Millisecond Laser Oblique Hole Processing of Alumina Ceramics
Abstract
1. Introduction
2. Materials and Methods
2.1. Finite Element Simulation
2.2. Laser Drilling System
2.3. Materials Preparation
3. Results
3.1. Theoretical–Imaging–Experimental Comprehensive Analysis
3.2. Influence of Millisecond Laser Repetition Rate on Oblique Hole Processing Performance
3.3. Influence of Millisecond Laser Peak Power on Oblique Hole Processing Performance
3.4. Influence of Millisecond Laser Ablation Time on Oblique Hole Processing Performance
3.5. Influence of Millisecond Laser Duty Cycle on Oblique Hole Processing Performance
4. Discussion
5. Conclusions
- (1)
- A combined approach integrating simulation, imaging, and experimental analysis is employed to investigate oblique hole processing and its quality control. This study systematically elucidates the phenomena of temperature variations, molten pool dynamics, and material removal mechanisms during the interaction between millisecond lasers and alumina ceramics. These interrelated phenomena collectively summarize the dynamic process of hole formation in alumina ceramics via millisecond laser processing.
- (2)
- The numerical simulation model for oblique hole processing in alumina ceramic using millisecond lasers has been established. By utilizing this model to investigate the variations in temperature, molten pool morphology, and hole depth during millisecond laser oblique hole processing under different repetition rates, it provides critical guidance for the selection of laser parameters in subsequent process experiments.
- (3)
- For the first time, the high-temporal-resolution shadowgraph imaging technique has been employed to characterize the material removal phenomena on the upper and lower surfaces of alumina ceramic during millisecond laser oblique hole processing. The influence of different laser parameters on the ablation process is investigated. It is concluded that the morphology of the LSCW is most significantly related to power and becomes finer with increasing pulse number, and that the material removal process is mainly concentrated in the first pulse phase.
- (4)
- Systematically studies the influence of different laser parameters on the morphology of oblique holes. Experiments using a 40 Hz ms laser achieve an ablation efficiency of 9.44 × 106 μm3/J and a hole with a taper of 1:11. It is concluded that increasing the energy per pulse can effectively optimize ablation efficiency and achieve better penetration ablation performance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Penilla, E.H.; Devia-Cruz, L.F.; Wieg, A.T.; Martinez-Torres, P.; Cuando-Espitia, N.; Sellappan, P.; Kodera, Y.; Aguilar, G.; Garay, J.E. Ultrafast laser welding of ceramics. Science 2019, 365, 803–808. [Google Scholar] [CrossRef]
- Liang, C.; Li, Z.; Wang, C.; Li, K.; Xiang, Y.; Jia, X.S. Laser drilling of alumina ceramic substrates: A review. Opt. Laser Technol. 2023, 167, 109828. [Google Scholar] [CrossRef]
- Chi, J.; Shao, H.; Song, H.; Wang, X.; Wu, K.; Zheng, Q.; Starostenkov, M.D.; Dong, G.J.; Bi, J. Effect of double-pulse frequency and post-weld heat treatment on microstructure and mechanical properties of metal-inert gas welded Al–Mg–Si alloy joints. Mater. Sci. Eng. A 2024, 913, 147029. [Google Scholar] [CrossRef]
- Barnes, C.; Shrotriya, P.; Molian, P. Water-assisted laser thermal shock machining of alumina. Int. J. Mach. Tools Manuf. 2007, 47, 1864–1874. [Google Scholar] [CrossRef]
- Adelmann, B.; Hellmann, R. Rapid micro hole laser drilling in ceramic substrates using single mode fiber laser. J. Mater. Process. Technol. 2015, 221, 80–86. [Google Scholar] [CrossRef]
- Wang, H.; Li, L.; Zhu, S.; Xu, Y.; Ren, N. Effect of water-based ultrasonic vibration on the quality of laser trepanned microholes in nickel super-alloy workpieces. J. Mater. Process. Technol. 2019, 272, 170–183. [Google Scholar] [CrossRef]
- Samant, A.N.; Dahotre, N.B. Laser machining of structural ceramics—A review. J. Eur. Ceram. Soc. 2009, 29, 969–993. [Google Scholar] [CrossRef]
- Li, Z.-Z.; Fan, H.; Wang, L.; Zhang, X.; Zhao, X.-J.; Yu, Y.-H.; Xu, Y.-S.; Wang, Y.; Wang, X.-J.; Juodkazis, S.; et al. Super-stealth dicing of transparent solids with nanometric precision. Nat. Photonics 2024, 18, 799–808. [Google Scholar] [CrossRef]
- Wang, H.; Lin, H.; Wang, C.; Zheng, L.; Hu, X. Laser drilling of structural ceramics—A review. J. Eur. Ceram. Soc. 2017, 37, 1157–1173. [Google Scholar] [CrossRef]
- Fan, P.; Dong, X.; Wang, K.; Liu, B.; Shen, P.; Yi, L.; Mei, X.; Fan, Z. Optimization of laidback fan-shaped holes machined by femtosecond laser. Int. J. Mech. Sci. 2025, 286, 109874. [Google Scholar] [CrossRef]
- Li, Z.; Lin, J.; Wang, C.; Li, K.; Jia, X.; Wang, C.; Duan, J. Damage performance of alumina ceramic by femtosecond laser induced air filamentation. Opt. Laser Technol. 2025, 181, 111781. [Google Scholar] [CrossRef]
- Li, J.; Zhong, S.; Huang, J.; Qiu, P.; Wang, P.; Li, H.; Qin, C.; Miao, D.; Xu, S. Laser-guided anisotropic etching for precision machining of micro-engineered glass components. Int. J. Mach. Tools Manuf. 2024, 198, 104152. [Google Scholar] [CrossRef]
- Wang, J.; Fang, F.; An, H.; Wu, S.; Qi, H.; Cai, Y.; Guo, G. Laser machining fundamentals: Micro, nano, atomic and close-to-atomic scales. Int. J. Extrem. Manuf. 2023, 5, 012005. [Google Scholar] [CrossRef]
- Sugioka, K.; Cheng, Y. Ultrafast lasers—Reliable tools for advanced materials processing. Light Sci. Appl. 2014, 3, e149. [Google Scholar] [CrossRef]
- Lin, Z.Y.; Hong, M.H. Femtosecond Laser Precision Engineering: From Micron, Submicron, to Nanoscale. Ultrafast Sci. 2021, 2021, 9783514. [Google Scholar] [CrossRef]
- Jia, X.; Luo, J.; Li, K.; Wang, C.; Li, Z.; Wang, M.; Jiang, Z.; Veiko, V.P.; Duan, J. Ultrafast laser welding of transparent materials: From principles to applications. Int. J. Extrem. Manuf. 2025, 7, 032001. [Google Scholar] [CrossRef]
- Zhao, M.; Wen, J.; Hu, Q.; Wei, X.; Zhong, Y.-W.; Ruan, H.; Gu, M. A 3D nanoscale optical disk memory with petabit capacity. Nature 2024, 626, 772–778. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, D.; Zhang, Y.; Bian, Y.; Wang, C.; Li, J.; Chu, J.; Hu, Y. Femtosecond laser direct writing of functional stimulus-responsive structures and applications. Int. J. Extrem. Manuf. 2023, 5, 042012. [Google Scholar] [CrossRef]
- Obata, K.; Caballero-Lucas, F.; Kawabata, S.; Miyaji, G.; Sugioka, K. GHz bursts in MHz burst (BiBurst) enabling high-speed femtosecond laser ablation of silicon due to prevention of air ionization. Int. J. Extrem. Manuf. 2023, 5, 025002. [Google Scholar] [CrossRef]
- Wang, H.-J.; Chen, Q.; Lin, D.-T.; Zuo, F.; Zhao, Z.-X.; Wang, C.-Y.; Lin, H.-T. Effect of scanning pitch on nanosecond laser micro-drilling of silicon nitride ceramic. Ceram. Int. 2018, 44, 14925–14928. [Google Scholar] [CrossRef]
- Chen, Y.; Cao, Y.; Wang, Y.; Zhang, L.; Shao, G.; Zi, J. Femtosecond laser pulse ablation characteristics of polymer-derived SiAlCN ceramics. Ceram. Int. 2020, 46, 9741–9750. [Google Scholar] [CrossRef]
- Zhao, Z.; Janasekaran, S.; Fong, G.T.; Tayier, W.; Zhao, J. Laser Applications in Ceramic and Metal Joining: A Review. Met. Mater. Int. 2024, 30, 1743–1782. [Google Scholar] [CrossRef]
- Kacar, E.; Mutlu, M.; Akman, E.; Demir, A.; Candan, L.; Canel, T.; Gunay, V.; Sinmazcelik, T. Characterization of the drilling alumina ceramic using Nd:YAG pulsed laser. J. Mater. Process. Technol. 2009, 209, 2008–2014. [Google Scholar] [CrossRef]
- Yan, Y.; Ji, L.; Bao, Y.; Jiang, Y. An experimental and numerical study on laser percussion drilling of thick-section alumina. J. Mater. Process. Technol. 2012, 212, 1257–1270. [Google Scholar] [CrossRef]
- Qingliang, S.; Tiyuan, W.; Qiang, S.; Fang, Y.; Hejun, L.; Fu, M. Unraveling of the laser drilling of carbon/carbon composites: Ablation mechanisms, shape evolution, and damage evaluation. Int. J. Mach. Tools Manuf. 2023, 184, 103978. [Google Scholar] [CrossRef]
- Lei, Z.H.; Wu, P.H.; Chen, H.; Yi, Z.; Long, Y.; Yu, Z.F.; Liu, M.S.; Tang, B.; Yan, J.Q.; Li, G.F. Simulation study on thermal effect of ceramic materials rapidly and remotely heated by a flat-top CW laser. Int. J. Therm. Sci. 2024, 201, 108999. [Google Scholar] [CrossRef]
- Guo, C.; Li, K.; Liu, Z.L.; Chen, Y.Y.; Xu, J.Y.; Li, Z.; Cui, W.D.; Song, C.Q.; Wang, C.; Jia, X.S.; et al. CW laser damage of ceramics induced by air filament. Opto Electron. Adv. 2025, 8, 240296. [Google Scholar] [CrossRef]
- Fan, M.; Zhou, X.; Song, J. Experimental investigation on cutting force and machining parameters optimization in in-situ laser-assisted machining of glass–ceramic. Opt. Laser Technol. 2024, 169, 110109. [Google Scholar] [CrossRef]
- Salter, P.S.; Booth, M.J. Adaptive optics in laser processing. Light Sci. Appl. 2019, 8, 110. [Google Scholar] [CrossRef]
- Duocastella, M.; Arnold, C.B. Bessel and annular beams for materials processing. Laser Photonics Rev. 2012, 6, 607–621. [Google Scholar] [CrossRef]
- Hanon, M.M.; Akman, E.; Genc Oztoprak, B.; Gunes, M.; Taha, Z.A.; Hajim, K.I.; Kacar, E.; Gundogdu, O.; Demir, A. Experimental and theoretical investigation of the drilling of alumina ceramic using Nd:YAG pulsed laser. Opt. Laser Technol. 2012, 44, 913–922. [Google Scholar] [CrossRef]
- Rihakova, L.; Chmelickova, H. Laser drilling of alumina ceramics using solid state Nd:YAG laser and QCW fiber laser: Effect of process parameters on the hole geometry. Adv. Prod. Eng. Manag. 2017, 12, 412–420. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, Q.; Fan, J.-T.; Zhao, Y.-A.; Jiang, B.-X.; Zhang, L. Study on the effect of size and density of micropores on transparent ceramic damage induced under intense laser irradiation. J. Mater. Res. Technol. 2024, 31, 772–786. [Google Scholar] [CrossRef]
- Xiong, L.; Wang, C.; Wu, W.; Xu, L.; Wang, C.; Deng, H.; Cheung, C. The surface softening mechanism of AlN ceramic by laser treatment. Surf. Interfaces 2024, 46, 104023. [Google Scholar] [CrossRef]
- Zhou, K.; Xiao, G.; Huang, Y. Understanding machinability improvements and removal mechanism of ceramic matrix composites during laser-ablating assisted grinding. Wear 2024, 538, 205199. [Google Scholar] [CrossRef]
- Desai, A.A.; Khan, S.N.; Bagane, P.; Patil, S.D. Multi-objective optimization of laser machining parameters for carbon-glass reinforced hybrid composites: Integrating gray relational analysis, regression, and ANN. MethodsX 2024, 13, 103066. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiao, H.; Zhao, J.; Cao, Z. Research on water jet-guided laser micro-hole machining of 6061 aluminum alloy. Int. J. Adv. Manuf. Technol. 2022, 118, 1–13. [Google Scholar] [CrossRef]
- Lee, S.; Zum Gahr, K. Surface treatments of Al2O3-ceramics by CO2-Lasers. Mater. Und Werkst. 1992, 23, 117–123. [Google Scholar] [CrossRef]
- Bradley, L.; Li, L.; Stott, F.H. Flame-assisted laser surface treatment of refractory materials for crack-free densification. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2000, 278, 204–212. [Google Scholar] [CrossRef]
- Murray, A.J.; Tyrer, J.R. Nd:YAG laser drilling of 8.3 mm thick partially stabilized tetragonal zirconia-control of recast layer microcracking using localized heating techniques. J. Laser Appl. 1999, 11, 179–184. [Google Scholar] [CrossRef]
- Jia, X.; Chen, Y.; Liu, L.; Wang, C.; Duan, J. Combined pulse laser: Reliable tool for high-quality, high-efficiency material processing. Opt. Laser Technol. 2022, 153, 108209. [Google Scholar] [CrossRef]
- Jia, X.; Zhu, G.; Zhang, Y.; Chen, Y.; Wang, H.; Shan, P.; Aleksei, K.; Zhu, X. Laser processing of alumina ceramic by spatially and temporally superposing the millisecond pulse and nanosecond pulse train. Opt. Express 2020, 28, 676–684. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Dong, J.; Chen, Y.; Wang, H.; Zhu, G.; Shan, P.; Aleksei, K.; Zhu, X. Laser processing of alumina ceramic by a spatially superposing millisecond laser and a nanosecond laser with different beam shapes. Appl. Opt. 2020, 59, 7195–7200. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Dong, J.; Chen, Y.; Wang, H.; Zhu, G.; Kozlov, A.; Zhu, X. Nanosecond-millisecond combined pulse laser drilling of alumina ceramic. Opt. Lett. 2020, 45, 1691–1694. [Google Scholar] [CrossRef]
- Wu, Z.; Dong, Y.; Zhang, S.; Liao, T.; Yan, W.; You, Y. Discussion on effect of laser parameters and trajectory in combined pulse laser drilling. Int. J. Hydromechatronics 2021, 4, 43–54. [Google Scholar] [CrossRef]
- Zhang, Y.; He, X.; Yu, G.; Li, S.; Tian, C.; Ning, W.; Zhang, Y. Dynamic evolution of keyhole during multi-pulse drilling with a millisecond laser on 304 stainless steel. Opt. Laser Technol. 2022, 152, 108151. [Google Scholar] [CrossRef]
- Chung, C.K.; Chang, H.C.; Shih, T.R.; Lin, S.L.; Hsiao, E.J.; Chen, Y.S.; Chang, E.C.; Chen, C.C.; Lin, C.C. Water-assisted CO(2) laser ablated glass and modified thermal bonding for capillary-driven bio-fluidic application. Biomed. Microdevices 2010, 12, 107–114. [Google Scholar] [CrossRef]
- Li, G.; Hu, S.; Tang, H.; Chen, B. Laser repeat drilling of alumina ceramics in static water. Int. J. Adv. Manuf. Technol. 2018, 96, 2885–2891. [Google Scholar] [CrossRef]
- Zhao, R.; Ma, C.; Gao, X.; Zhang, H.; Wang, X. Investigation of Overflow-Water-Assisted Femtosecond Laser-Induced Plasma Modulation of Microchannel Morphology. Coatings 2023, 13, 1541. [Google Scholar] [CrossRef]
- Wu, C.; Fang, X.; Kang, Q.; Sun, H.; Zhao, L.; Tian, B.; Fang, Z.; Pan, M.; Maeda, R.; Jiang, Z. Crystal cleavage, periodic nanostructure and surface modification of SiC ablated by femtosecond laser in different media. Surf. Coat. Technol. 2021, 424, 127652. [Google Scholar] [CrossRef]
- Ren, N.; Xia, K.; Yang, H.; Gao, F.; Song, S. Water-assisted femtosecond laser drilling of alumina ceramics. Ceram. Int. 2021, 47, 11465–11473. [Google Scholar] [CrossRef]
- Ren, N.; Gao, F.; Wang, H.; Xia, K.; Song, S.; Yang, H. Water-induced effect on femtosecond laser layered ring trepanning in silicon carbide ceramic sheets using low-to-high pulse repetition rate. Opt. Commun. 2021, 496, 127040. [Google Scholar] [CrossRef]
- Abdo, B.M.A.; Mian, S.H. Optimization of control variables in rotary ultrasonic machining of alumina ceramic for reduced edge chipping and enhanced surface finish. J. Braz. Soc. Mech. Sci. Eng. 2024, 46, 439. [Google Scholar] [CrossRef]
- Okada, M.; Hirata, Y.; Watanabe, H.; Watanabe, M.; Nikawa, M.; Kaneda, N. Through-hole drilling characteristics of alumina ceramics using diamond-coated carbide drill. J. Adv. Mech. Des. Syst. Manuf. 2024, 18, JAMDSM0003. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, Z.; Hu, S.; Feng, Y.; Yang, F.; Li, G. Improving the Quality of Laser Drilling by Assisted Process Methods of Static Solution and Mist Blowing. Micromachines 2024, 15, 515. [Google Scholar] [CrossRef] [PubMed]
- Mendes, M.; Kancharla, V.; Porneala, C.; Song, X.; Hannon, M.; Sarrafi, R.; Schoenly, J.; Sercel, D.; Dennigan, S.; Van Gemert, R. (Eds.) Laser machining with QCW fiber lasers. In International Congress on Applications of Lasers & Electro-Optics; Laser Institute of America: Orlando, FL, USA, 2014. [Google Scholar]
- Jia, X.; Lin, J.; Li, Z.; Wang, C.; Li, K.; Wang, C.; Duan, J. Continuous wave laser ablation of alumina ceramics under long focusing condition. J. Manuf. Process. 2025, 134, 530–546. [Google Scholar] [CrossRef]
- Jia, X.S.; Luo, J.; Guo, C.; Li, Z.; Ma, Z.; Xiang, Y.; Yi, Z.X.; Li, K.; Wang, C.; Li, X.; et al. High-energy continuous wave laser ablation of alumina ceramic. J. Mater. Res. Technol. JMRT 2023, 27, 5389–5403. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, L.; Zhang, C.; Chen, X.; Li, J. Physical study of spatter and melt pool dynamics during millisecond laser metals drilling. Opt. Commun. 2021, 482, 126627. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, W.; Li, X.; Hao, L. Millisecond laser-induced damage process of (001) silicon wafer. Opt. Eng. 2021, 60, 097101. [Google Scholar] [CrossRef]
- Tang, H.; Men, T.; Liu, X.; Hu, Y.; Su, J.; Zuo, Y.; Li, P.; Liang, J.; Downer, M.C.; Li, Z. Single-shot compressed optical field topography. Light Sci. Appl. 2022, 11, 244. [Google Scholar] [CrossRef]
- Lian, Y.; Jiang, L.; Sun, J.; Zhou, J.; Zhou, Y. Ultrafast quasi-three-dimensional imaging. Int. J. Extrem. Manuf. 2023, 5, 045601. [Google Scholar] [CrossRef]
- Zhan, J.; Gao, Y.; Sun, J.; Zhu, W.; Wang, S.; Jiang, L.; Li, X. Mechanism and optimization of femtosecond laser welding fused silica and aluminum. Appl. Surf. Sci. 2023, 640, 158327. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Wei, X.; Jing, X.; Yang, F.; Li, Y.; Zhang, X.F. Finite element simulation and experimental verification of laser machining of nitinol tubes. Opt. Laser Technol. 2025, 181, 111672. [Google Scholar] [CrossRef]
- Alexandros, G.; Efstathios, K.; Alexandros, S.; Yannis, O.; Helen, P.; Nektarios, A.; Michael, T.; Evaggelos, K.; Vasilis, D. Laser machining with a high-power CW fiber laser. Mater. Res. Proc. 2024, 46, 235–242. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Z.; Jia, X.; Wang, C.; Li, K.; Shen, H.; Duan, J.A. Numerical analysis of the effect of temporal and/or spatial shaping on the ms/ns combined pulse laser drilling performance of alumina ceramic. Opt. Laser Technol. 2023, 164, 109481. [Google Scholar] [CrossRef]
- Qin, Y.; Förster, D.J.; Weber, R.; Graf, T.; Yang, S. Numerical study of the dynamics of the hole formation during drilling with combined ms and ns laser pulses. Opt. Laser Technol. 2019, 112, 8–19. [Google Scholar] [CrossRef]
- Gardian, A.; Budai, J.; Fule, M.; Toth, Z. Oblique Drilling by Ti:sapphire fs Laser in Silicon. J. Laser Micro Nanoeng. 2015, 10, 81–86. [Google Scholar] [CrossRef]
- Jia, X.; Fu, Y.; Li, K.; Wang, C.; Li, Z.; Wang, C.; Duan, J.A. Burst Ultrafast Laser Welding of Quartz Glass. Materials 2025, 18, 1169. [Google Scholar] [CrossRef]
- Gregorcic, P.; Mozina, J. High-speed two-frame shadowgraphy for velocity measurements of laser-induced plasma and shock-wave evolution. Opt. Lett. 2011, 36, 2782–2784. [Google Scholar] [CrossRef]
- Jin, J.; Geng, S.N.; Shu, L.S.; Jiang, P.; Shao, X.Y.; Han, C.; Ren, L.Y.; Li, Y.T.; Yang, L.; Wang, X.Q. High-strength and crack-free welding of 2024 aluminium alloy via Zr-core-Al-shell wire. Nat. Commun. 2024, 15, 1748. [Google Scholar] [CrossRef]
- Shanu, A.; Sharma, P.; Dixit, P. Micromachining of alumina ceramic for microsystems applications: A systematic review, challenges and future opportunities. Mater. Manuf. Process. 2024, 39, 892–924. [Google Scholar] [CrossRef]
- Ibrahim, C.R.M.; Sameh, A.; Askar, O. A finite element analysis study on different angle correction designs for inclined implants in All-On-Four protocol. BMC Oral Health 2024, 24, 331. [Google Scholar] [CrossRef]
- Dong, R.; Peng, Z.; Xiang, Y.; Cao, F. Research progress in composition and preparation process of alumina fiber reinforced alumina ceramic matrix composites. Cailiao Gongcheng J. Mater. Eng. 2023, 51, 27–41. [Google Scholar]
- Shen, H.; Feng, D.; Yao, Z. Modeling of Underwater Laser Drilling of Alumina. J. Manuf. Sci. Eng. 2017, 139, 041008. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, Z.; Ni, X. Modeling and simulation on long pulse laser drilling processing. Int. J. Heat Mass Transf. 2014, 73, 429–437. [Google Scholar] [CrossRef]
- Olsson, E.; Kreiss, G. A conservative level set method for two phase flow. J. Comput. Phys. 2005, 210, 225–246. [Google Scholar] [CrossRef]
- Lv, X.; Pan, Y.; Jia, Z.; Li, Z.; Zhang, H.; Ni, X. Laser-induced damage threshold of silicon under combined millisecond and nanosecond laser irradiation. J. Appl. Phys. 2017, 121, 113102. [Google Scholar] [CrossRef]
- Lv, X.; Pan, Y.; Jia, Z.; Li, Z.; Ni, X. Through-hole energy-density threshold of silicon induced by combined millisecond and nanosecond pulsed laser. AIP Adv. 2018, 8, 055025. [Google Scholar] [CrossRef]
- Jia, X.; Chen, Y.; Wang, H.; Zhu, G.; Zhu, X. Experimental study on nanosecond-millisecond combined pulse laser drilling of alumina ceramic with different spot sizes. Opt. Laser Technol. 2020, 130, 106351. [Google Scholar] [CrossRef]
Property | Symbol | Value (Alumina) |
---|---|---|
Solid density | 3720 (kgm3) | |
Liquid density | 3200 (kgm3) | |
Solid thermal conductivity | 25 (W(m∙K)) | |
Liquid thermal conductivity | 15 (W(m∙K)) | |
Solid-specific heat | 880 (J(kg∙K)) | |
Liquid-specific heat | 1257 (J(kg∙K)) | |
Melting point | 2350 (K) | |
Vaporization point | 3280 (K) | |
Latent heat of melting | 1.06743 × 106 (J) | |
Latent heat of vaporization | 1.0665 × 106 (J) | |
Convective heat transfer coefficient | 20 (W(m2∙K)) | |
Dynamic viscosity | 0.05 (Pa∙s) | |
Surface tension coefficient | 0.02 (Nm) | |
Absorptivity | 0.27 | |
Radiation emissivity | 0.2 | |
Boltzmann constant | 1.380649 × 10−23 (J−1) |
Parameter | Range |
---|---|
Peak power, P (W) | 200 ≤ P ≤ 600 |
Puls repetition rate, f (Hz) | 40 ≤ f ≤ 500 |
Puls duty cycle, D (%) | 5 ≤ D ≤ 20 |
Puls duration, ton (ms) | 50 ≤ ton ≤ 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Jia, X.; Li, Z.; Guo, C.; Guo, R.; Li, K.; Wang, C.; Cui, W.; Song, C.; Han, K.; et al. Millisecond Laser Oblique Hole Processing of Alumina Ceramics. Nanomaterials 2025, 15, 1261. https://doi.org/10.3390/nano15161261
Chen Y, Jia X, Li Z, Guo C, Guo R, Li K, Wang C, Cui W, Song C, Han K, et al. Millisecond Laser Oblique Hole Processing of Alumina Ceramics. Nanomaterials. 2025; 15(16):1261. https://doi.org/10.3390/nano15161261
Chicago/Turabian StyleChen, Yuyang, Xianshi Jia, Zhou Li, Chuan Guo, Ranfei Guo, Kai Li, Cong Wang, Wenda Cui, Changqing Song, Kai Han, and et al. 2025. "Millisecond Laser Oblique Hole Processing of Alumina Ceramics" Nanomaterials 15, no. 16: 1261. https://doi.org/10.3390/nano15161261
APA StyleChen, Y., Jia, X., Li, Z., Guo, C., Guo, R., Li, K., Wang, C., Cui, W., Song, C., Han, K., & Duan, J. (2025). Millisecond Laser Oblique Hole Processing of Alumina Ceramics. Nanomaterials, 15(16), 1261. https://doi.org/10.3390/nano15161261