be EUR 18.83/kg, proves more economical than a direct wind-to-hydrogen approach with a levelized cost of EUR 21.09/kg of H2 produced. This result was achieved through more efficient utilisation of wind energy interfaced with energy storage as it mitigated the natural intermittency of the wind and increased the lifecycle of the equipment, especially that of the PEM electrolysers. Three scenario models were created to project future costs. As electrolyser technologies advance, cost reductions would be expected, and this was one of the scenarios envisaged for the future. These scenarios reinforce the technical and economic viability of the HGE concept for offshore green hydrogen production, particularly in the Mediterranean, and in regions having similar moderate wind resources and deeper seas for offshore hybrid sustainable energy systems. Full article
Show Figures

Figure 1

39 pages, 854 KiB  
Article
A Hybrid MCDM Approach to Optimize Molten Salt Selection for Off-Grid CSP Systems
by Ghazi M. Magableh, Mahmoud Z. Mistarihi and Saba Abu Dalu
Energies 2025, 18(16), 4323; https://doi.org/10.3390/en18164323 - 14 Aug 2025
Viewed by 363
Abstract
Transitioning to sustainable energy systems demands the creation of innovative methods that deliver dependable and effective renewable energy technologies. CSP systems that integrate parabolic trough designs with thermal energy storage (TES) systems provide essential solutions to overcome energy intermittency challenges. Molten salts serve [...] Read more.
Transitioning to sustainable energy systems demands the creation of innovative methods that deliver dependable and effective renewable energy technologies. CSP systems that integrate parabolic trough designs with thermal energy storage (TES) systems provide essential solutions to overcome energy intermittency challenges. Molten salts serve dual functions as heat transfer fluids (HTFs) and thermal energy storage (TES) media, making them critical to CSP system performance improvements. The study introduces a hybrid MCDM framework that combines the CRITIC method for objective weighting with the SWARA approach for expert-adjusted weighting and utilizes an enhanced Lexicographic Goal Programming to evaluate molten salt options for off-grid parabolic trough systems. The evaluation process considered melting point alongside thermal stability while also assessing cost-effectiveness, recyclability, and safety requirements. The use of Pareto front analysis helped identify non-dominated salts, which then underwent a tiered optimization process emphasizing safety, performance, and sustainability features. Results confirm that the ternary nitrate composition Ca(NO3)2:NaNO3:KNO3 offers the best overall performance across all tested policy scenarios, driven by its superior thermophysical properties. Solar Salt (NaNO3-KNO3) consistently ranks as a robust second choice, excelling in economic and sustainability metrics. The proposed approach provides a flexible, policy-sensitive framework for material selection tailored to enhance the efficiency and sustainability of off-grid CSP systems and support the renewable energy objectives. Full article
Show Figures

Figure 1

14 pages, 642 KiB  
Article
Assessing Dietary Habits, Quality, and Nutritional Composition of Workplace Lunches: A Comprehensive Analysis in Turin, Piedmont (Italy)
by Carla Ferraris, Walter Martelli, Aitor Garcia-Vozmediano, Maria Ines Crescio, Cristiana Maurella, Eleonora Mingolla, Elisabetta Fea, Andrea Pezzana, Paola Chiara Durelli, Lucia Decastelli and Daniela Manila Bianchi
Nutrients 2025, 17(16), 2625; https://doi.org/10.3390/nu17162625 - 13 Aug 2025
Viewed by 264
Abstract
Background: The importance of understanding dietary habits during working hours is becoming increasingly evident. As demonstrated, dietary habits have been shown to exert a considerable influence on the productivity of workers and the creation of a healthier workplace. Objective: The aim of [...] Read more.
Background: The importance of understanding dietary habits during working hours is becoming increasingly evident. As demonstrated, dietary habits have been shown to exert a considerable influence on the productivity of workers and the creation of a healthier workplace. Objective: The aim of this study is to assess the nutritional quality and self-perception of lunches consumed by workers in Piedmont (Italy). Methods: A questionnaire, supported by the EasyDietWeb 4.3.0 software, was used to assess the macronutrient composition of the meals and to evaluate adherence to the “Healthy Eating Plate” (HEP) guidelines. The basal metabolic rate and total daily energy expenditure of the subjects were calculated. Results: The survey results, which included 189 participants, revealed that a notable proportion of the respondents consumed homemade meals at their place of work. The majority of meals reported by the participants did not align with the HEP composition due to the absence of one or more components, especially vegetables. The participants’ perceptions of meal balance frequently diverged from the actual nutritional quality of the meals. Finally, overweight participants exhibited a higher risk of reporting diseases (OR = 4.4, 95% CI = 1.6–12.0). Conclusions: This study provides insight into the dietary habits of a specific group of workers regarding their lunch consumption. This underscores the significance of enhancing public awareness regarding dietary choices and nutritional intakes, as adhering to proper dietary routines is paramount for preserving a state of well-being and sustaining a healthy lifestyle. Full article
(This article belongs to the Special Issue Dietary Patterns and Population Health)
Show Figures

Figure 1

30 pages, 3940 KiB  
Review
Hydrogen-Enabled Power Systems: Technologies’ Options Overview and Effect on the Balance of Plant
by Furat Dawood, GM Shafiullah and Martin Anda
Hydrogen 2025, 6(3), 57; https://doi.org/10.3390/hydrogen6030057 - 13 Aug 2025
Viewed by 495
Abstract
Hydrogen-based Power Systems (H2PSs) are gaining accelerating momentum globally to reduce energy costs and dependency on fossil fuels. A H2PS typically comprises three main parts: hydrogen production, storage, and power generation, called packages. A review of the literature and Original Equipment Manufacturers (OEM) [...] Read more.
Hydrogen-based Power Systems (H2PSs) are gaining accelerating momentum globally to reduce energy costs and dependency on fossil fuels. A H2PS typically comprises three main parts: hydrogen production, storage, and power generation, called packages. A review of the literature and Original Equipment Manufacturers (OEM) datasheets reveals that no single manufacturer supplies all H2PS components, posing significant challenges in system design, parts integration, and safety assurance. Additionally, both the literature and H2PS projects’ database highlight a gap in a systematic hydrogen equipment and auxiliary sub-systems technology selection process, and how this selection affects the overall H2PS Balance of Plant (BoP). This study addresses that gap by providing a guideline for available technology options and their impact on the H2PS-BoP. The analysis compares packages and auxiliary sub-system technologies to support informed engineering decisions regarding technology and equipment selection. The study finds that each package’s technology influences the selection criteria of the other packages and the associated BoP requirements. Furthermore, the choice of technologies across packages significantly affects overall system integrity and BoP. These interdependencies are illustrated using a cause-and-effect matrix. The study’s significance lies in establishing a structured guideline for engineering design and operations, enhancing the accuracy of feasibility studies, and accelerating the global implementation of H2PS. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production, Storage, and Utilization)
Show Figures

Figure 1

26 pages, 5479 KiB  
Article
A Bibliometric Analysis of the Research on Electromobility and Its Implications for Kuwait
by Hidab Hamwi, Andri Ottesen, Rajeev Alasseri and Sara Aldei
World Electr. Veh. J. 2025, 16(8), 458; https://doi.org/10.3390/wevj16080458 - 11 Aug 2025
Viewed by 234
Abstract
This article examines the evolution of the most extensively researched subjects in e-mobility during the previous two decades. The objective of this analysis is to identify the lessons that the State of Kuwait, which is falling behind other nations in terms of e-mobility, [...] Read more.
This article examines the evolution of the most extensively researched subjects in e-mobility during the previous two decades. The objective of this analysis is to identify the lessons that the State of Kuwait, which is falling behind other nations in terms of e-mobility, can learn from in its efforts to adopt electric vehicles (EVs). To strengthen the body of knowledge and determine the most effective and efficient route to an “EV-ready” nation, the authors compiled data on the latest developments in the EV industry. A bibliometric analysis was performed on 3962 articles using VOSviewer software, which identified six noteworthy clusters that warranted further discussion. Additionally, we examined the sequential progression of these clusters as follows: (1) the environmental ramifications of electric mobility; (2) advancements in EV technology, including range extension and soundless engines, as well as the capital expenditure (CAPEX) and operating expenditure (OPEX) of purchasing and operating EVs; (3) concerns regarding the effectiveness and durability of EV batteries; (4) the availability of EV charging stations and grid integration; (5) charging time; and, finally, (6) the origin and source of the energy used in the development of e-mobility. Delineating critical aspects in the development of e-mobility can help to equip policymakers and decision makers in Kuwait in formulating timely and economical choices pertaining to sustainable transportation. This study contributes by cross-walking six global bibliometric clusters to Kuwait’s ten EV adoption barriers and mapping each to actionable policy levers, linking evidence to deployment guidance for an emerging market grid. Unlike prior bibliometric overviews, our analysis is Kuwait-specific and heat-contextual, and it reports each cluster’s size and recency to show where the field is moving. Using Kuwait driving logs, we found that summer (avg 43.2 °C) reduced the effective full-charge range by 24% versus pre-winter (approximately 244 km vs. 321 km), underscoring the need for shaded PV-coupled hyper-hubs and active thermal management. Full article
Show Figures

Figure 1

17 pages, 17722 KiB  
Article
Direct Glass-to-Metal Welding by Femtosecond Laser Pulse Bursts: II, Enhancing the Weld Between Glass and Polished Metal Surfaces
by Qingfeng Li, Fei Luo, Gabor Matthäus, David Sohr and Stefan Nolte
Nanomaterials 2025, 15(16), 1215; https://doi.org/10.3390/nano15161215 - 8 Aug 2025
Viewed by 352
Abstract
We present a comprehensive study on the femtosecond laser direct welding of glass and metal, focusing on optimizing processing parameters and understanding the influence of material properties and beam shaping on welding quality. Using microscopy, we identified optimal pulse energy, focal position, and [...] Read more.
We present a comprehensive study on the femtosecond laser direct welding of glass and metal, focusing on optimizing processing parameters and understanding the influence of material properties and beam shaping on welding quality. Using microscopy, we identified optimal pulse energy, focal position, and line-spacing for achieving high-quality welds. We further investigated the effects of laser beam shaping and material property differences in various glass-to-metal pairs, including borosilicate, fused silica, and Zerodur glasses welded with mirror-polished metals such as Cu, Mo, Al, Ti, and AISI316 steel. Our results show that Ti and AISI316 steel exhibit the lowest adhesion to borosilicate and fused silica glasses, while Zerodur glass achieves good adhesion with all tested metals. To understand the weldability differences among material pairs, we employed a time-dependent finite-element method to analyze the laser heating-induced thermal stress. Our findings indicate that the welding quality is significantly influenced by the choice of materials and beam shaping, with the vortex beam showing potential for improved welding outcomes. This study provides valuable insights for optimizing glass-to-metal welding processes for various industrial applications. Full article
(This article belongs to the Special Issue Ultrafast Laser Micro-Nano Welding: From Principles to Applications)
Show Figures

Figure 1

32 pages, 5466 KiB  
Article
Comprehensive Energy and Economic Analysis of Selected Variants of a Large-Scale Photovoltaic Power Plant in a Temperate Climate
by Dennis Thom, Artur Bugała, Dorota Bugała and Wojciech Czekała
Energies 2025, 18(15), 4198; https://doi.org/10.3390/en18154198 - 7 Aug 2025
Viewed by 1149
Abstract
In recent years, solar energy has emerged as one of the most advanced renewable energy sources, with its production capacity steadily growing. To maximize output and efficiency, choosing the right configuration for a specific location for these installations is crucial. This study uniquely [...] Read more.
In recent years, solar energy has emerged as one of the most advanced renewable energy sources, with its production capacity steadily growing. To maximize output and efficiency, choosing the right configuration for a specific location for these installations is crucial. This study uniquely integrates detailed multi-variant fixed-tilt PV system simulations with comprehensive economic evaluation under temperate climate conditions, addressing site-specific spatial constraints and grid integration considerations that have rarely been combined in previous works. In this paper, an energy and economic efficiency analysis for a photovoltaic power plant, located in central Poland, designed in eight variants (10°, 15°, 20°, 25°, 30° PV module inclination angle for a south orientation and 10°, 20°, 30° for an east–west orientation) for a limited building area of approximately 300,000 m2 was conducted. In PVSyst computer simulations, PVGIS-SARAH2 solar radiation data were used together with the most common data for describing the Polish local solar climate, called Typical Meteorological Year data (TMY). The most energy-efficient variants were found to be 20° S and 30° S, configurations with the highest surface production coefficient (249.49 and 272.68 kWh/m2) and unit production efficiency values (1123 and 1132 kWh/kW, respectively). These findings highlight potential efficiency gains of up to approximately 9% in surface production coefficient and financial returns exceeding 450% ROI, demonstrating significant economic benefits. In economic terms, the 15° S variant achieved the highest values of financial parameters, such as the return on investment (ROI) (453.2%), the value of the average annual share of profits in total revenues (56.93%), the shortest expected payback period (8.7 years), the value of the levelized cost of energy production (LCOE) (0.1 EUR/kWh), and one of the lowest costs of building 1 MWp of a photovoltaic farm (664,272.7 EUR/MWp). Among the tested variants of photovoltaic farms with an east–west geographical orientation, the most advantageous choice is the 10° EW arrangement. The results provide valuable insights for policymakers and investors aiming to optimize photovoltaic deployment in temperate climates, supporting the broader transition to renewable energy and alignment with national energy policy goals. Full article
Show Figures

Figure 1

21 pages, 2930 KiB  
Article
Wake Losses, Productivity, and Cost Analysis of a Polish Offshore Wind Farm in the Baltic Sea
by Adam Rasiński and Ziemowit Malecha
Energies 2025, 18(15), 4190; https://doi.org/10.3390/en18154190 - 7 Aug 2025
Viewed by 762
Abstract
This study presents a comprehensive analysis of the long-term energy performance and economic viability of offshore wind farms planned for locations within the Polish Exclusive Economic Zone of the Baltic Sea. It focuses on the impact of wind farm layout, aerodynamic wake effects, [...] Read more.
This study presents a comprehensive analysis of the long-term energy performance and economic viability of offshore wind farms planned for locations within the Polish Exclusive Economic Zone of the Baltic Sea. It focuses on the impact of wind farm layout, aerodynamic wake effects, and rotor blade surface degradation. Using the Jensen wake model, modified Weibull wind speed distributions are computed for various turbine spacing configurations (5D, 8D, and 10D) and wake decay constants kw{0.02;0.03;0.05}. The results reveal a trade-off between turbine density and individual turbine efficiency: tighter spacing increases the total annual energy production (AEP) but also intensifies wake-induced losses. The study shows that cumulative losses due to wake effects can range from 16.5% to 38%, depending on the scenario considered. This corresponds to capacity factors ranging from 33.4% to 45.2%. Finally, lifetime productivity scenarios over 20 and 25 years are analyzed, and the levelized cost of electricity (LCOE) is calculated to assess the economic implications of design choices. The analysis reveals that, depending on the values of the considered parameters, the LCOE can range from USD 116.3 to 175.7 per MWh produced. The study highlights the importance of early stage optimization in maximizing both the energy yield and cost-efficiency in offshore wind farm developments. Full article
Show Figures

Figure 1

Back to TopTop