Harnessing and Evaluating Almond Hulls and Shells for Bio-Based Products
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Chemical Analysis
2.3. Polar Extracts Composition
2.4. Mineral Analysis
2.5. Lipophilic Extracts Composition
2.6. Analytical Pyrolysis
2.7. Thermal Properties
2.8. Pelletization Feasibility
2.9. Water Holding Capacity
3. Results and Discussion
3.1. Chemical Analysis
3.2. Phytochemical Profile and Mineral Composition
3.3. Non-Polar Compounds Composition
3.4. Pyrolysis Analysis
3.5. Proximate Analysis
3.6. Water Holding Capacity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- International Nut & Dried Fruit Council Almonds Global Statistical Review. Available online: https://incnutfruit.nimiaweb.com/almonds-global-statistical-review-5/ (accessed on 8 September 2025).
- Instituto Nacional de Estatística. Estatísticas Agrícolas: 2023; Instituto Nacional de Estatística: Lisbon, Portugal, 2023. [Google Scholar]
- Kamil, A.; Chen, C.Y.O. Health Benefits of Almonds Beyond Cholesterol Reduction. J. Agric. Food Chem. 2012, 60, 6694–6702. [Google Scholar] [CrossRef]
- Prgomet, I.; Goncalves, B.; Domínguez-Perles, R.; Pascual-Seva, N.; Barros, A.I.R.N.A. Valorization Challenges to Almond Residues: Phytochemical Composition and Functional Application. Molecules 2017, 22, 1774. [Google Scholar] [CrossRef]
- Silva, V.; Oliveira, I.; Pereira, J.A.; Gonçalves, B. Almond By-Products Substrates as Sustainable Amendments for Green Bean Cultivation. Plants 2024, 13, 540. [Google Scholar] [CrossRef]
- Esfahlan, A.J.; Jamei, R.; Esfahlan, R.J. The Importance of Almond (Prunus amygdalus L.) and Its By-Products. Food Chem. 2010, 120, 349–360. [Google Scholar] [CrossRef]
- Andrews, E.M.; Tabassum, M.; Galatis, E.G.; Yao, E.H.; Gaudin, A.C.M.; Lazcano, C.; Brown, P.H.; Khalsa, S.D.S. Almond Hull and Shell Organic Matter Amendments Increase Microbial Biomass and Multifunctionality in Orchard Soil and the Undisturbed Organic Layer. Appl. Soil Ecol. 2024, 197, 105321. [Google Scholar] [CrossRef]
- Tomishima, H.; Luo, K.; Mitchell, A.E. The Almond (Prunus dulcis): Chemical Properties, Utilization, and Valorization of Coproducts. Annu. Rev. Food Sci. Technol. 2022, 13, 145–166. [Google Scholar] [CrossRef] [PubMed]
- Queirós, C.S.G.P.; Cardoso, S.; Lourenço, A.; Ferreira, J.; Miranda, I.; Lourenço, M.J.V.; Pereira, H. Characterization of Walnut, Almond, and Pine Nut Shells Regarding Chemical Composition and Extract Composition. Biomass Convers. Biorefin. 2020, 10, 175–188. [Google Scholar] [CrossRef]
- DePeters, E.J.; Swanson, K.L.; Bill, H.M.; Asmus, J.; Heguy, J.M. Nutritional Composition of Almond Hulls. Appl. Anim. Sci. 2020, 36, 761–770. [Google Scholar] [CrossRef]
- Kiani, A.; Torabi, P.; Mousavi, Z.E. Green Recovery of Phenolic Compounds from Almond Hull Waste Using Ultrasound-Assisted Extraction: Phenolics Characterization and Antimicrobial Investigation. J. Food Sci. Technol. 2024, 61, 1930–1942. [Google Scholar] [CrossRef]
- D’Arcangelo, S.; Santonocito, D.; Messina, L.; Greco, V.; Giuffrida, A.; Puglia, C.; Di Giulio, M.; Inturri, R.; Vaccaro, S. Almond Hull Extract Valorization: From Waste to Food Recovery to Counteract Staphylococcus Aureus and Escherichia Coli in Formation and Mature Biofilm. Foods 2024, 13, 3834. [Google Scholar] [CrossRef]
- Sang, S.; Lapsley, K.; Jeong, W.S.; Lachance, P.A.; Ho, C.T.; Rosen, R.T. Antioxidative Phenolic Compounds Isolated from Almond Skins (Prunus amygdalus Batsch). Agric. Food Chem. 2002, 50, 2459. [Google Scholar] [CrossRef]
- Shaikhiev, I.G.; Kraysman, N.V.; Sverguzova, S.V. Review of Almond (Prunus dulcis) Shell Use to Remove Pollutants from Aquatic Environments. Biointerface Res. Appl. Chem. 2021, 11, 14866–14880. [Google Scholar] [CrossRef]
- Salgado-Ramos, M.; Martí-Quijal, F.J.; Huertas-Alonso, A.J.; Sánchez-Verdú, M.P.; Barba, F.J.; Moreno, A. Microwave heating for sustainable valorization of almond hull towards high-added-value chemicals. Ind. Crops Prod. 2022, 189, 115766. [Google Scholar] [CrossRef]
- Holtman, K.M.; Offeman, R.D.; Franqui-Villanueva, D.; Bayati, A.K.; Orts, W.J. Countercurrent Extraction of Soluble Sugars from Almond Hulls and Assessment of the Bioenergy Potential. J. Agric. Food Chem. 2015, 63, 2490–2498. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, I.; Meyer, A.; Silva, R.; Afonso, S.; Gonçalves, B. Effect of Almond Shell Addition to Substrates in Phaseolus vulgaris L. (Cv. Saxa) Growth, and Physiological and Biochemical Characteristics. Int. J. Recycl. Org. Waste Agric. 2019, 8, 179–186. [Google Scholar] [CrossRef]
- Oliveira, I.; Meyer, A.S.; Aires, A.; Afonso, S.; Gonçalves, B. Enzymatic Activity and Biochemical Composition in Leaves of Green Bean (Phaseolus vulgaris L. Cv. Saxa) Grown Almond Shell Substrates. Waste Biomass Valorization 2019, 10, 1223–1229. [Google Scholar] [CrossRef]
- Valverde, M.; Madrid, R.; García, A.L.; del Amor, F.M.; Rincón, L. Use of Almond Shell and Almond Hull as Substrates for Sweet Pepper Cultivation. Effects on Fruit Yield and Mineral Content. Span. J. Agric. Res. 2013, 11, 164–172. [Google Scholar] [CrossRef]
- Lao, M.T.; Jiménez, S. Evaluation of almond shell as a culture substrate for ornamental plants. II. Ficus benjamina (with 3 tables & 2 figures). Phyton (B. Aires) 2004, 73, 79–84. Available online: http://www.scielo.org.ar/pdf/phyton/v73/v73a08.pdf (accessed on 7 July 2025).
- Urrestarazu, M.; Mazuela, P.C.; Martínez, G.A. Effect of Substrate Reutilization on Yield and Properties of Melon and Tomato Crops. J. Plant Nutr. 2008, 31, 2031–2043. [Google Scholar] [CrossRef]
- Kaur, M.; Kumar, M.; Sachdeva, S.; Puri, S.K. An Efficient Multiphase Bioprocess for Enhancing the Renewable Energy Production from Almond Shells. Energy Convers. Manag. 2020, 203, 112235. [Google Scholar] [CrossRef]
- Shea, E.; Wang, Z.; Allison, B.; Simmons, C. Alleviating Phytotoxicity of Soils Biosolarized with Almond Processing Residues. Environ. Technol. Innov. 2021, 23, 101662. [Google Scholar] [CrossRef]
- Shea, E.; Fernandez-Bayo, J.D.; Pastrana, A.M.; Simmons, C.W. Identification and Evaluation of Volatile Organic Compounds Evolved during Solarization with Almond Hull and Shell Amendments. J. Air Waste Manag. Assoc. 2021, 71, 400–412. [Google Scholar] [CrossRef]
- Fernandez-Bayo, J.D.; Shea, E.A.; Parr, A.E.; Achmon, Y.; Stapleton, J.J.; Vander Gheynst, J.S.; Hodson, A.K.; Simmons, C.W. Almond Processing Residues as a Source of Organic Acid Biopesticides during Biosolarization. Waste Manag. 2019, 101, 74. [Google Scholar] [CrossRef] [PubMed]
- Tamayo-Vélez, Á.; Osorio, N.W. Soil Fertility Improvement by Litter Decomposition and Inoculation with the Fungus mortierella Sp. in Avocado Plantations of Colombia. Commun. Soil Sci. Plant Anal. 2018, 49, 139–147. [Google Scholar] [CrossRef]
- Konam, J.K.; Guest, D.I. Leaf Litter Mulch Reduces the Survival of Phytophthora palmivora under Cocoa Trees in Papua New Guinea. Australas. Plant Pathol. 2002, 31, 381–383. [Google Scholar] [CrossRef]
- Youkhana, A.; Idol, T. Tree Pruning Mulch Increases Soil C and N in a Shaded Coffee Agroecosystem in Hawaii. Soil Biol. Biochem. 2009, 41, 2527–2534. [Google Scholar] [CrossRef]
- Tahboub, M.B.; Lindemann, W.C.; Murray, L. Chemical and Physical Properties of Soil Amended with Pecan Wood Chips. HortScience 2008, 43, 891–896. [Google Scholar] [CrossRef]
- Özenç, D.B.; Özenç, N. Short-Term Effects of Hazelnut Husk Compost and Organic Amendment Applications on Clay Loam Soil. Compos. Sci. Util. 2008, 16, 192–199. [Google Scholar] [CrossRef]
- Moyin-Jesu, E.I. Use of Plant Residues for Improving Soil Fertility, Pod Nutrients, Root Growth and Pod Weight of Okra (Abelmoschus esculentum L). Bioresour. Technol. 2007, 98, 2057–2064. [Google Scholar] [CrossRef]
- Hernández-Montoya, V.; Mendoza-Castillo, D.I.; Bonilla-Petriciolet, A.; Montes-Morán, M.A.; Pérez-Cruz, M.A. Role of the Pericarp of Carya illinoinensis as Biosorbent and as Precursor of Activated Carbon for the Removal of Lead and Acid Blue 25 in Aqueous Solutions. J. Anal. Appl. Pyrolysis 2011, 92, 143–151. [Google Scholar] [CrossRef]
- Vida, C.; Bonilla, N.; de Vicente, A.; Cazorla, F.M. Microbial Profiling of a Suppressiveness-Induced Agricultural Soil Amended with Composted Almond Shells. Front. Microbiol. 2016, 7, 173516. [Google Scholar] [CrossRef]
- López, R.; Burgos, P.; Hermoso, J.M.; Hormaza, J.I.; González-Fernández, J.J. Long Term Changes in Soil Properties and Enzyme Activities after Almond Shell Mulching in Avocado Organic Production. Soil Tillage Res. 2014, 143, 155–163. [Google Scholar] [CrossRef]
- Scherer, R.; Godoy, H.T. Antioxidant Activity Index (AAI) by the 2,2-Diphenyl-1-Picrylhydrazyl Method. Food Chem. 2009, 112, 654–658. [Google Scholar] [CrossRef]
- Ralph, J.; Hatfield, R.D. Pyrolysis-GC-MS Characterization of Forage Materials. J. Agric. Food Chem. 1991, 39, 1426–1437. [Google Scholar] [CrossRef]
- Costa, R.A.; Lourenço, A.; Patrício, H.; Quilhó, T.; Gominho, J. Valorization of Pine Nut Industry Residues on a Biorefinery Concept. Waste Biomass Valorization 2023, 14, 4081–4099. [Google Scholar] [CrossRef]
- Zevallos Torres, L.A.; Lorenci Woiciechowski, A.; de Andrade Tanobe, V.O.; Karp, S.G.; Guimarães Lorenci, L.C.; Faulds, C.; Soccol, C.R. Lignin as a Potential Source of High-Added Value Compounds: A Review. J. Clean. Prod. 2020, 263, 121499. [Google Scholar] [CrossRef]
- Huang, L.Z.; Ma, M.G.; Ji, X.X.; Choi, S.E.; Si, C. Recent Developments and Applications of Hemicellulose from Wheat Straw: A Review. Front. Bioeng. Biotechnol. 2021, 9, 690773. [Google Scholar] [CrossRef]
- Liao, G.; Sun, E.; Kana, E.B.G.; Huang, H.; Sanusi, I.A.; Qu, P.; Jin, H.; Liu, J.; Shuai, L. Renewable Hemicellulose-Based Materials for Value-Added Applications. Carbohydr. Polym. 2024, 341, 122351. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Ahmad, I.; Sadiq, M.B. Optimization of Ultrasonic Assisted Extraction of Bioactive Compounds from Almond Hull. Sarhad J. Agric. 2022, 38, 676–684. [Google Scholar] [CrossRef]
- Fabroni, S.; Trovato, A.; Ballistreri, G.; Tortorelli, S.A.; Foti, P.; Romeo, F.V.; Rapisarda, P. Almond [Prunus dulcis (Mill.) DA Webb] Processing Residual Hull as a New Source of Bioactive Compounds: Phytochemical Composition, Radical Scavenging and Antimicrobial Activities of Extracts from Italian Cultivars (‘Tuono’, ‘Pizzuta’, ‘Romana’). Molecules 2023, 28, 605. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, M.N.; Numonov, S.; Aisa, H.A. Chemical and Pharmacological Evaluation of Hulls of Prunus Dulcis Nuts. Int. J. Anal. Chem. 2019, 2019, 5861692. [Google Scholar] [CrossRef]
- Valdés, A.; Garrigós, M.C.; Jiménez, A. Extraction and Characterization of Antioxidant Compounds in Almond (Prunus Amygdalus) Shell Residues for Food Packaging Applications. Membranes 2022, 12, 806. [Google Scholar] [CrossRef]
- Liu, J.; Huang, L.; An, J.; Ma, Y.; Cheng, Y.; Zhang, R.; Peng, P.; Wang, Y.; Addy, M.; Chen, P.; et al. Application of High-Pressure Homogenization to Improve Physicochemical and Antioxidant Properties of Almond Hulls. J. Food Process. Eng. 2023, 46, e14235. [Google Scholar] [CrossRef]
- Zhang, Q. Effects of Extration Solvents on Phytochemicals and Antioxidant Activities of Walnut (Junglans regia L.) Green Husk Extracts. EJFST 2015, 3, 15–21. [Google Scholar]
- Neiva, D.M.; Araújo, S.; Gominho, J.; de Cássia Carneiro, A.; Pereira, H. An Integrated Characterization of Picea Abies Industrial Bark Regarding Chemical Composition, Thermal Properties and Polar Extracts Activity. PLoS ONE 2018, 13, e0208270. [Google Scholar] [CrossRef]
- Andrews, E.M.; Kassama, S.; Smith, E.E.; Brown, P.H.; Khalsa, S.D.S. A Review of Potassium-Rich Crop Residues Used as Organic Matter Amendments in Tree Crop Agroecosystems. Agriculture 2021, 11, 580. [Google Scholar] [CrossRef]
- Andrews, E.M.; Rivers, D.J.; Gaudin, A.C.M.; Geisseler, D.; Brown, P.H.; Khalsa, S.D.S. In a Nutshell: Almond Hull and Shell Organic Matter Amendments Increase Soil and Tree Potassium Status. Plant Soil 2024, 495, 699–722. [Google Scholar] [CrossRef]
- Meshkini, A. Acetone Extract of Almond Hulls Provides Protection against Oxidative Damage and Membrane Protein Degradation. J. Acupunct. Meridian Stud. 2016, 9, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Telmo, C.; Lousada, J.; Moreira, N. Proximate Analysis, Backwards Stepwise Regression between Gross Calorific Value, Ultimate and Chemical Analysis of Wood. Bioresour. Technol. 2010, 101, 3808–3815. [Google Scholar] [CrossRef]
- Duruaku, J.I.; Okoye, P.A.C.; Okoye, N.H.; Nwadiogbu, J.O.; Onwukeme, V.I.; Arinze, R.U. An Evaluation of the Physicochemical, Structural and Morphological Properties of Selected Tropical Wood Species for Possible Utilization in the Wood Industry. J. Sustain. Bioenergy Syst. 2023, 13, 131–148. [Google Scholar] [CrossRef]
- Onokwai, A.O.; Ajisegiri, E.S.A.; Okokpujie, I.P.; Ibikunle, R.A.; Oki, M.; Dirisu, J.O. Characterization of Lignocellulose Biomass Based on Proximate, Ultimate, Structural Composition, and Thermal Analysis. Mater. Today Proc. 2022, 65, 2156–2162. [Google Scholar] [CrossRef]
- Salgado-Ramos, M.; Martí-Quijal, F.J.; Huertas-Alonso, A.J.; Sánchez-Verdú, M.P.; Barba, F.J.; Moreno, A. Almond Hull Biomass: Preliminary Characterization and Development of Two Alternative Valorization Routes by Applying Innovative and Sustainable Technologies. Ind. Crops Prod. 2022, 179, 114697. [Google Scholar] [CrossRef]
- Matin, B.; Krička, T.; Đurović, A.; Grubor, M.; Matin, A.; Antonović, A. Lignocellulosic Composition and Heating Value of Forest and Agricultural Biomass: A Review. In Proceedings of the 49th International Symposium, Actual Tasks on Agricultural Engineering, Opatija, Croatia, 28 February–2 March 2023. [Google Scholar]
- Hartman, L.W.; Andrews, E.M.; Galatis, E.G.; Gaudin, A.C.M.; Brown, P.H.; Khalsa, S.D.S. Evaluation of Almond Hull and Shell Amendments across Organic Matter Management of Orchard Soils. Soil Syst. 2024, 8, 51. [Google Scholar] [CrossRef]
- Bonilla, N.; Cazorla, F.M.; Martínez-Alonso, M.; Hermoso, J.M.; González-Fernández, J.J.; Gaju, N.; Landa, B.B.; de Vicente, A. Organic Amendments and Land Management Affect Bacterial Community Composition, Diversity and Biomass in Avocado Crop Soils. Plant Soil 2012, 357, 215–226. [Google Scholar] [CrossRef]
- Shea, E.; Fernandez-Bayo, J.; Simmons, C. Effect of Almond Residue Soil Amendments and Irrigation Regiment on Organic Acid Development and Transport in Soil. ACS Agric. Sci. Technol. 2024, 4, 899–906. [Google Scholar] [CrossRef] [PubMed]
Hulls | Shells | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Guara | Avijor | Soleta | Marinada | Belona | Guara | Avijor | Soleta | Marinada | Belona | |
Ashes | 11.1 ± 1.7 | 13.3 ± 1.7 | 9.6 ± 2.0 | 11.1 ± 2.9 | 9.2 ± 1.7 | 1.4 ± 0.01 | 0.8 ± 0.07 | 0.7 ± 0.17 | 1.1 ± 0.03 | 1.0 ± 0.06 |
Total extractives | 53.3 ± 1.9 | 48.1 ± 2.2 | 64.1 ± 0.6 | 48.1 ± 3.4 | 58.4 ± 4.3 | 5.3 ± 0.3 | 4.2 ± 0.2 | 3.7 ± 0.1 | 4.8 ± 0.2 | 4.5 ± 0.3 |
Dichloromethane | 1.9 ± 0.01 | 1.8 ± 0.21 | 1.8 ± 0.04 | 1.8 ± 0.01 | 1.9 ± 0.05 | 0.2 ± 0.01 | 0.2 ± 0.01 | 0.3 ± 0.01 | 0.4 ± 0.05 | 0.2 ± 0.07 |
Ethanol | 29.0 ± 1.3 | 23.1 ± 0.3 | 42.0 ± 2.3 | 22.0 ± 0.6 | 37.9 ± 3.6 | 3.1 ± 0.1 | 2.2 ± 0.1 | 1.9 ± 0.2 | 2.5 ± 0.2 | 2.9 ± 0.1 |
Water | 22.5 ± 1.9 | 23.1 ± 2.0 | 20.3 ± 2.9 | 24.3 ± 3.6 | 18.6 ± 0.8 | 2.0 ± 0.2 | 1.8 ± 0.2 | 1.5 ± 0.3 | 1.9 ± 0.2 | 1.5 ± 0.3 |
Total lignin | 15.5 ± 0.2 | 16.4 ± 0.1 | 11.0 ± 0.2 | 15.3 ± 0.1 | 12.8 ± 0.1 | 32.7 ± 0.3 | 33.6 ± 0.6 | 34.3 ± 0.6 | 36.3 ± 0.8 | 34.0 ± 0.5 |
Klason lignin | 15.2 ± 0.2 | 16.2 ± 0.1 | 10.8 ± 0.2 | 15.1 ± 0.1 | 12.7 ± 0.1 | 30.9 ± 0.1 | 31.5 ± 0.6 | 32.5 ± 0.6 | 34.4 ± 0.8 | 32.2 ± 0.4 |
Soluble lignin | 0.3 ± 0.03 | 0.3 ± 0.02 | 0.1 ± 0.02 | 0.3 ± 0.01 | 0.1 ± 0.02 | 1.9 ± 0.25 | 2.1 ± 0.10 | 1.8 ± 0.07 | 1.9 ± 0.12 | 1.8 ± 0.07 |
Polysaccharides | 21.7 ± 0.2 | 23.3 ± 0.2 | 16.6 ± 0.3 | 26.2 ± 0.2 | 19.6 ± 0.1 | 59.7 ± 0.5 | 61.7 ± 0.8 | 61.9 ± 1.3 | 58.3 ± 1.3 | 59.8 ± 0.6 |
Rhamnose | 0.4 ± 0.01 | 0.4 ± 0.01 | 0.3 ± 0.01 | 0.4 ± 0.01 | 0.3 ± 0.01 | 0.4 ± 0.01 | 0.4 ± 0.01 | 0.4 ± 0.01 | 0.4 ± 0.01 | 0.4 ± 0.01 |
Arabinose | 3.4 ± 0.25 | 3.9 ± 0.10 | 3.0 ± 0.06 | 4.5 ± 0.13 | 3.4 ± 0.10 | 0.7 ± 0.01 | 0.8 ± 0.02 | 0.8 ± 0.04 | 0.7 ± 0.01 | 0.6 ± 0.02 |
Galactose | 2.1 ± 0.11 | 2.1 ± 0.04 | 2.2 ± 0.09 | 2.5 ± 0.06 | 2.5 ± 0.02 | 1.0 ± 0.02 | 1.0 ± 0.01 | 1.0 ± 0.02 | 0.9 ± 0.01 | 0.9 ± 0.02 |
Glucose | 10.0 ± 0.2 | 11.1 ± 0.2 | 7.3 ± 0.2 | 11.7 ± 0.1 | 8.7 ± 0.1 | 23.2 ± 0.3 | 25.1 ± 0.5 | 25.2 ± 0.4 | 24.6 ± 0.6 | 24.5 ± 0.4 |
Xylose | 3.1 ± 0.1 | 3.0 ± 0.1 | 2.0 ± 0.1 | 3.7 ± 0.1 | 2.5 ± 0.1 | 26.6 ± 0.2 | 26.8 ± 0.2 | 26.9 ± 0.9 | 24.5 ± 0.6 | 26.0 ± 0.3 |
Galacturonic acid | 1.4 ± 0.04 | 1.3 ± 0.03 | 1.0 ± 0.02 | 1.8 ± 0.13 | 1.1 ± 0.01 | 0.7 ± 0.02 | 0.7 ± 0.01 | 0.7 ± 0.02 | 0.7 ± 0.01 | 0.6 ± 0.01 |
Glucuronic acid | 0.1 ± 0.01 | 0.1 ± 0.01 | 0.1 ± 0.01 | 0.1 ± 0.01 | 0.1 ± 0.01 | 0.1 ± 0.01 | 0.1 ± 0.01 | 0.1 ± 0.01 | 0.1 ± 0.01 | 0.1 ± 0.01 |
Acetic acid | 1.2 ± 0.07 | 1.5 ± 0.09 | 0.8 ± 0.04 | 1.4 ± 0.08 | 1.0 ± 0.04 | 6.9 ± 0.01 | 6.7 ± 0.14 | 6.8 ± 0.02 | 6.4 ± 0.05 | 6.8 ± 0.05 |
Guara | Avijor | Soleta | Marinada | Belona | |
---|---|---|---|---|---|
Ultrasonic Extraction Yield (%) | 47.7 ± 0.1 | 49.4 ± 0.9 | 59.3 ± 0.1 | 51.8 ± 0.9 | 69.1 ± 0.6 |
Ash (% of total extractives) | 17.4 ± 2.1 | 18.4 ± 1.7 | 13.1 ± 1.1 | 15.3 ± 2.2 | 10.9 ± 1.5 |
Sugars (% of total extractives) | 25.6 ± 2.3 | 20.2 ± 0.7 | 25.3 ± 1.4 | 23.0 ± 1.1 | 24.7 ± 1.4 |
Rhamnose | 0.1 ± 0.01 | 0.1 ± 0.03 | 0.1 ± 0.05 | 0.1 ± 0.04 | 0.1 ± 0.02 |
Arabinose | 0.8 ± 0.07 | 0.8 ± 0.02 | 0.6 ± 0.07 | 0.6 ± 0.10 | 0.4 ± 0.04 |
Galactose | 0.5 ± 0.07 | 0.4 ± 0.01 | 0.4 ± 0.08 | 0.3 ± 0.03 | 0.2 ± 0.03 |
Glucose | 22.5 ± 2.0 | 17.7 ± 0.9 | 23.0 ± 1.2 | 20.7 ± 0.8 | 23.1 ± 1.2 |
Xylose | 1.0 ± 0.1 | 0.6 ± 0.1 | 0.6 ± 0.1 | 0.7 ± 0.1 | 0.4 ± 0.1 |
Galacturonic acid | 0.4 ± 0.04 | 0.3 ± 0.04 | 0.4 ± 0.02 | 0.3 ± 0.03 | 0.3 ± 0.02 |
Glucuronic acid | 0.1 ± 0.01 | 0.1 ± 0.01 | 0.1 ± 0.01 | 0.1 ± 0.01 | 0.1 ± 0.01 |
Total phenols (mgGAE/gExt) | 82.0 ± 2.3 | 83.4 ± 3.1 | 121.7 ± 3.8 | 63.3 ± 3.7 | 177.3 ± 3.8 |
Flavonoids (mgCat/gExt) | 75.8 ± 3.0 | 74.0 ± 4.9 | 117.9 ± 5.3 | 55.1 ± 1.6 | 162.3 ± 3.9 |
Condensed Tannins (mgCat/gExt) | 44.1 ± 5.1 | 41.0 ± 3.5 | 69.9 ± 3.8 | 30.7 ± 4.2 | 71.2 ± 2.5 |
FRAP (mgTrolox/gExt) | 158.1 ± 6.3 | 155.4 ± 5.1 | 223.4 ± 12.4 | 116.1 ± 1.8 | 316.4 ± 11.1 |
IC50 (ugExt/mL DPPH) | 23.1 ± 1.1 | 23.0 ± 1.1 | 18.1 ± 1.3 | 27.8 ± 0.9 | 11.3 ±2.1 |
AAI | 1.1 ± 0.2 | 1.1 ± 0.1 | 1.3 ± 0.1 | 0.9 ± 0.1 | 2.1 ± 0.1 |
Elements | Guara | Avijor | Soleta | Marinada | Belona |
---|---|---|---|---|---|
P | 1473 | 1791 | 1476 | 2054 | 1098 |
K | 44,627 | 48,807 | 40,355 | 42,364 | 37,562 |
Ca | 2917 | 3476 | 1561 | 3364 | 1180 |
Mg | 2515 | 2880 | 1740 | 2536 | 1595 |
Na | 86 | 156 | 48 | 625 | 45 |
S | 439 | 561 | 338 | 444 | 330 |
Fe | 90 | 100 | 83 | 236 | 530 |
Cu | 10 | 11 | 8 | 10 | 7 |
Zn | 11 | 12 | 11 | 11 | 13 |
Mn | 29 | 32 | 22 | 30 | 17 |
B | 58 | 62 | 71 | 63 | 62 |
Mo | 0.2 | 0.3 | 0.2 | 0.3 | 0.1 |
Cr | 0.7 | 1.2 | 0.6 | 0.9 | 1.2 |
Ni | 4.2 | 4.3 | 3.7 | 3.6 | 4.7 |
Hulls | Shells | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Varieties | Avijor | Belona | Guara | Marinada | Soleta | Avijor | Belona | Guara | Marinada | Soleta |
Fatty acids | 4.1 | 1.4 | 1.2 | 3.5 | 1.3 | 32.0 | 30.6 | 29.9 | 27.4 | 34.2 |
Alkanes and long-chain alcohols | 5.0 | 4.0 | 1.9 | 4.4 | 2.5 | 7.2 | 12.5 | 4.7 | 6.4 | 6.8 |
Sugars | 7.7 | 6.7 | 3.6 | 9.0 | 2.2 | - | - | - | - | - |
Saturated ω,α-diacids | - | - | - | 0.1 | - | 0.7 | 1.6 | 0.7 | 1.8 | 1.9 |
Sterols | 1.1 | 0.1 | 0.1 | 0.3 | 0.2 | 29.1 | 17.4 | 24.2 | 24.7 | 21.2 |
Triterpenes | 74.6 | 77.5 | 91.3 | 73.5 | 88.8 | - | - | - | - | - |
Monoacylglycerols | 0.3 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Aromatics | 0.3 | - | - | 0.1 | - | 3.9 | 10.8 | 4.1 | 4.6 | 3.2 |
Others | - | - | - | - | - | 9.0 | 8.6 | 12.0 | 10.0 | 9.6 |
Identified | 93.4 | 89.9 | 98.2 | 91.1 | 95.2 | 82.9 | 82.4 | 76.6 | 75.4 | 77.8 |
Non-identified | 6.6 | 10.1 | 1.8 | 8.9 | 4.8 | 17.1 | 17.6 | 23.4 | 24.6 | 22.2 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Hulls | Shells | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Guara | Avijor | Soleta | Marinada | Belona | Guara | Avijor | Soleta | Marinada | Belona | |
Total Identified Area | 83.6 | 84.7 | 86.4 | 82.9 | 83.9 | 79.3 | 80.6 | 80.3 | 81.3 | 80.7 |
Total carbohydrates | 62.0 | 64.1 | 68.0 | 64.0 | 62.9 | 41.7 | 42.3 | 40.0 | 41.3 | 42.8 |
Total Lignin | 16.3 | 15.5 | 14.6 | 15.2 | 15.4 | 37.0 | 37.8 | 39.6 | 39.5 | 37.0 |
H | 2.4 | 3.2 | 2.6 | 2.3 | 3.3 | 1.1 | 1.0 | 1.6 | 1.0 | 1.7 |
G | 8.6 | 8.3 | 7.7 | 8.4 | 8.3 | 16.5 | 16.2 | 17.3 | 16.2 | 17.6 |
S | 5.4 | 4.0 | 4.3 | 4.5 | 3.9 | 19.4 | 20.6 | 20.8 | 22.4 | 17.7 |
S/G | 0.6 | 0.5 | 0.6 | 0.5 | 0.5 | 1.2 | 1.3 | 1.2 | 1.4 | 1.0 |
Hulls | Shells | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Guara | Avijor | Soleta | Marinada | Belona | Guara | Avijor | Soleta | Marinada | Belona | |
Proximate analysis | ||||||||||
Total Volatiles (%) | 71.6 ± 1.5 | 72.3 ± 0.8 | 71.8 ± 0.9 | 71.9 ± 0.5 | 71.6 ± 0.04 | 79.3 ± 0.8 | 81.5 ± 0.2 | 80.6 ± 0.4 | 79.9 ± 0.6 | 80.7 ± 0.6 |
Fixed Carbon (%) | 17.3 ± 1.5 | 14.4 ± 0.8 | 18.6 ± 0.9 | 17.0 ± 0.5 | 19.3 ± 0.04 | 19.3 ± 0.8 | 17.7 ± 0.2 | 18.7 ± 0.4 | 19.0 ± 0.6 | 18.3 ± 0.6 |
Ash (%) | 11.1 ± 0.2 | 13.3 ± 0.2 | 9.6 ± 0.04 | 11.1 ± 0.3 | 9.2 ± 0.1 | 1.4 ± 0.01 | 0.8 ± 0.1 | 0.7 ± 0.2 | 1.1 ± 0.03 | 1.0 ± 0.1 |
Ultimate analysis | ||||||||||
C (%) | 40.4 | 39.7 | 43.8 | 42.7 | 43.6 | 45.4 | 45.0 | 45.5 | 46.1 | 45.3 |
H (%) | 5.4 | 5.2 | 5.5 | 5.4 | 5.6 | 6.1 | 6.1 | 5.9 | 5.9 | 5.9 |
N (%) | 0.8 | 1.0 | 0.6 | 0.8 | 0.6 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 |
S (%) | - | - | - | - | - | - | - | - | - | - |
O (%) | 42.3 | 40.8 | 40.6 | 39.9 | 41.0 | 47.0 | 47.9 | 47.8 | 46.7 | 47.6 |
H/C | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.14 | 0.13 | 0.13 | 0.13 |
O/C | 1.05 | 1.03 | 0.93 | 0.93 | 0.94 | 1.04 | 1.06 | 1.05 | 1.01 | 1.05 |
HHV (MJ/Kg) | 17.25 | 17.15 | 17.32 | 16.94 | 17.33 | 20.11 | 20.1 | 20.06 | 20.34 | 20.23 |
Sample | WHC (Hulls) | WHC (Pellets) |
---|---|---|
Soil | 24 | 22 |
1.6% | 24 | 21 |
3.1% | 29 | 21 |
6.3% | 37 | 27 |
12.5% | 58 | 31 |
25% | 96 | 35 |
50% | 135 | 44 |
100% | 285 | 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caeiro, A.T.; Costa, R.A.; Neiva, D.M.; Silva, J.; Marrão, R.; Bento, A.; Saraiva, N.; Marques, F.; Rebelo, J.; Encarnação, A.; et al. Harnessing and Evaluating Almond Hulls and Shells for Bio-Based Products. Environments 2025, 12, 369. https://doi.org/10.3390/environments12100369
Caeiro AT, Costa RA, Neiva DM, Silva J, Marrão R, Bento A, Saraiva N, Marques F, Rebelo J, Encarnação A, et al. Harnessing and Evaluating Almond Hulls and Shells for Bio-Based Products. Environments. 2025; 12(10):369. https://doi.org/10.3390/environments12100369
Chicago/Turabian StyleCaeiro, Ana T., Ricardo A. Costa, Duarte M. Neiva, Jéssica Silva, Rosalina Marrão, Albino Bento, Nuno Saraiva, Francisco Marques, Jorge Rebelo, André Encarnação, and et al. 2025. "Harnessing and Evaluating Almond Hulls and Shells for Bio-Based Products" Environments 12, no. 10: 369. https://doi.org/10.3390/environments12100369
APA StyleCaeiro, A. T., Costa, R. A., Neiva, D. M., Silva, J., Marrão, R., Bento, A., Saraiva, N., Marques, F., Rebelo, J., Encarnação, A., & Gominho, J. (2025). Harnessing and Evaluating Almond Hulls and Shells for Bio-Based Products. Environments, 12(10), 369. https://doi.org/10.3390/environments12100369