Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,022)

Search Parameters:
Keywords = energetic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 796 KB  
Article
Feeding with a NaCl-Supplemented Alfalfa-Based TMR Improves Nutrient Utilization, Rumen Fermentation, and Antioxidant Enzyme Activity in AOHU Sheep: A Nutritional Simulation of Saline–Alkaline Conditions
by Hunegnaw Abebe, Ruochen Yang, Guicong Wei, Xiaoran Feng and Yan Tu
Fermentation 2025, 11(10), 587; https://doi.org/10.3390/fermentation11100587 (registering DOI) - 12 Oct 2025
Abstract
Saline–alkaline soils are becoming prevalent across the globe, decreasing the availability of forage for animals and threatening sustainable animal production. This study evaluated the effects of a NaCl-supplemented alfalfa-based total mixed ration, simulating saline–alkaline soil conditions, on intake, the utilization of nutrients, antioxidant [...] Read more.
Saline–alkaline soils are becoming prevalent across the globe, decreasing the availability of forage for animals and threatening sustainable animal production. This study evaluated the effects of a NaCl-supplemented alfalfa-based total mixed ration, simulating saline–alkaline soil conditions, on intake, the utilization of nutrients, antioxidant levels, and rumen fermentation. A 60-day feeding trial with 24 AOHU lambs (Australian White × Hu) compared a control diet (0.43% NaCl) with the NaCl-supplemented group (1.71% NaCl). Digestibility trials were conducted in metabolic cages for the collection of total feces and urine. Blood samples were taken at 0, 30, and 60 days for serum analysis, and slaughter samples (liver, kidney, rumen tissue, and rumen fluid) were taken for physiological, biochemical, and histological evaluation. The NaCl alfalfa-based TMR markedly increased liver and kidney weights. The rumen muscle layer thickened in the NaCl group. The ruminal ammonia nitrogen (NH3-N), ruminal microbial crude protein (MCP) synthesis, and glucogenic/branched-chain VFAs increased, indicating enhanced proteolysis, microbial protein synthesis, and energetically efficient fermentation. Serum total protein and albumin also rose over time in the NaCl group, reflecting increased nitrogen retention, while superoxide dismutase and glutathione peroxidase activity rose considerably by day 60, reflecting increased antioxidant defense. Furthermore, nitrogen intake, digestibility, and retention were improved in the NaCl group along with augmented digestible and metabolizable energy (28.47 vs. 13.93 MJ/d and 24.68 vs. 11.58 MJ/d, respectively) and gross energy digestibility (78.13% vs. 67.10%). Although NaCl-based alfalfa TMR cannot fully emulate naturally salt-stressed forages, these results indicate that the NaCl alfalfa-based diets improved rumen fermentation, energy yields, and antioxidant enzyme activity without impairing electrolyte balance. These findings suggest that NaCl-supplemented alfalfa-based TMRs, with a salt content comparable to that of alfalfa hay grown under saline–alkaline conditions, could support environmentally sustainable meat production in salt-stressed regions. Full article
Show Figures

Figure 1

17 pages, 6434 KB  
Article
UAV and 3D Modeling for Automated Rooftop Parameter Analysis and Photovoltaic Performance Estimation
by Wioleta Błaszczak-Bąk, Marcin Pacześniak, Artur Oleksiak and Grzegorz Grunwald
Energies 2025, 18(20), 5358; https://doi.org/10.3390/en18205358 (registering DOI) - 11 Oct 2025
Abstract
The global shift towards renewable energy sources necessitates efficient methods for assessing solar potential in urban areas. Rooftop photovoltaic (PV) systems present a sustainable solution for decentralized energy production; however, their effectiveness is influenced by structural and environmental factors, including roof slope, azimuth, [...] Read more.
The global shift towards renewable energy sources necessitates efficient methods for assessing solar potential in urban areas. Rooftop photovoltaic (PV) systems present a sustainable solution for decentralized energy production; however, their effectiveness is influenced by structural and environmental factors, including roof slope, azimuth, and shading. This study aims to develop and validate a UAV-based methodology for assessing rooftop solar potential in urban areas. The authors propose a low-cost, innovative tool that utilizes a commercial unmanned aerial vehicle (UAV), specifically the DJI Air 3, combined with advanced photogrammetry and 3D modeling techniques to analyze rooftop characteristics relevant to PV installations. The methodology includes UAV-based data collection, image processing to generate high-resolution 3D models, calibration and validation against reference objects, and the estimation of solar potential based on rooftop characteristics and solar irradiance data using the proposed Model Analysis Tool (MAT). MAT is a novel solution introduced and described for the first time in this study, representing an original computational framework for the geometric and energetic analysis of rooftops. The innovative aspect of this study lies in combining consumer-grade UAVs with automated photogrammetry and the MAT, creating a low-cost yet accurate framework for rooftop solar assessment that reduces reliance on high-end surveying methods. By being presented in this study for the first time, MAT expands the methodological toolkit for solar potential evaluation, offering new opportunities for urban energy research and practice. The comparison of PVGIS and MAT shows that MAT consistently predicts higher daily energy yields, ranging from 9 to 12.5% across three datasets. The outcomes of this study contribute to facilitating the broader adoption of solar energy, thereby supporting sustainable energy transitions and climate neutrality goals in the face of increasing urban energy demands. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

21 pages, 6867 KB  
Article
The Effect of Cherry Stone Addition to Sawdust on the Pelletization Process and Fuel Pellet Quality
by Sławomir Obidziński, Paweł Cwalina, Małgorzata Kowczyk-Sadowy, Aneta Sienkiewicz, Jacek Mazur and Paweł Braun
Energies 2025, 18(20), 5356; https://doi.org/10.3390/en18205356 (registering DOI) - 11 Oct 2025
Abstract
This study presents the results of research on the pelleting process of pine sawdust with the addition of cherry stone waste, which was carried out using a flat-die pellet press in the context of fuel pellet production. The findings indicate that increasing the [...] Read more.
This study presents the results of research on the pelleting process of pine sawdust with the addition of cherry stone waste, which was carried out using a flat-die pellet press in the context of fuel pellet production. The findings indicate that increasing the proportion of crushed cherry stones in the sawdust mixture from 10% to 20% reduced the pelletizer’s power demand by approximately 14% (from 3.35 to 2.86 kW) and by around 24% (from 3.79 to 2.86 kW), compared with the compaction of sawdust alone. The incorporation of 10% crushed cherry stone waste into pine sawdust slightly improved the kinetic strength of the pellets, increasing it by about 2% (from 94.6 to 96.60%). However, raising the cherry stone content further to 20% resulted in a moderate decrease in kinetic strength, by approximately 5% (from 96.60 to 91.37%). A similar trend was observed for pellet density: the addition of cherry stones (10–20%) slightly reduced the density by about 5.5% (from 1312.02 to 1241.65 kg·m−3), accompanied by a small decrease in bulk density. This study also confirmed the high calorific potential of crushed cherry stones, with a heat of combustion of 24.418 MJ·kg−1 (dry basis) and a net calorific value of 22.326 MJ·kg−1. Their incorporation at levels of 10–20% into sawdust mixtures increased the heat of combustion of the pellets by 0.42–0.84% (from 19.959 MJ·kg−1 for sawdust alone at 15% moisture content to 20.042 MJ·kg−1 with a 10% addition and 20.126 MJ·kg−1 with a 20% addition). Moreover, the inclusion of cherry stone waste in the mixture had a beneficial effect on combustion performance, lowering emissions of harmful compounds such as CO, NO, and SO2, due to the higher combustion temperature achieved. Consequently, the use of cherry stone waste as an additive to sawdust not only enhances the energetic and environmental performance of pellets but also provides an effective pathway for the management of large quantities of fruit industry residues. Full article
Show Figures

Figure 1

15 pages, 2012 KB  
Article
Cyclopentadienyl–Silsesquioxane Titanium Complexes in the Polymerizations of Styrene and L-Lactide
by Joan Vinueza-Vaca, Shoaib Anwar, Salvatore Impemba, Ilaria Grimaldi, Gerardo Jiménez, Carmine Capacchione, Vanessa Tabernero and Stefano Milione
Polymers 2025, 17(19), 2715; https://doi.org/10.3390/polym17192715 - 9 Oct 2025
Abstract
In this contribution, two silsesquioxane–cyclopentadienyl titanium complexes featuring one or two chloride ancillary ligands, [Ti(η5-C5H4SiMeO2Ph7Si7O10-κO)Cl2] (1) and [Ti(η5-C5H4 [...] Read more.
In this contribution, two silsesquioxane–cyclopentadienyl titanium complexes featuring one or two chloride ancillary ligands, [Ti(η5-C5H4SiMeO2Ph7Si7O10-κO)Cl2] (1) and [Ti(η5-C5H4SiMe2OPh7Si7O11-κ2O2)Cl] (2), were synthesized and evaluated in the Ziegler–Natta polymerization of styrene and the ring-opening polymerization (ROP) of L-lactide, respectively. Complex 1, activated with methylaluminoxane (MAO), catalyzed the syndiotactic polymerization of styrene with turnover frequencies up to 28 h−1, affording polymers with narrow dispersity, low number-average molecular weights (Mn = 5.2–8.2 kDa), and high stereoregularity, as confirmed by 13C NMR. Complex 2, in combination with benzyl alcohol, promoted the ring-opening polymerization of L-lactide in solution at 100 °C, achieving conversions up to 95% with good molecular weight control (Mn close to theoretical, Đ = 1.19–1.32). Under melt conditions at 175 °C, it converted up to 3000 equiv. of monomer within 1 h. Kinetic analysis revealed first-order dependence on monomer concentration. The results highlight the ability of these complexes to produce syndiotactic polystyrene with narrow molecular weight distributions and to catalyze controlled ROP of L-lactide under both solution and melt conditions. Computational studies provided insight into key structural and energetic features influencing reactivity, offering a framework for further catalyst optimization. This work broadens the application scope of silsesquioxane–cyclopentadienyl titanium complexes and supports their potential as sustainable and versatile catalysts for both commodity and biodegradable polymer synthesis. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

36 pages, 1854 KB  
Review
Molecular Signatures of Schizophrenia and Insights into Potential Biological Convergence
by Malak Saada and Shani Stern
Int. J. Mol. Sci. 2025, 26(19), 9830; https://doi.org/10.3390/ijms26199830 - 9 Oct 2025
Abstract
Schizophrenia is a highly polygenic and clinically heterogeneous disorder. We first review layer-specific evidence across genetics, epigenetics, transcriptomics, proteomics, and patient-derived induced pluripotent stem cell (iPSC) models, then integrate cross-layer findings. Genetics research identifies widespread risk architecture. Hundreds of loci from common, rare, [...] Read more.
Schizophrenia is a highly polygenic and clinically heterogeneous disorder. We first review layer-specific evidence across genetics, epigenetics, transcriptomics, proteomics, and patient-derived induced pluripotent stem cell (iPSC) models, then integrate cross-layer findings. Genetics research identifies widespread risk architecture. Hundreds of loci from common, rare, and CNV analyses. Epigenetics reveals disease-associated DNA methylation and histone-mark changes. These occur at neuronally active enhancers and promoters, together with chromatin contacts that link non-coding risk to target genes. Transcriptomics show broad differential expression, isoform-level dysregulation, and disrupted co-expression modules. These alterations span synaptic signaling, mitochondrial bioenergetics, and immune programs. Proteomics demonstrates coordinated decreases in postsynaptic scaffold and mitochondrial respiratory-chain proteins in cortex, with complementary inflammatory signatures in serum/plasma. iPSC models recapitulate disease-relevant phenotypes: including fewer synaptic puncta and excitatory postsynaptic currents, electrophysiological immaturity, oxidative stress, and progenitor vulnerability. These same models show partial rescue under targeted perturbations. Integration across layers highlights convergent pathways repeatedly supported by ≥3 independent data types: synaptic signaling, immune/complement regulation, mitochondrial/energetic function, neurodevelopmental programs and cell-adhesion complexes. Within these axes, several cross-layer convergence genes/proteins (e.g., DLG4/PSD-95, C4A, RELN, NRXN1/NLGN1, OXPHOS subunits, POU3F2/BRN2, PTN) recur across cohorts and modalities. Framing results through cross-layer and shared-pathway convergence organizes heterogeneous evidence and prioritizes targets for mechanistic dissection, biomarker development, and translational follow-up. Full article
Show Figures

Figure 1

14 pages, 294 KB  
Article
Harnessing and Evaluating Almond Hulls and Shells for Bio-Based Products
by Ana T. Caeiro, Ricardo A. Costa, Duarte M. Neiva, Jéssica Silva, Rosalina Marrão, Albino Bento, Nuno Saraiva, Francisco Marques, Jorge Rebelo, André Encarnação and Jorge Gominho
Environments 2025, 12(10), 369; https://doi.org/10.3390/environments12100369 - 9 Oct 2025
Viewed by 70
Abstract
Almond hulls and shells, the byproducts of the almond industry, were analyzed to assess their potential valorization pathways. Shells showed a higher content in lignin and polysaccharides, but very low levels of extractives and inorganics. Hull’s high polar extractives fraction showed poor phenolic [...] Read more.
Almond hulls and shells, the byproducts of the almond industry, were analyzed to assess their potential valorization pathways. Shells showed a higher content in lignin and polysaccharides, but very low levels of extractives and inorganics. Hull’s high polar extractives fraction showed poor phenolic preponderance and antioxidant activity, but high sugar and mineral contents, and its lipophilic extracts were highly enriched in triterpenes (from 73.5% to 91.3%), while shells presented more fatty acids (27.4% to 34.2%) and sterols (17.4% to 29.1%). Shells exhibited much higher S/G ratio (syringyl to guaiacyl units) in their lignin polymer (1.0 to 1.4), compared to hulls (0.5 to 0.6). After mineral analyses, hulls showed high amounts of potassium (3.7–4.9%). Fixed carbon content was similar for both materials, but shells showed a higher energetic content, ~20 MJ/kg. Finally, both hulls and pellets increased the water holding capacity (WHC) of the soil by 50%, when added in weight percentages of 6.25% (hulls) and 25% (pellets). With these results, the range of possibilities for these waste materials is exciting: shells could be used to obtain hemicellulose oligosaccharides, while hulls could be used in sugar extraction for biotransformation or as a soil amendment. Full article
Show Figures

Graphical abstract

19 pages, 3211 KB  
Article
Internal Wave Responses to Interannual Climate Variability Across Aquatic Layers
by Jinichi Koue
Water 2025, 17(19), 2905; https://doi.org/10.3390/w17192905 - 8 Oct 2025
Viewed by 136
Abstract
Internal waves play a critical role in material transport, vertical mixing, and energy dissipation within stratified aquatic systems. Their dynamics are strongly modulated by thermal stratification and surface meteorological forcing. This study examines the influence of interannual meteorological variability from 1980 to 2010 [...] Read more.
Internal waves play a critical role in material transport, vertical mixing, and energy dissipation within stratified aquatic systems. Their dynamics are strongly modulated by thermal stratification and surface meteorological forcing. This study examines the influence of interannual meteorological variability from 1980 to 2010 on internal wave behavior using a series of numerical simulations in Lake Biwa in Japan. In each simulation, air temperature, wind speed, or precipitation was perturbed by ±2 standard deviations relative to the climatological mean. Power spectral analysis of simulated velocity fields was conducted for the surface, thermocline, and bottom layers, focusing on super-inertial (6–16 h), near-inertial (~16–30 h), and sub-inertial (>30 h) frequency bands. The results show that higher air temperatures intensify stratification and enhance near-inertial internal waves, particularly within the thermocline, whereas cooler conditions favor sub-inertial wave dominance. Increased wind speeds amplify internal wave energy across all layers, with the strongest effect occurring in the high-frequency band due to intensified wind stress and vertical shear, while weaker winds suppress wave activity. Precipitation variability primarily affects surface stratification, exerting more localized and weaker impacts. These findings highlight the non-linear, depth-dependent responses of internal waves to atmospheric drivers and improve understanding of the coupling between climate variability and internal wave energetics. The insights gained provide a basis for more accurate predictions and sustainable management of stratified aquatic ecosystems under future climate scenarios. Full article
(This article belongs to the Special Issue Advances in Surface Water and Groundwater Simulation in River Basin)
Show Figures

Figure 1

18 pages, 1311 KB  
Article
Thermo-Energetic Analysis of Electrolytic Oxygen Valorization via Biomass Oxy-Fuel Combustion: A Case Study Applied to a Power-to-Liquid Route for Methanol Synthesis
by Flávio S. Pereira, Argimiro R. Secchi and Alexandre Szklo
Thermo 2025, 5(4), 41; https://doi.org/10.3390/thermo5040041 - 7 Oct 2025
Viewed by 214
Abstract
The decarbonization of hard-to-defossilize sectors, such as international maritime transport, requires innovative, and at times disruptive, energy solutions that combine efficiency, scalability, and climate benefits. Therefore, power-to-liquid (PtL) routes have stood out for their potential to use low-emission electricity for the production of [...] Read more.
The decarbonization of hard-to-defossilize sectors, such as international maritime transport, requires innovative, and at times disruptive, energy solutions that combine efficiency, scalability, and climate benefits. Therefore, power-to-liquid (PtL) routes have stood out for their potential to use low-emission electricity for the production of synthetic fuels, via electrolytic hydrogen and CO2 capture. However, the high energy demand inherent to these routes poses significant challenges to large-scale implementation. Moreover, PtL routes are usually at most neutral in terms of CO2 emissions. This study evaluates, from a thermo-energetic perspective, the optimization potential of an e-methanol synthesis route through integration with a biomass oxy-fuel combustion process, making use of electrolytic oxygen as the oxidizing agent and the captured CO2 as the carbon source. From the standpoint of a first-law thermodynamic analysis, mass and energy balances were developed considering the full oxygen supply for oxy-fuel combustion to be met through alkaline electrolysis, thus eliminating the energy penalty associated with conventional oxygen production via air separation units. The balance closure was based on a small-scale plant with a capacity of around 100 kta of methanol. In this integrated configuration, additional CO2 surpluses beyond methanol synthesis demand can be directed to geological storage, which, when combined with bioenergy with carbon capture and storage (BECCS) strategies, may lead to net negative CO2 emissions. The results demonstrate that electrolytic oxygen valorization is a promising pathway to enhance the efficiency and climate performance of PtL processes. Full article
Show Figures

Figure 1

32 pages, 6546 KB  
Review
Sputter-Deposited Superconducting Thin Films for Use in SRF Cavities
by Bharath Reddy Lakki Reddy Venkata, Aleksandr Zubtsovskii and Xin Jiang
Nanomaterials 2025, 15(19), 1522; https://doi.org/10.3390/nano15191522 - 5 Oct 2025
Viewed by 225
Abstract
Particle accelerators are powerful tools in fundamental research, medicine, and industry that provide high-energy beams that can be used to study matter and to enable advanced applications. The state-of-the-art particle accelerators are fundamentally constructed from superconducting radio-frequency (SRF) cavities, which act as resonant [...] Read more.
Particle accelerators are powerful tools in fundamental research, medicine, and industry that provide high-energy beams that can be used to study matter and to enable advanced applications. The state-of-the-art particle accelerators are fundamentally constructed from superconducting radio-frequency (SRF) cavities, which act as resonant structures for the acceleration of charged particles. The performance of such cavities is governed by inherent superconducting material properties such as the transition temperature, critical fields, penetration depth, and other related parameters and material quality. For the last few decades, bulk niobium has been the preferred material for SRF cavities, enabling accelerating gradients on the order of ~50 MV/m; however, its intrinsic limitations, high cost, and complicated manufacturing have motivated the search for alternative strategies. Among these, sputter-deposited superconducting thin films offer a promising route to address these challenges by reducing costs, improving thermal stability, and providing access to numerous high-Tc superconductors. This review focuses on progress in sputtered superconducting materials for SRF applications, in particular Nb, NbN, NbTiN, Nb3Sn, Nb3Al, V3Si, Mo–Re, and MgB2. We review how deposition process parameters such as deposition pressure, substrate temperature, substrate bias, duty cycle, and reactive gas flow influence film microstructure, stoichiometry, and superconducting properties, and link these to RF performance. High-energy deposition techniques, such as HiPIMS, have enabled the deposition of dense Nb and nitride films with high transition temperatures and low surface resistance. In contrast, sputtering of Nb3Sn offers tunable stoichiometry when compared to vapour diffusion. Relatively new material systems, such as Nb3Al, V3Si, Mo-Re, and MgB2, are just a few of the possibilities offered, but challenges with impurity control, interface engineering, and cavity-scale uniformity will remain. We believe that future progress will depend upon energetic sputtering, multilayer architectures, and systematic demonstrations at the cavity scale. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

25 pages, 2285 KB  
Article
Rationally Designed Molecularly Imprinted Polymer Electrochemical Biosensor with Graphene Oxide Interface for Selective Detection of Matrix Metalloproteinase-8 (MMP-8)
by Jae Won Lee, Rowoon Park, Sangheon Jeon, Sung Hyun Kim, Young Woo Kwon, Dong-Wook Han and Suck Won Hong
Biosensors 2025, 15(10), 671; https://doi.org/10.3390/bios15100671 - 4 Oct 2025
Viewed by 417
Abstract
Molecularly imprinted polymer (MIP) biosensors offer an attractive strategy for selective biomolecule detection, yet imprinting proteins with structural fidelity remains a major challenge. In this work, we present a rationally designed electrochemical biosensor for matrix metal-loproteinase-8 (MMP-8), a key salivary biomarker of periodontal [...] Read more.
Molecularly imprinted polymer (MIP) biosensors offer an attractive strategy for selective biomolecule detection, yet imprinting proteins with structural fidelity remains a major challenge. In this work, we present a rationally designed electrochemical biosensor for matrix metal-loproteinase-8 (MMP-8), a key salivary biomarker of periodontal disease. By integrating graphene oxide (GO) with electropolymerized poly(eriochrome black T, EBT) films on screen-printed carbon electrodes, the partially reduced GO interface enhanced electrical conductivity and facilitated the formation of well-defined poly(EBT) films with re-designed polymerization route, while template extraction generated artificial antibody-like sites capable of specific protein binding. The MIP-based electrodes were comprehensively validated through morphological, spectroscopic, and electrochemical analyses, demonstrating stable and selective recognition of MMP-8 against structurally similar interferents. Complementary density functional theory (DFT) modeling revealed energetically favorable interactions between the EBT monomer and catalytic residues of MMP-8, providing molecular-level insights into imprinting specificity. These experimental and computational findings highlight the importance of rational monomer selection and nanomaterial-assisted polymerization in achieving selective protein imprinting. This work presents a systematic approach that integrates electrochemical engineering, nanomaterial interfaces, and computational validation to address long-standing challenges in protein-based MIP biosensors. By bridging molecular design with practical sensing performance, this study advances the translational potential of MIP-based electrochemical biosensors for point-of-care applications. Full article
(This article belongs to the Special Issue Molecularly Imprinted Polymers-Based Biosensors)
Show Figures

Graphical abstract

23 pages, 1357 KB  
Review
Head-to-Head in Heart Failure: Comparative Insights on Empagliflozin and Dapagliflozin
by Dragos Cozma, Cristina Văcărescu and Claudiu Stoicescu
Biomedicines 2025, 13(10), 2422; https://doi.org/10.3390/biomedicines13102422 - 3 Oct 2025
Viewed by 660
Abstract
Heart failure (HF) remains a leading cause of morbidity and mortality globally, with increasing prevalence driven by aging populations and comorbidities such as diabetes mellitus. Recent advances have highlighted sodium-glucose cotransporter-2 (SGLT2) inhibitors, particularly empagliflozin and dapagliflozin, as effective agents in HF management [...] Read more.
Heart failure (HF) remains a leading cause of morbidity and mortality globally, with increasing prevalence driven by aging populations and comorbidities such as diabetes mellitus. Recent advances have highlighted sodium-glucose cotransporter-2 (SGLT2) inhibitors, particularly empagliflozin and dapagliflozin, as effective agents in HF management across a broad spectrum of ejection fractions. Initially developed for glycemic control in type 2 diabetes, both drugs have demonstrated significant cardiovascular benefits, including reductions in HF hospitalizations and improvements in symptoms and quality of life. Their mechanisms extend beyond glucose lowering, involving natriuresis, osmotic diuresis, improved myocardial energetics, reduced sympathetic activation, and anti-inflammatory effects. While empagliflozin and dapagliflozin share a core renal mechanism via selective SGLT2 inhibition, subtle differences in pharmacokinetics, potency, and tissue selectivity may influence their clinical profiles. Emerging evidence suggests empagliflozin may confer stronger benefits in heart failure with reduced ejection fraction (HFrEF), while dapagliflozin could offer enhanced efficacy in heart failure with preserved ejection franction (HFpEF), although head-to-head comparisons are lacking. This review synthesizes current evidence comparing the mechanisms of action and clinical performance of empagliflozin and dapagliflozin in HF, providing insight into agent selection and future directions in therapy personalization. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

26 pages, 1579 KB  
Article
Thinking the Unthinkable: An Alternative Route to a Unified Theory
by Julian Hart
Philosophies 2025, 10(5), 110; https://doi.org/10.3390/philosophies10050110 - 3 Oct 2025
Viewed by 413
Abstract
One of the greatest quests in physics in current times is the search for a grand unified theory—to bring all the forces of nature into one coherent explanatory framework. Despite two centuries of progress, both in comprehending the individual forces and formulating mathematical [...] Read more.
One of the greatest quests in physics in current times is the search for a grand unified theory—to bring all the forces of nature into one coherent explanatory framework. Despite two centuries of progress, both in comprehending the individual forces and formulating mathematical constructs to explain the existence and operation of such forces, the final step to unify the localised atomic and subatomic forces with gravity has proven to be elusive. Whilst recognising that there are arguments for and against the unification of all the forces of nature, the pursuit for unity has been driving many physicists and mathematicians to explore increasingly extraordinary ideas, from string theory to various other options requiring multiple dimensions. Can process philosophy ride to the rescue? By changing our perspective, it might be possible to derive a provocative and compelling alternative way to understand basic (and advanced) physics. This process approach would see all matter objects, at whatever scale, as energetic systems (inherently dynamic). Through the use of game theory, there is a way to appreciate the combination of entropy together with all the apparent forces of nature, being gravity and the more localised forces, within a singular, metaphysically consistent, construct. The outcome, however, challenges our whole understanding of the universe and fundamentally changes our relationship with matter. Full article
Show Figures

Figure 1

15 pages, 9213 KB  
Article
Facile Engineering of Pt-Rh Nanoparticles over Carbon for Composition-Dependent Activity and Durability Toward Glycerol Electrooxidation
by Marta Venancia França Rodrigues, Wemerson Daniel Correia dos Santos, Fellipe dos Santos Pereira, Augusto César Azevedo Silva, Liying Liu, Mikele Candida Sant’Anna, Eliane D’Elia, Roberto Batista de Lima and Marco Aurélio Suller Garcia
Hydrogen 2025, 6(4), 78; https://doi.org/10.3390/hydrogen6040078 - 3 Oct 2025
Viewed by 207
Abstract
In this study, we report the synthesis, characterization, and performance evaluation of a series of bimetallic PtxRhy/C electrocatalysts with systematically varied Rh content for glycerol electrooxidation in acidic and alkaline media. The catalysts were prepared via a polyol reduction [...] Read more.
In this study, we report the synthesis, characterization, and performance evaluation of a series of bimetallic PtxRhy/C electrocatalysts with systematically varied Rh content for glycerol electrooxidation in acidic and alkaline media. The catalysts were prepared via a polyol reduction method using ethylene glycol as both a solvent and reducing agent, with prior functionalization of Vulcan XC-72 carbon to enhance nanoparticles (NPs) dispersion. High-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) analyses indicated the spatial co-location of Rh atoms alongside Pt atoms. Electrochemical studies revealed strong composition-dependent behavior, with Pt95Rh5/C exhibiting the highest activity toward glycerol oxidation. To elucidate the origin of raised results, density functional tight binding (DFTB) simulations were conducted to model atomic distributions and evaluate energetic parameters. The results showed that Rh atoms preferentially segregate to the surface at higher concentrations due to their lower surface energy, while at low concentrations, they remain confined within the Pt lattice. Among the series, Pt95Rh5/C exhibited a distinctively higher excess energy and less favorable binding energy, rationalizing its lower thermodynamic stability. These findings reveal a clear trade-off between catalytic activity and structural durability, highlighting the critical role of the composition and nanoscale architecture in optimizing Pt-based electrocatalysts for alcohol oxidation reactions. Full article
Show Figures

Figure 1

30 pages, 7520 KB  
Review
Probing the Sources of Ultra-High-Energy Cosmic Rays—Constraints from Cosmic-Ray Measurements
by Teresa Bister
Universe 2025, 11(10), 331; https://doi.org/10.3390/universe11100331 - 3 Oct 2025
Viewed by 168
Abstract
Ultra-high-energy cosmic rays (UHECRs) are the most energetic particles known—and yet their origin is still an open question. However, with the precision and accumulated statistics of the Pierre Auger Observatory and the Telescope Array, in combination with advancements in theory and modeling—e.g., of [...] Read more.
Ultra-high-energy cosmic rays (UHECRs) are the most energetic particles known—and yet their origin is still an open question. However, with the precision and accumulated statistics of the Pierre Auger Observatory and the Telescope Array, in combination with advancements in theory and modeling—e.g., of the Galactic magnetic field—it is now possible to set solid constraints on the sources of UHECRs. The spectrum and composition measurements above the ankle can be well described by a population of extragalactic, homogeneously distributed sources emitting mostly intermediate-mass nuclei. Additionally, using the observed anisotropy in the arrival directions, namely the large-scale dipole > 8 EeV, as well as smaller-scale warm spots at higher energies, even more powerful constraints on the density and distribution of sources can be placed. Yet, open questions remain—like the striking similarity of the sources that is necessary to describe the rather pure mass composition above the ankle, or the origin of the highest energy events whose tracked back directions point toward voids. The current findings and possible interpretation of UHECR data will be presented in this review. Full article
Show Figures

Figure 1

13 pages, 1276 KB  
Article
Impact of Diabetes Mellitus, Its Duration, and Associated Complications on Nutritional Intake in Patients at Risk of Malnutrition: A Focused Nutritional Assessment
by Paloma Pérez López, Jaime González Gutiérrez, Lucía Estévez Asensio, Olatz Izaola Jauregui, David Primo Martín, Beatriz Ramos Bachiller, Eva López Andrés, Daniel De Luis Román and Juan José López Gómez
Diabetology 2025, 6(10), 108; https://doi.org/10.3390/diabetology6100108 - 2 Oct 2025
Viewed by 261
Abstract
Background/Objectives: Diabetes mellitus (DM) is a disorder which affects carbohydrate metabolism and has been associated with other conditions such as disease-related malnutrition (DRM), leading to specific challenges in its management. This study aims to evaluate the implications of DM, its complications, and its [...] Read more.
Background/Objectives: Diabetes mellitus (DM) is a disorder which affects carbohydrate metabolism and has been associated with other conditions such as disease-related malnutrition (DRM), leading to specific challenges in its management. This study aims to evaluate the implications of DM, its complications, and its duration on energy and protein intake in patients at high risk of malnutrition. Methods: Descriptive cross-sectional study in 179 patients with high risk of malnutrition. Patients were compared based on the presence or absence of DM, diabetes duration and the presence of complications. Age, gender, body mass index, bioimpedanciometry, ultrasonography and dynamometry parameters and the diagnosis of sarcopenia were recorded. Energy and protein requirements were calculated, and the composition of the patients’ three-day diet was analyzed. Results: DM was associated with lower weight-adjusted energy intake (Overall: 29.15 (9.99) vs. DM: 24.87 (8.28) vs. NoDM: 30.65 (10.13) kcal/kg/day; p < 0.01) and lower weight-adjusted protein intake (Overall: 1.29 (0.47) vs. DM: 1.18 (0.39) vs. NoDM: 1.33 (0.49) g of protein/kg/day; p < 0.05). DM was a risk factor for poorer compliance with energy requirements (OR: 2.38, 95% CI: 1.13–5.01, p < 0.05). Similarly, the occurrence of complications was identified as a risk factor associated with reduced adherence to energy intake requirements (OR: 1.78, 95% CI 1.06–2.98; p < 0.05), and a duration of diabetes mellitus exceeding 10 years was linked to lower adherence to protein intake requirements (OR 1.79, 95% CI 1.08–2.99; p < 0.05). Conclusions: Among patients at high risk of malnutrition, diabetes mellitus was associated with suboptimal adherence to both caloric and protein intake requirements. The presence of diabetes and its related complications emerged as risk factors for inadequate fulfillment of energy needs, while a longer disease duration was specifically linked to reduced compliance with protein requirements. Full article
Show Figures

Graphical abstract

Back to TopTop