Feeding with a NaCl-Supplemented Alfalfa-Based TMR Improves Nutrient Utilization, Rumen Fermentation, and Antioxidant Enzyme Activity in AOHU Sheep: A Nutritional Simulation of Saline–Alkaline Conditions
Abstract
1. Introduction
2. Methods
2.1. Experimental Animals and Feeding Management
2.2. Experimental Feed Chemical Composition Analysis
2.3. Total Feed, Water and Salt Intake and Growth Performance
2.4. Total Fecal and Urine Excretion, Urinary and Fecal Nitrogen, and Energy Metabolism
2.5. Blood Serum Proteins, Antioxidant Enzymes, and Mineral Analysis
2.6. Kidney and Liver Weight
2.7. Rumen Section Length, Width, and Thickness
2.8. Rumen Fluid pH, NH3-N (Ammonia Nitrogen), and MCP (Microbial Crude Protein)
2.9. Volatile Fatty Acid Profiles
2.10. Data Analysis
3. Results
3.1. Intake, Excretion, Growth Performance, and Organ Weight
3.2. Rumen Section Length, Width, and Thickness
3.3. Rumen Fluid pH, NH3-N (Ammonia Nitrogen), and MCP (Microbial Crude Protein)
3.4. Blood Serum Mineral Content
3.5. Effect of NaCl on Serum Protein and Antioxidant Enzymes
3.6. Volatile Fatty Acids
3.7. Fecal and Urinary Protein and Energy Metabolism
4. Discussion
4.1. Intake, Excretion, Growth Performance, and Organ Weight
4.2. Rumen Section Length, Width, and Thickness
4.3. Rumen Fluid pH, NH3-N, and MCP
4.4. Volatile Fatty Acids
4.5. Blood Serum Mineral Content
4.6. Effect of NaCl on Serum Protein and Antioxidant Enzymes
4.7. Fecal and Urine Protein and Energy Metabolism
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chacko Kaitholil, S.R.; Mooney, M.H.; Aubry, A.; Rezwan, F.; Shirali, M. Insights into the influence of diet and genetics on feed efficiency and meat production in sheep. Anim. Genet. 2024, 55, 20–46. [Google Scholar] [CrossRef]
- Esen, S. Optimizing ruminant nutrition: Insights from a comprehensive analysis of silage composition and in vitro gas production dynamics using nonlinear models. Biosystems 2023, 234, 105062. [Google Scholar] [CrossRef]
- Paul, S.; Dey, A. Nutrition in health and immune function of ruminants. Indian J. Anim. Sci. 2015, 85, 103–112. [Google Scholar] [CrossRef]
- Ingvartsen, K.L.; Moyes, K. Nutrition, immune function and health of dairy cattle. Animal 2013, 7, 112–122. [Google Scholar] [CrossRef]
- Bertoni, G.; Trevisi, E.; Houdijk, J.; Calamari, L.; Athanasiadou, S. Welfare is affected by nutrition through health, especially immune function and inflammation. In Nutrition and the Welfare of Farm Animals; Springer: Cham, Switzerland, 2016; pp. 85–113. [Google Scholar]
- Dotas, V.; Symeon, G.; Dublecz, K. Introducing novel trends in the nutrition of monogastric farm animals for the production of high-quality livestock products. Front. Veter-Sci. 2025, 11, 1514197. [Google Scholar]
- Chanu, P.H. Management of salt-affected soils for increasing crop productivity. In Enhancing Resilience of Dryland Agriculture Under Changing Climate: Interdisciplinary and Convergence Approaches; Springer: Berlin/Heidelberg, Germany, 2023; pp. 113–121. [Google Scholar]
- Guo, R.; Zhou, Z.; Cai, R.; Liu, L.; Wang, R.; Sun, Y.; Wang, D.; Yan, Z.; Guo, C. Metabolomic and physiological analysis of alfalfa (Medicago sativa L.) in response to saline and alkaline stress. Plant Physiol. Biochem. 2024, 207, 108338. [Google Scholar] [CrossRef]
- Abebe, H.; Tu, Y. Impact of salt and alkali stress on forage biomass yield, nutritive value, and animal growth performance: A comprehensive review. Grasses 2024, 3, 355–368. [Google Scholar] [CrossRef]
- Thakur, S.; Tomar, S. In sacco evaluation of total mixed rations. Indian J. Anim. Nutr. 2004, 21, 180–183. [Google Scholar]
- Phillips, C.; Mohamed, M.; Omed, H. The effects of increasing the sodium content of grass or concentrates on the nutrition of sheep. Anim. Sci. 2003, 77, 491–498. [Google Scholar] [CrossRef]
- Sato, Y.; Angthong, W.; Butcha, P.; Takeda, M.; Oishi, K.; Hirooka, H.; Kumagai, H. Effects of supplementary desalted mother liquor as replacement of commercial salt in diet for Thai native cattle on digestibility, energy and nitrogen balance, and rumen conditions. Anim. Sci. J. 2018, 89, 1093–1101. [Google Scholar] [CrossRef]
- Hemsley, J.; Hogan, J.; Weston, R. Effect of high intakes of sodium chloride on the utilization of a protein concentrate by sheep. II.* Digestion and absorption of organic matter and electrolytes. Aust. J. Agric. Res. 1975, 26, 715–727. [Google Scholar] [CrossRef]
- Mukherjee, V.; Priyadarshinee, P. Strategic use of minerals to augment production and reproduction in animals. Pharma Innov. J. 2017, 6, 517–522. [Google Scholar]
- Jakubowski, M.G.T.; Dembele, K. Effect of anionic salts on the metabolism of selected minerals and superoxide dismutase activity in blood of cows. Bull. Vet. Inst. Pulawy 2011, 55, 101–106. [Google Scholar]
- Tripathi, M.; Karim, S. Minerals requirement of small ruminants with special reference to their role in rumen fermentation—A review. Indian J. Small Rumin. 2008, 14, 1–47. [Google Scholar]
- National Research Council Committee on Nutrient Requirements of Domesticated Ruminants. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; China Legal Publisher: Beijing, China, 2007. [Google Scholar]
- Li, S.; Bao, Y.; Lv, M.; Zhang, L.; Liu, L.; Liu, Y.; Lu, Q. Comparative Na+ and K+ profiling reveals microbial community assembly of alfalfa silage in different saline-alkali soils. Fermentation 2023, 9, 877. [Google Scholar] [CrossRef]
- ISO 11784:2024; Radio Frequency Identification of Animals—Code Structure. International Organization for Standardization: Geneva, Switzerland, 2024.
- ISO 11785:1996; Radio Frequency Identification of Animals—Technical Concept. International Organization for Standardization: Geneva, Switzerland, 1996.
- Association of Official Analytical Chemists. Official Methods of Analysis of the Association of Official Analytical Chemists; The Association: Gaithersburg, MD, USA, 2000; Volume 11. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Rantaša, M.; Majer, D.; Finšgar, M. Preparation of Food Samples Using Homogenization and Microwave-Assisted Wet Acid Digestion for Multi-Element Determination with ICP-MS. J. Vis. Exp. (JoVE) 2023, e65624. [Google Scholar] [CrossRef]
- Montero, E.V.; Trejos, P.S. Validación de un método analítico para la determinación del contenido de sodio en los alimentos. Tecnol. Marcha 2012, 25, 41–49. [Google Scholar]
- Blaxter, K.; Clapperton, J. Prediction of the amount of methane produced by ruminants. Br. J. Nutr. 1965, 19, 511–522. [Google Scholar] [CrossRef]
- Lau, E. Accuracy of Bromocresol Green (BCG) Method for Plasma Albumin; NTNU: Trondheim, Norway, 2020. [Google Scholar]
- Doumas, B.T.; Bayse, D.D.; Borner, K.; Carter, R.; Elevitch, F.; Garber, C.; Graby, R.; Hause, L.; Mather, A.; Peters, T., Jr. A candidate reference method for determination of total protein in serum. II. Test for transferability. Clin. Chem. 1981, 27, 1651–1654. [Google Scholar] [CrossRef]
- Snider, M.A.; Mulakala, B.K.; Driemel, A.W.; Ziegler, S.E.; Darby, H.M.; Soder, K.J.; Brito, A.F.; Greenwood, S.L. 191 Evaluation of Diverse Cool-Season Grass Mixtures with red Clover on Ruminal Fermentation in Continuous Culture. J. Anim. Sci. 2022, 100, 86. [Google Scholar] [CrossRef]
- Lilley, L.M.; Sanche, S.; Moore, S.C.; Salemi, M.R.; Vu, D.; Iyer, S.; Hengartner, N.W.; Mukundan, H. Methods to capture proteomic and metabolomic signatures from cerebrospinal fluid and serum of healthy individuals. Sci. Rep. 2022, 12, 13339. [Google Scholar] [CrossRef]
- Chaney, A.L.; Marbach, E.P. Modified reagents for determination of urea and ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef]
- Makkar, H.; Sharma, O.; Dawra, R.; Negi, S. Simple determination of microbial protein in rumen liquor. J. Dairy Sci. 1982, 65, 2170–2173. [Google Scholar] [CrossRef]
- Devireddy, A. Selection of an Efficient and Sustainable Solvent for Anhydromevalonolactone (AMVL) Extraction and a Techno-Economic Assessment; Southern Illinois University at Edwardsville: Edwardsville, IL, USA, 2025. [Google Scholar]
- Weisinger, R.; Considine, P.; Denton, D.; McKinley, M.; Mouw, D. Rapid effect of change in cerebrospinal fluid sodium concentration on salt appetite. Nature 1979, 280, 490–491. [Google Scholar] [CrossRef]
- De Waal, H.; Baard, M.A.; Engels, E. Effects of sodium chloride on sheep. 2. Voluntary feed intake and changes in certain rumen parameters of young Merino wethers grazing native pasture. S. Afr. J. Anim. Sci. 1989, 19, 34–42. [Google Scholar]
- Rakova, N.; Kitada, K.; Lerchl, K.; Dahlmann, A.; Birukov, A.; Daub, S.; Kopp, C.; Pedchenko, T.; Zhang, Y.; Beck, L. Increased salt consumption induces body water conservation and decreases fluid intake. J. Clin. Investig. 2017, 127, 1932–1943. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, J.; Webster, M. Food intake, water intake, urine output, growth rate and wool growth of lambs accustomed to high or low intake of sodium chloride. Aust. J. Agric. Res. 1987, 38, 187–194. [Google Scholar] [CrossRef]
- Potter, B. The renal response of sheep to prolonged ingestion of sodium chloride. Aust. J. Agric. Res. 1961, 12, 440–445. [Google Scholar] [CrossRef]
- Rabelink, T.J. Burning calories to excrete salt. Nat. Rev. Nephrol. 2017, 13, 323–324. [Google Scholar] [CrossRef] [PubMed]
- Kitada, K.; Daub, S.; Zhang, Y.; Klein, J.D.; Nakano, D.; Pedchenko, T.; Lantier, L.; LaRocque, L.M.; Marton, A.; Neubert, P. High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation. J. Clin. Investig. 2017, 127, 1944–1959. [Google Scholar] [CrossRef]
- Cui, R.; Chen, D.; Li, N.; Cai, M.; Wan, T.; Zhang, X.; Zhang, M.; Du, S.; Ou, H.; Jiao, J. PARD3 gene variation as candidate cause of nonsyndromic cleft palate only. J. Cell. Mol. Med. 2022, 26, 4292–4304. [Google Scholar] [CrossRef] [PubMed]
- Costa, E.; Araújo, G.; Oliveira, J.; Santos, E.; Perazzo, A.; Pereira, G.; Santos, F.; Zanine, A. Effect of various salt concentrations on the ruminal parameters of goats. S. Afr. J. Anim. Sci. 2020, 50, 635–642. [Google Scholar] [CrossRef]
- Javaid, A.; Sharif, M.; Hamad, M.; Rehman, U.; Zamir, S. Impact of degradable protein on ruminant production: A Review. Transylv. Rev. 2017, 25, 4668–4687. [Google Scholar]
- Demeyer, D.; Fievez, V. Is the synthesis of rumen bacterial protein limited by the availability of pre-formed amino acids and/or peptides? Br. J. Nutr. 2004, 91, 175–176. [Google Scholar] [CrossRef]
- Amaning-Kwarteng, K.; Kellaway, R.; Kirby, A. Supplemental protein degradation, bacterial protein synthesis and nitrogen retention in sheep eating sodium hydroxide-treated straw. Br. J. Nutr. 1986, 55, 557–569. [Google Scholar] [CrossRef]
- MacDonald, R.; Lanyi, J. Light-activated amino acid transport in Halobacterium halobium envelope vesicles. Fed. Proc. 1977, 36, 1828–1832. [Google Scholar]
- Lapierre, H.; Berthiaume, R.; Raggio, G.; Thivierge, M.; Doepel, L.; Pacheco, D.; Dubreuil, P.; Lobley, G. The route of absorbed nitrogen into milk protein. Anim. Sci. 2005, 80, 11–22. [Google Scholar] [CrossRef]
- Nack, M.F.; Van Emon, M.L.; Wyffels, S.A.; Manoukian, M.K.; Carlisle, T.J.; Davis, N.G.; Kirkpatrick, T.J.; Kluth, J.A.; DelCurto-Wyffels, H.M.; DelCurto, T. Impact of increasing levels of NaCl in drinking water on the intake and utilization of low-quality forages by beef cattle hand-fed a protein supplement or protein supplement containing 25% salt. Transl. Anim. Sci. 2021, 5, S101–S105. [Google Scholar] [CrossRef]
- Firkins, J.L. Maximizing microbial protein synthesis in the rumen. J. Nutr. 1996, 126, 1347S–1354S. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, Y.; Zhong, X.; Zhu, J.; Yang, S.; Gu, Y.; Yu, X.; Lu, Y.; Lu, Z.; Sun, X. Dietary crude protein and protein solubility manipulation enhances intestinal nitrogen absorption and mitigates reactive nitrogen emissions through gut microbiota and metabolome reprogramming in sheep. Anim. Nutr. 2024, 18, 57–71. [Google Scholar] [CrossRef]
- Bolam, M.; Connors, M.; McLennan, S.R.; Poppi, D.P. Variability in microbial protein supply under different supplementation strategies. Anim. Prod. Australia. Proc. Aust. Soc. Anim. Prod. 1998, 22, 398. [Google Scholar]
- Hamad, I.; Cardilli, A.; Côrte-Real, B.F.; Dyczko, A.; Vangronsveld, J.; Kleinewietfeld, M. High-salt diet induces depletion of lactic acid-producing bacteria in murine gut. Nutrients 2022, 14, 1171. [Google Scholar] [CrossRef]
- Ramadhan, M.R.; Schlecht, E.; Dickhöfer, U.; Mahgoub, O.; Jörgensen, R.G. Feed digestibility, digesta passage and faecal microbial biomass in desert-adapted goats exposed to mild water restriction. J. Anim. Physiol. Anim. Nutr. 2022, 106, 721–732. [Google Scholar] [CrossRef]
- Mojiminiyi, F.; Anigbogu, C.; Sofola, O.; Adigun, S. Cardiac and kidney weight indices following dietary salt loading and/or chronic nitric oxide synthase inhibition in the hooded (Aguti) rat. Niger. Postgrad. Med. J. 2009, 16, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chandramohan, G.; Bai, Y.; Norris, K.; Rodriguez-Iturbe, B.; Vaziri, N. Effects of dietary salt on intrarenal angiotensin system, NAD (P) H oxidase, COX-2, MCP-1 and PAI-1 expressions and NF-κB activity in salt-sensitive and-resistant rat kidneys. Am. J. Nephrol. 2007, 28, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Zeidel, M.L. Salt and water: Not so simple. J. Clin. Investig. 2017, 127, 1625–1626. [Google Scholar] [CrossRef]
- Vilstrup, H.; Eriksen, P.L.; Kjærgaard, K.; Sørensen, M.; Thomsen, K.L.; Ott, P. Down the road towards hepatic encephalopathy. Urea synthesis-the liver workhorse of nitrogen metabolism. Metab. Brain Dis. 2024, 40, 49. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hartmann, A.-M.; Guo, J. Chloride homeostasis in animal cell physiology. Front. Physiol. 2023, 14, 1227565. [Google Scholar] [CrossRef]
- Zia-ul-Hasan, Z.-u.-H.; Muhammed Sarwar, M.S.; Zafar Iqbal, Z.I.; Sultan Mahmood, S.M. Dietary cation anion balance in the ruminants I-effects during early lactation. Int. J. Agric. Biol. 2001, 3, 243–249. [Google Scholar]
- Tomé, D.; Benoit, S.; Azzout-Marniche, D. Protein metabolism and related body function: Mechanistic approaches and health consequences. Proc. Nutr. Soc. 2021, 80, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Harvey, R.; Croom, W., Jr.; Pond, K.; Hogarth, B.; Leonard, E. High levels of sodium chloride in supplements for growing cattle. Can. J. Anim. Sci. 1986, 66, 423–429. [Google Scholar] [CrossRef]
- Kitiyakara, C.; Chabrashvili, T.; Chen, Y.; Blau, J.; Karber, A.; Aslam, S.; Welch, W.J.; Wilcox, C.S. Salt intake, oxidative stress, and renal expression of NADPH oxidase and superoxide dismutase. J. Am. Soc. Nephrol. 2003, 14, 2775–2782. [Google Scholar] [CrossRef]
- Gomez-Sanchez, E.; Gomez-Sanchez, C.E. The multifaceted mineralocorticoid receptor. Compr. Physiol. 2011, 4, 965–994. [Google Scholar] [CrossRef]
- Miranda, R.; Paula, S.; Araújo, G.; Valença, I.; Miranda, S.; Gomes-Filho, E. NaCl-Priming Mitigates Oxidative Damage and Na+ Accumulation and Enhances Salt Tolerance in Sorghum Plants. Available online: https://icolibri.com.br/public/anais/TC5120931.pdf (accessed on 5 October 2025).
- Della Penna, S.L. Pathophysiological Effects of the Excess of Sodium in Renal and Vascular Tissues. Ph.D. Thesis, University of Groningen, Groningen, The Netherlands, 2013. [Google Scholar]
- Böröcz, K.; Szinger, D.; Simon, D.; Berki, T.; Németh, P. Regulators and Conductors of Immunity: Natural Immune System in Health and Autoimmunity. Int. J. Mol. Sci. 2025, 26, 5413. [Google Scholar] [CrossRef] [PubMed]
- Boegehold, M.A.; Drenjancevic, I.; Lombard, J.H. Salt, angiotensin II, superoxide, and endothelial function. Compr. Physiol. 2016, 6, 215–254. [Google Scholar] [CrossRef]
- Rudi, M.J.; Kouyoumdzian, N.M.; Kim, M.; Rukavina Mikusic, N.L.; Lee, H.J.; Galleano, M.; Fernández, B.; Puyó, A.; Choi, M.R. Participación de los canales de cloruro en la salud cardiovascular y renal. Efectos de dietas altas en cloro sobre la presión arterial en un modelo experimental de sobrecarga salina. Rev. Argent. De Cardiol. 2024, 92, 133–141. [Google Scholar] [CrossRef]
- Wilkinson, J. Methane production by ruminants. UK Vet Livest. 2012, 17, 33–35. [Google Scholar] [CrossRef]
- Jouany, J.-P.; Thivend, P. La production de méthane d’origine digestive chez les ruminants et son impact sur le réchauffement climatique. Manag. Avenir 2008, 20, 259–274. [Google Scholar] [CrossRef]
- Arangsri, M.; Pattarajinda, V.; Duangjinda, M.; Mungkalasiri, J.; Angthong, W.; Bernard, J. Impact of fermented total mixed rations on intake, VFA and methane production of dairy heifers. Indian J. Anim. Res. 2019, 53, 1344–1348. [Google Scholar] [CrossRef]
- Letelier, P.; Zanton, G.; Wattiaux, M. Evaluation of protocols to determine urine output and urinary urea nitrogen excretion in dairy cows with and without dietary salt supplementation. J. Dairy Sci. 2024, 107, 6742–6757. [Google Scholar] [CrossRef]
- Ergene, N.; Pickering, E. The effects of reducing dietary nitrogen and of increasing sodium chloride intake on urea excretion and reabsorption and on urine osmolality in sheep. Q. J. Exp. Physiol. Cogn. Med. Sci. Transl. Integr. 1978, 63, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Godwin, I.R.; Williams, V.J. Effects of intraruminal sodium chloride infusion on rumen and renal nitrogen and electrolyte dynamics in sheep. Br. J. Nutr. 1986, 56, 379–394. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, T.F.; Bruun, T.S.; Trottier, N.L.; Theil, P.K. Nitrogen utilization of lactating sows fed increasing dietary protein. J. Anim. Sci. 2019, 97, 3472–3486. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, V.; Fialho, E.; de Freitas Lima, J.A.; dos Santos Araújo, J. Metabolismo do nitrogênio em suínos alimentados com dietas contendo baixos teores de proteína bruta. Rev. Bras. Agrociencia 2007, 13, 257–260. [Google Scholar]
Ingredients | Proportions | |
---|---|---|
Control | NaCl | |
Cornmeal | 46.50 | 46.50 |
Cottonseed meal | 8.00 | 8.00 |
Wheat bran | 8.00 | 8.00 |
Corncob meal | 5.00 | 5.00 |
Alfalfa hay | 30.00 | 30.00 |
Limestone | 1.00 | 1.00 |
Salt | 0.50 | 0.50 |
Premix 1 | 1.00 | 1.00 |
Total | 100 | 100 |
Nutritional composition | ||
DM (air dry basis) | 85.41 | 85.41 |
CP | 15.34 | 15.34 |
GE, MJ/kg | 18.15 | 18.15 |
ME, MJ/kg | 10.2 | 10.2 |
EE | 4.14 | 4.14 |
NDF | 36.7 | 36.7 |
ADF | 21.4 | 21.4 |
Ash | 1.14 | 1.14 |
Ca | 0.47 | 0.47 |
P | 0.29 | 0.29 |
NaCl | 0.43 | 1.71 |
Items | Groups | |||
---|---|---|---|---|
Control | NaCl | SEM | p-Value | |
Total feed intake, g/sheep/60 days | 51,929.99 | 67,935.01 | 4745.17 | 0.003 |
Total water intake, L/sheep/60 days | 132.53 | 199.02 | 8.65 | <0.001 |
Total salt intake, g/sheep/60 days | 259.65 | 1358.70 | 74.32 | <0.001 |
Total urine excretion, ml/sheep/5 days | 3004.00 | 6934.83 | 1245.84 | 0.01 |
Total fecal excretion, g/sheep/5 days | 3.61 | 4.97 | 0.567 | 0.04 |
Body weight changes, kg/sheep/60 days | 8.03 | 13.47 | 1.401 | 0.001 |
Average daily gain, Kg/sheep/day | 0.13 | 0.23 | 0.020 | 0.001 |
Feed conversion ratio | 0.59 | 0.52 | 0.032 | 0.04 |
Kidney weight, kg/sheep | 0.037 | 0.047 | 0.003 | 0.01 |
Liver weight, kg/sheep | 0.540 | 0.677 | 0.046 | 0.01 |
Items | Groups | |||
---|---|---|---|---|
Control | NaCl | SEM | p-Value | |
Component content (mmol/L) | ||||
Acetic acid | 37.48 | 35.44 | 0.81 | 0.010 |
Propionic acid | 11.35 | 14.42 | 0.52 | 0.001 |
Isobutric acid | 1.73 | 2.37 | 0.19 | 0.002 |
Butric acid | 8.58 | 8.89 | 0.59 | 0.600 |
Isovaleric acid | 3.02 | 4.40 | 0.38 | 0.001 |
Valeric acid | 0.95 | 1.40 | 0.09 | 0.001 |
Total volatile acid | 63.12 | 66.93 | 0.55 | 0.001 |
Component content (%) | ||||
Acetic acid | 59.43 | 52.94 | 1.24 | 0.001 |
Propionic acid | 18.03 | 21.55 | 0.85 | 0.001 |
Isobutric acid | 2.73 | 3.54 | 0.28 | 0.008 |
Butric acid | 13.52 | 13.29 | 0.83 | 0.787 |
Isovaleric acid | 4.78 | 6.58 | 0.57 | 0.004 |
Valeric acid | 1.51 | 2.10 | 0.14 | 0.001 |
Acetic/propionic acid | 3.32 | 2.51 | 0.14 | 0.001 |
Items | Groups | |||
---|---|---|---|---|
Control | NaCl | SEM | p-Value | |
Nitrogen Metabolism | ||||
Nitrogen intake, g/d | 27.98 | 49.25 | 2.27 | <0.001 |
Total nitrogen excretion, g/d | 21.65 | 24.44 | 2.03 | 0.20 |
Fecal nitrogen, g/d | 10.87 | 12.13 | 0.70 | 0.10 |
Nitrogen absorption, g/d | 17.11 | 37.96 | 1.80 | <0.001 |
Retained nitrogen, g/d | 6.33 | 24.81 | 2.86 | <0.001 |
Apparent digestibility of nitrogen % | 61.11 | 77.09 | 2.19 | <0.001 |
Nitrogen utilization efficiency % | 22.27 | 49.89 | 5.87 | 0.001 |
Biological value of nitrogen % | 36.91 | 64.92 | 9.46 | 0.01 |
Urinary nitrogen excretion | ||||
Urine nitrogen loss, g/d | 10.78 | 13.15 | 2.29 | 0.33 |
Urinary N loss, % of intake | 38.5 | 26.7 | 1.33 | <0.001 |
Urine nitrogen loss, g/ml | 0.015 | 0.008 | 0.003 | 0.02 |
Energy metabolism | ||||
Digestible energy intake, MJ/d | 13.93 | 28.47 | 1.56 | <0.001 |
Gross energy digestibility % | 67.10 | 78.13 | 2.12 | <0.001 |
Fecal energy, MJ/d | 6.75 | 7.94 | 0.64 | 0.09 |
Gross energy intake, MJ/d | 20.69 | 36.42 | 1.68 | <0.001 |
Digestible energy intake, MJ/d | 13.93 | 28.47 | 1.56 | <0.001 |
CH4 energy loss, MJ/d | 1.65 | 2.91 | 0.13 | <0.001 |
CH4 energy loss, MJ/kg DM | 1.99 | 2.01 | 0.18 | 0.06 |
CH4 energy loss, MJ/kg NDF | 5.22 | 5.49 | 0.38 | 0.13 |
Metabolizable energy intake, MJ/d | 11.58 | 24.68 | 1.44 | <0.001 |
Apparent digestibility of GE% | 67.10 | 78.13 | 2.12 | <0.001 |
Metabolizability of GE% | 55.69 | 67.68 | 2.02 | <0.001 |
Metabolizability of DE% | 82.97 | 86.62 | 0.64 | <0.001 |
Urinary energy loss | ||||
Urine energy loss, MJ/d | 0.69 | 0.87 | 0.13 | 0.19 |
Urine energy loss, MJ/mL | 0.0009 | 0.0005 | 0.0004 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abebe, H.; Yang, R.; Wei, G.; Feng, X.; Tu, Y. Feeding with a NaCl-Supplemented Alfalfa-Based TMR Improves Nutrient Utilization, Rumen Fermentation, and Antioxidant Enzyme Activity in AOHU Sheep: A Nutritional Simulation of Saline–Alkaline Conditions. Fermentation 2025, 11, 587. https://doi.org/10.3390/fermentation11100587
Abebe H, Yang R, Wei G, Feng X, Tu Y. Feeding with a NaCl-Supplemented Alfalfa-Based TMR Improves Nutrient Utilization, Rumen Fermentation, and Antioxidant Enzyme Activity in AOHU Sheep: A Nutritional Simulation of Saline–Alkaline Conditions. Fermentation. 2025; 11(10):587. https://doi.org/10.3390/fermentation11100587
Chicago/Turabian StyleAbebe, Hunegnaw, Ruochen Yang, Guicong Wei, Xiaoran Feng, and Yan Tu. 2025. "Feeding with a NaCl-Supplemented Alfalfa-Based TMR Improves Nutrient Utilization, Rumen Fermentation, and Antioxidant Enzyme Activity in AOHU Sheep: A Nutritional Simulation of Saline–Alkaline Conditions" Fermentation 11, no. 10: 587. https://doi.org/10.3390/fermentation11100587
APA StyleAbebe, H., Yang, R., Wei, G., Feng, X., & Tu, Y. (2025). Feeding with a NaCl-Supplemented Alfalfa-Based TMR Improves Nutrient Utilization, Rumen Fermentation, and Antioxidant Enzyme Activity in AOHU Sheep: A Nutritional Simulation of Saline–Alkaline Conditions. Fermentation, 11(10), 587. https://doi.org/10.3390/fermentation11100587