Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,700)

Search Parameters:
Keywords = endothelialization of cancer cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7422 KB  
Article
Cytotoxic Effect of a β1,4-Galactosyltransferase Inhibitor in Hepatic Carcinoma Cells
by Zhe Dai, Ming Sun, Lihang Chen, Xueqi Fu, Wenfu Yan, Yin Gao and Inka Brockhausen
Cells 2026, 15(3), 251; https://doi.org/10.3390/cells15030251 (registering DOI) - 28 Jan 2026
Abstract
The incidence and mortality of hepatocellular carcinoma (HCC) are increasing worldwide, underscoring the need for novel therapeutic strategies. Synthetic 2-naphthyl 2-butanamido-2-deoxy-1-thio-β-d-glucopyranoside (612) is a selective inhibitor of β1,4-galactosyltransferase 1 (β4GalT1). In this study, we investigated the cytotoxic effects of [...] Read more.
The incidence and mortality of hepatocellular carcinoma (HCC) are increasing worldwide, underscoring the need for novel therapeutic strategies. Synthetic 2-naphthyl 2-butanamido-2-deoxy-1-thio-β-d-glucopyranoside (612) is a selective inhibitor of β1,4-galactosyltransferase 1 (β4GalT1). In this study, we investigated the cytotoxic effects of 612 across multiple cancer cell lines, with a focus on HCC, and explored the underlying mechanisms. We demonstrate that 612 preferentially exhibits cytotoxicity toward cancer cells with elevated expression of β4GalT family members, while human umbilical vein endothelial cells and immortalized human embryonic kidney epithelial cells are comparatively less sensitive. Treatment with 612 suppresses cancer cell migration and invasion and induces pronounced endoplasmic reticulum and Golgi stress, accompanied by G2/M cell cycle arrest. Furthermore, 612 activates apoptosis through ER stress–associated pathways by downregulating the anti-apoptotic protein Bcl-2 and upregulating pro-apoptotic proteins Bax and Bak, along with activation of caspase-3, -8, and -9. Collectively, these findings identify 612 as a promising anti-cancer candidate targeting β4GalTs-overexpressing HCC cells and warrant further therapeutic development. Full article
(This article belongs to the Special Issue Glycosylation and Glycoproteins in Human Disease)
Show Figures

Figure 1

27 pages, 1813 KB  
Review
Sweet Surprises: Decoding Tumor-Associated Glycosylation in Cancer Progression and Therapeutic Potential
by Eileena F. Giurini, Sam G. Pappas and Kajal H. Gupta
Cells 2026, 15(3), 233; https://doi.org/10.3390/cells15030233 - 26 Jan 2026
Viewed by 40
Abstract
Tumor-associated glycosylation is a defining hallmark of cancer, exerting profound effects on multiple aspects of tumor biology. This phenomenon arises from the central role of glycosylation in a wide range of cellular processes and its inherently diverse structural complexity. In cancer cells, aberrant [...] Read more.
Tumor-associated glycosylation is a defining hallmark of cancer, exerting profound effects on multiple aspects of tumor biology. This phenomenon arises from the central role of glycosylation in a wide range of cellular processes and its inherently diverse structural complexity. In cancer cells, aberrant glycosylation often results in the modification of glycoconjugate structures, leading to alterations in cell surface architecture that disrupt cellular homeostasis and signaling pathways. These changes can enhance tumor cell proliferation, invasion, and metastasis by modulating cell adhesion, receptor activation, and intracellular communication. Beyond its direct impact on cancer cells, tumor-associated glycosylation plays a pivotal role in shaping the tumor microenvironment. Aberrant glycan structures influence immune cell infiltration by altering antigen presentation and immune checkpoint interactions, contributing to immune evasion. Additionally, these modifications regulate angiogenesis by affecting endothelial cell function and promoting the formation of aberrant vasculature, which supports tumor growth and metastasis. Glycosylation also mediates tumor–stroma interactions, influencing extracellular matrix remodeling and fibroblast activation, further enhancing cancer progression. This interplay between cancer-associated glycan modifications and their functional roles in tumorigenesis presents a promising therapeutic approach. Unlike conventional treatments, glycan-targeting therapies confer high tumor specificity, operate independently of canonical immune checkpoint targets, and help mitigate immune cell exhaustion. This review explores commonly dysregulated glycan motifs implicated in tumorigenesis and delves into their mechanistic contributions to cancer pathogenesis. We then highlight emerging opportunities for therapeutic intervention, including the development of glycan-targeted therapies and biomarker-driven strategies for cancer diagnosis and treatment. We also outline where glycan-targeted agents (e.g., desialylating biologics, glycomimetics, and anti-glycan mAbs) can complement checkpoint blockade and potentially overcome immune escape. Full article
Show Figures

Figure 1

39 pages, 489 KB  
Review
A Decade-Old Atlas of TMEM (Transmembrane) Protein Family in Lung Cancer: Lessons Learnt and Future Directions
by Siwei Zhang, Guojie Cao, Xuelin Hu, Chen Chen and Peng Chen
Int. J. Mol. Sci. 2026, 27(2), 1120; https://doi.org/10.3390/ijms27021120 - 22 Jan 2026
Viewed by 78
Abstract
A growing body of work has linked the dysregulation of transmembrane (TMEM) proteins to the proliferation, metastasis, drug resistance, and tumor microenvironment remodeling of lung cancer, the leading global cause of cancer mortality. Renamed members such as STING1 (stimulator of interferon response cGAMP [...] Read more.
A growing body of work has linked the dysregulation of transmembrane (TMEM) proteins to the proliferation, metastasis, drug resistance, and tumor microenvironment remodeling of lung cancer, the leading global cause of cancer mortality. Renamed members such as STING1 (stimulator of interferon response cGAMP interactor 1, TMEM173), ANO1 (anoctamin-1, TMEM16A), ORAI1 (ORAI calcium release-activated calcium modulator 1, TMEM142A), ORAI3 (TMEM142C), and NDC1 (NDC1 transmembrane nucleoporin, TMEM48) are among the most extensively studied ones. Mechanisms of TMEM dysregulation in lung cancer span the modulation of Ca2+ influx, lysosomal exocytosis, ferroptosis, Wnt and β-catenin signaling, and immune cell infiltration and immune checkpoint rewiring, among others. Epigenetic silencing and targetable fusions (i.e., TMEM106B-ROS1 and TMEM87A-RASGRF1) create DNA-level vulnerabilities, while miRNA sponges offer RNA-level druggability. A subset of studies revealed context-specific expression (endothelial, B cell, and hypoxic EV) that can be exploited to remodel the tumor microenvironment. One study specifically focused on how isoform-specific expression and localization of TMEM88 determine its functional impact on tumor progression. Yet for most TMEMs, only pre-clinical or early-phase data exist, with many supported by a single study lacking independent validation. This review brings together scattered evidence on TMEM proteins in lung cancer, with the aim of guiding future work on their possible use as biomarkers or therapeutic targets. Full article
(This article belongs to the Section Molecular Oncology)
17 pages, 2521 KB  
Article
SUMOylation Protects Endothelial Cell-Expressed Leukocyte-Specific Protein 1 from Ubiquitination-Mediated Proteasomal Degradation and Facilitates Its Nuclear Export
by Mokarram Hossain, Jiannan Huang, Yang Su, Md Rafikul Islam, Mohammad Alinoor Rahman, Francisco S. Cayabyab and Lixin Liu
Int. J. Mol. Sci. 2026, 27(2), 1111; https://doi.org/10.3390/ijms27021111 - 22 Jan 2026
Viewed by 44
Abstract
Leukocyte-specific protein 1 (LSP1) is known as an endothelial gatekeeper because it controls endothelial permeability and transendothelial cell migration, including that of leukocytes and potentially metastatic cancer cells. In endothelial cells, LSP1 is predominantly in the nucleus under resting conditions but translocates to [...] Read more.
Leukocyte-specific protein 1 (LSP1) is known as an endothelial gatekeeper because it controls endothelial permeability and transendothelial cell migration, including that of leukocytes and potentially metastatic cancer cells. In endothelial cells, LSP1 is predominantly in the nucleus under resting conditions but translocates to extranuclear compartments upon stimulation with TNF-α. The discrepancy between its predicted molecular weight (~37 kDa) and its observed migration on SDS-PAGE (≥52 kDa), along with its dynamic subcellular distribution, suggests a possible post-translational modification by SUMOylation. To investigate this, we examined endogenous LSP1 in murine primary endothelial cells and overexpressed recombinant LSP1 in murine endothelial (SVEC4-10EE2) and HEK293T cells. Our results demonstrate that LSP1 is SUMOylated by SUMO1, with Ubc9 serving as the conjugating enzyme and SENP1 as the deSUMOylating protease. Site-directed mutagenesis of lysines K270 and K318 abolished SUMOylation, resulting in a marked reduction in LSP1 steady-state levels. This reduction was attributed to enhanced ubiquitination and accelerated proteasomal degradation of LSP1 in the SUMOylation-deficient state. Furthermore, deSUMOylation impaired the TNF-α-induced translocation of LSP1 from the nucleus to extranuclear compartments, particularly the cytoskeleton. In summary, our findings establish that LSP1 is a SUMO1-modified protein. SUMOylation stabilizes LSP1 by preventing proteasomal degradation and is essential for its proper subcellular trafficking in endothelial cells in response to inflammatory stimuli. Full article
(This article belongs to the Special Issue Advances and Insights in Tumorigenesis and Tumor Metastasis)
Show Figures

Figure 1

17 pages, 3325 KB  
Article
Extracellular Vesicles (EVs) Derived from Senescent Endothelial Cells Promote Platelet Activation
by Whitney Venturini, Angel Cayo, Gabriel Diaz-Serrano, Sofia Sanhueza, Ricardo Huilcaman, Diego Méndez, Danitza Rebolledo-Mira, Catalina Silva-Pereira, Francisca Torres-Orellana, Felipe Troncoso, Carlos Escudero, Eduardo Fuentes, Andrew F. G. Quest, Claudio Valenzuela, Juan C. Tapia Amaro, Nelson E. Brown and Rodrigo Moore-Carrasco
Int. J. Mol. Sci. 2026, 27(2), 869; https://doi.org/10.3390/ijms27020869 - 15 Jan 2026
Viewed by 199
Abstract
Thrombotic cardiovascular diseases are frequent side effects of cancer therapy with cytotoxic drugs such as Doxorubicin. Endothelial cell senescence is emerging as a critical mechanism underlying endothelial dysfunction in this context. Senescent cells, although unable to proliferate, secrete bioactive molecules that alter the [...] Read more.
Thrombotic cardiovascular diseases are frequent side effects of cancer therapy with cytotoxic drugs such as Doxorubicin. Endothelial cell senescence is emerging as a critical mechanism underlying endothelial dysfunction in this context. Senescent cells, although unable to proliferate, secrete bioactive molecules that alter the tissue microenvironment, a feature known as the senescence-associated secretory phenotype (SASP). Besides soluble molecules, senescent cells also release extracellular vesicles (EVs). Previous studies indicate that senescent endothelial cells produce a secretome that promotes platelet activation; however, the contribution of EVs remains unclear. Here, we show that human microvascular endothelial cells (HMEC-1) exposed to Doxorubicin undergo senescence, display endothelial dysfunction, and release EVs. We found no differences in the concentration or size distribution of EVs from senescent and non-senescent cells. Nevertheless, EVs from senescent HMEC-1 promoted platelet activation more strongly than EVs from control cells. Notably, EVs alone did not induce platelet aggregation, suggesting that soluble factors are also required to support platelet-dependent hemostasis. These findings reveal that EVs from senescent endothelial cells contribute to platelet activation, a process that may favor thrombosis in patients receiving Doxorubicin-based chemotherapy. Full article
Show Figures

Graphical abstract

33 pages, 4569 KB  
Article
Heterotypic 3D Model of Breast Cancer Based on Tumor, Stromal and Endothelial Cells: Cytokines Interaction in the Tumor Microenvironment
by Anastasia Leonteva, Alina Kazakova, Ekaterina Berezutskaya, Anna Ilyina, David Sergeevichev, Sergey Vladimirov, Maria Bogachek, Igor Vakhrushev, Pavel Makarevich, Vladimir Richter and Anna Nushtaeva
Cells 2026, 15(2), 145; https://doi.org/10.3390/cells15020145 - 14 Jan 2026
Viewed by 227
Abstract
The recreation of the tumor microenvironment remains a significant challenge in the development of experimental cancer models. The present study constitutes an investigation into the interconnection between tumor, endothelial and stromal cells in heterotypic breast cancer spheroids. The generation of models was achieved [...] Read more.
The recreation of the tumor microenvironment remains a significant challenge in the development of experimental cancer models. The present study constitutes an investigation into the interconnection between tumor, endothelial and stromal cells in heterotypic breast cancer spheroids. The generation of models was achieved through the utilization of MCF7, MDA-MB-231, and SK-BR-3 tumor cell lines, in conjunction with endothelial TIME-RFP cells and either cancer-associated (BrC4f) or normal (BN120f) fibroblasts, within ultra-low attachment plates. It was established that stromal cells, most notably fibroblasts, were conducive to the aggregation of tumor cells into spheroids and the formation of pseudovessels in close proximity to fibroblast bands. In contrast to the more aggressive tumor models MDA-MB-231 and SK-BR-3, microenvironment cells do not influence the migration ability of MCF7 tumor cells. Heterotypic spheroids incorporating CAFs demonstrated a more aggressive and immunosuppressive phenotype. Multiplex immunoassay analysis of cytokines, followed by STRING cluster analysis, was used to identify key processes including angiogenesis, invasion, stem cell maintenance, and immunosuppression. Furthermore, a cluster of cytokines (LIF, SDF-1, HGF, SCGFb) was identified as potentially involved in the regulation of PD-L1 expression by tumor cells. This finding reveals a potential mechanism of immune evasion and suggests new avenues for therapeutic investigation. Full article
(This article belongs to the Special Issue Cell-to-Cell Crosstalk as a Target of Therapies)
Show Figures

Graphical abstract

21 pages, 2679 KB  
Article
Novel Dorsomorphin Derivatives: Molecular Modeling, Synthesis, and Bioactivity Evaluation
by Evangelia N. Tzanetou, Sandra Liekens, Konstantinos M. Kasiotis, Nikolas Fokialakis, Nikolaos Tsafantakis, Raul SanMartin, Haralampos Tzoupis, Konstantinos D. Papavasileiou, Antreas Afantitis and Serkos A. Haroutounian
Biomolecules 2026, 16(1), 145; https://doi.org/10.3390/biom16010145 - 14 Jan 2026
Viewed by 238
Abstract
Dorsomorphin, a pyrazolo[1,5-a]pyrimidine derivative, inhibits the bone morphogenetic protein (BMP) pathway by targeting the type I BMP receptors active in receptor-like kinases. However, the investigation of its—and its derivatives’—antiproliferative activity towards endothelial and cancer cell lines still requires reinforcement with additional [...] Read more.
Dorsomorphin, a pyrazolo[1,5-a]pyrimidine derivative, inhibits the bone morphogenetic protein (BMP) pathway by targeting the type I BMP receptors active in receptor-like kinases. However, the investigation of its—and its derivatives’—antiproliferative activity towards endothelial and cancer cell lines still requires reinforcement with additional studies. In the presented work, several dorsomorphin derivatives have been efficiently synthesized, based on a previously reported synthetic protocol with minor modifications. The endeavor was reinforced by a molecular docking study on the interactions of the designed derivatives with various protein targets, while the inhibitory effects of the synthesized novel molecules on the proliferation of murine leukemia cells (L1210), human T-lymphocyte cells (CEM), human cervix carcinoma cells (HeLa), and endothelial cells (human dermal microvascular, HMEC-1, and bovine aortic endothelial cells, BAECs) were investigated. Among the compounds tested, diphenol 22, emerged as the most promising bioactive lead since it demonstrated half-maximal inhibitory concentration (IC50) values below 9 μM in all tested lines except HeLa cells. In the same context, the carbamate derivative 6 was determined as a potent inhibitor of endothelial cell proliferation in BAECs at a low micromolar range. In conclusion, the presented work not only reveals promising antiproliferative dorsomorphin derivatives but also sets the basis for further exploitation of dorsomorphin’s bioactive portfolio, based on bioactivity results and molecular modeling calculations. Full article
(This article belongs to the Special Issue Heterocyclic Compounds: Synthesis, Characterization, and Validation)
Show Figures

Figure 1

23 pages, 2788 KB  
Article
Molecular Insights into the Synergistic Anticancer and Oxidative Stress–Modulating Activity of Quercetin and Gemcitabine
by Yasemin Afşin, Senem Alkan Akalın, İlhan Özdemir, Mehmet Cudi Tuncer and Şamil Öztürk
Antioxidants 2026, 15(1), 91; https://doi.org/10.3390/antiox15010091 - 10 Jan 2026
Viewed by 366
Abstract
Quercetin (Q), a bioactive flavonoid, exerts potent antioxidant and redox-modulating effects by activating the nuclear factor erythroid 2-related factor 2/antioxidant response Element (Nrf2/ARE) pathway and upregulating endogenous antioxidant defenses, including enzymatic antioxidants such as superoxide dismutase (SOD) and catalase (CAT), as well as [...] Read more.
Quercetin (Q), a bioactive flavonoid, exerts potent antioxidant and redox-modulating effects by activating the nuclear factor erythroid 2-related factor 2/antioxidant response Element (Nrf2/ARE) pathway and upregulating endogenous antioxidant defenses, including enzymatic antioxidants such as superoxide dismutase (SOD) and catalase (CAT), as well as non-enzymatic glutathione (GSH) and lipid peroxidation (MDA). Gemcitabine (Gem), a widely used antimetabolite chemotherapeutic, often shows limited efficacy under hypoxic and oxidative stress conditions driven by hypoxia-inducible factor 1-alpha (HIF-1α) and vascular endothelial growth factor (VEGF)-mediated angiogenesis. This study investigated the redox-mediated synergistic effects of Q and Gem in MDA-MB-231 human breast cancer cells. Combination treatment significantly reduced cell viability beyond the expected Bliss value, indicating a synergistic interaction and enhanced apoptosis compared with single-agent treatments. Increased reactive oxygen species (ROS) production was accompanied by depletion of GSH and accumulation of MDA, establishing a pro-apoptotic oxidative stress environment. Q alone enhanced SOD and CAT activities, whereas the combination induced exhaustion of antioxidant defenses under oxidative load, reflecting a redox-adaptive response. Molecular analyses revealed downregulation of HIF-1α and VEGF, alongside upregulation of Bax and Caspase-3, confirming suppression of hypoxia-driven survival and activation of the intrinsic apoptotic pathway. Transcriptomic and enrichment analyses further identified modulation of oxidative stress- and apoptosis-related pathways, including phosphoinositide-3-kinase–protein kinase B/Akt (PI3K/Akt), HIF-1 and VEGF signaling. Collectively, these results indicate that Q potentiates Gem cytotoxicity via redox modulation, promoting controlled ROS elevation and apoptosis while suppressing hypoxia-induced survival mechanisms, highlighting the therapeutic potential of redox-based combination strategies against chemoresistant breast cancer. Full article
(This article belongs to the Special Issue Redox Biomarkers in Cancer)
Show Figures

Figure 1

21 pages, 6776 KB  
Article
X-Ray-Induced Alterations in In Vitro Blood–Brain Barrier Models: A Comparative Analysis
by Roberta Moisa (Stoica), Stela Rodica Lucia Pătrașcu, Călin Mircea Rusu, Mihail Răzvan Ioan, Mihai Radu and Beatrice Mihaela Radu
Appl. Sci. 2026, 16(2), 587; https://doi.org/10.3390/app16020587 - 6 Jan 2026
Viewed by 229
Abstract
Ionizing radiation remains the primary approach for treating brain cancer and is frequently used in combination with chemotherapy. However, when it comes to gliomas, the effective delivery of therapeutic agents is hindered by the limited permeability of the blood–brain barrier (BBB). Consequently, selecting [...] Read more.
Ionizing radiation remains the primary approach for treating brain cancer and is frequently used in combination with chemotherapy. However, when it comes to gliomas, the effective delivery of therapeutic agents is hindered by the limited permeability of the blood–brain barrier (BBB). Consequently, selecting the most suitable and least harmful type of ionizing radiation is essential, given its potential side effects on healthy cells within the tumor microenvironment. In this study, we explored the impact of X-ray exposure on two in vitro BBB endothelial cell models—murine and human. Post-irradiation, we evaluated cell viability, clonogenic capacity, cell cycle progression, reactive oxygen species (ROS) levels, formation of micronuclei and γ-H2AX foci, as well as alterations in cytoskeletal organization, cell migration, and intracellular calcium dynamics. The results demonstrate notable differences between the two endothelial cell lines, suggesting the human cell line is more sensitive to X-rays. In conclusion, our study provides valuable insights into the brain microvascular endothelial cells’ response to radiation, laying the groundwork for strategies to protect healthy brain tissue. Full article
(This article belongs to the Special Issue Radiation Physics: Advances in DNA and Cellular Technologies)
Show Figures

Figure 1

61 pages, 5074 KB  
Review
Anoikis: To Die or Not to Die?
by Tomas Koltai and Larry Fliegel
Int. J. Mol. Sci. 2026, 27(2), 579; https://doi.org/10.3390/ijms27020579 - 6 Jan 2026
Viewed by 274
Abstract
Epithelial, endothelial, and many connective tissue cells are normally attached to the extracellular matrix (ECM). These cells rely on the ECM for structural support, signaling, and regulation of their behavior. When these cells lose this attachment or are in an inappropriate location, these [...] Read more.
Epithelial, endothelial, and many connective tissue cells are normally attached to the extracellular matrix (ECM). These cells rely on the ECM for structural support, signaling, and regulation of their behavior. When these cells lose this attachment or are in an inappropriate location, these cells soon die by a mechanism called anoikis (homelessness). Anoikis is a programmed cell death of an apoptotic nature; however, it can, in certain cases, be overcome, and detached cells can survive in the absence of the correct signals from the ECM. This is the case of malignant cells, where anoikis resistance is a prerequisite for invasion and metastasis. Without anoikis resistance (anchorage-independency), tumors would be unable to abandon their normal sites and would invade neighboring tissues and metastasize at distant locations. Anoikis is the natural barrier against cancer progression. Therefore, overcoming anoikis is a major step in cellular transformation. Cancer cells have developed many successful strategies to bypass anoikis. The main mechanism, albeit not the only one, involves hyper-activating survival pathways and over-expressing anti-apoptotic molecules. There is a strong and intertwining association between epithelial–mesenchymal transition and anoikis resistance that is discussed in depth. A better understanding of these anoikis resistance mechanisms has led to the research and development of pharmaceuticals that can counteract them. Full article
(This article belongs to the Special Issue Novel Therapeutic Targets in Cancers: 4th Edition)
Show Figures

Figure 1

21 pages, 11218 KB  
Article
Multi-Modal Profiling Reveals SERPINB3-Driven Immune Evasion and Stromal Immune Mimicry in Triple-Negative Breast Cancer
by Zinab O. Doha
Genes 2026, 17(1), 38; https://doi.org/10.3390/genes17010038 - 31 Dec 2025
Viewed by 334
Abstract
Background/Objectives: Triple-negative breast cancer (TNBC) exhibits high immune infiltration yet remains clinically aggressive. Although immune checkpoint blockade benefits a subset of patients, the molecular programs enabling concurrent immune activation and immune evasion in TNBC are not fully defined. This study aimed to identify [...] Read more.
Background/Objectives: Triple-negative breast cancer (TNBC) exhibits high immune infiltration yet remains clinically aggressive. Although immune checkpoint blockade benefits a subset of patients, the molecular programs enabling concurrent immune activation and immune evasion in TNBC are not fully defined. This study aimed to identify TNBC-specific tumor-intrinsic and tumor-extrinsic molecular features that may explain this paradox. Methods: Publicly available single-cell RNA-sequencing data from primary breast tumors were analyzed to characterize subtype-specific transcriptional programs across epithelial and stromal compartments. Tumor-intrinsic findings were independently validated using bulk transcriptomic and clinical data from the METABRIC cohort. Tumor microenvironment remodeling was evaluated using multiplexed tissue imaging of TNBC tumors. Functional analyses were done included Gene Ontology enrichment, Hallmark gene set enrichment analysis, and SERPINB3-centered protein–protein interaction network analysis using STRING. Results: Single-cell analysis identified SERPINB3 as a TNBC-enriched epithelial gene relative to ER+ and HER2+ tumors. This subtype-restricted pattern was validated in the METABRIC cohort and associated with pathways related to epithelial–mesenchymal transition, interferon signaling, and antigen presentation. TNBC tumors also displayed a humoral immune signature characterized by B-cell and plasmablast enrichment, as well as ectopic immunoglobulin gene expression in cancer-associated fibroblasts, endothelial cells, and myeloid populations. Multiplex imaging revealed coordinated associations between immune suppression, stromal activation, and tumor proliferation. Network analysis placed SERPINB3 within interconnected immune-regulatory and stromal signaling modules. Conclusions: Together, these data indicate that TNBC exhibits co-existing immune activation and immune-suppressive features. The identified epithelial and stromal signatures represent candidate biomarkers that may inform future studies of immune regulation and therapeutic stratification in TNBC. Full article
Show Figures

Figure 1

16 pages, 9771 KB  
Article
Prognostic Value of Lymphoid Infiltration and Aggregation in Cervical Cancer
by Grace Gorecki, Macy Hale, Sarah Taylor, Geyon Garcia, Ian P. MacFawn, T. Rinda Soong, Tullia C. Bruno and Lan Coffman
Cancers 2026, 18(1), 129; https://doi.org/10.3390/cancers18010129 - 30 Dec 2025
Viewed by 376
Abstract
Background/objectives: Understanding the immune landscape in cervical cancer is critical to the development of improved therapeutics. This study investigated the immune microenvironment in early-stage cervical cancer with a focus on B and T cell immune aggregates, i.e., lymphoid aggregates (LAs) and tertiary lymphoid [...] Read more.
Background/objectives: Understanding the immune landscape in cervical cancer is critical to the development of improved therapeutics. This study investigated the immune microenvironment in early-stage cervical cancer with a focus on B and T cell immune aggregates, i.e., lymphoid aggregates (LAs) and tertiary lymphoid structures (TLSs). Methods: Using multispectral imaging, we interrogated a cohort of patients with clinical stage I squamous or adenocarcinoma of the cervix with a focus on T and B cell spatial location and organization. Despite early-stage disease, recurrence was common at 37%, highlighting the need to identify patients at high risk for recurrence. Results: We demonstrated that high CD8+ T cell infiltration correlated significantly with improved overall survival (OS), particularly in patients with adenocarcinoma histology. CD8+ T cells colocalized with B cells, suggesting the formation of a more sophisticated cellular neighborhood, i.e., TLS, which has prognostic benefit in other solid tumors. CXCL13, a chemokine associated with TLS formation, correlated with improved recurrence-free survival. The combination of high CXCL13 and lymphoid structures correlated with improved OS. However, most immune structures in cervical cancer were lymphoid aggregates (LAs) that lack features of more developed TLS, such as high endothelial venules (HEVs) and germinal centers (GCs), highlighting a lack of full immune activation in this microenvironment. Validation in The Cancer Genome Atlas (TCGA) cohort illustrated similar trends in survival. Conclusions: Collectively, this work demonstrates the prognostic significance of immune infiltration and eventual TLS induction in early cervical cancer and presents potential future therapeutic targets. Full article
Show Figures

Figure 1

24 pages, 5708 KB  
Article
Hypoxia-Inducible Factor-1α, a Novel Molecular Target for a 2-Aminopyrrole Derivative: Biological and Molecular Modeling Study
by Svetlana S. Zykova, Tatyana Gessel, Aigul Galembikova, Evgenii S. Mozhaitsev, Sophia S. Borisevich, Nazim Igidov, Emiliya S. Egorova, Ekaterina Mikheeva, Natalia Khromova, Pavel Kopnin, Alina Galyautdinova, Vladimir Luzhanin, Maxim Shustov and Sergei Boichuk
Cancers 2026, 18(1), 115; https://doi.org/10.3390/cancers18010115 - 30 Dec 2025
Viewed by 415
Abstract
Background: Hypoxia-inducible factor-1α (HIF-1α) is a well-known transcriptional regulator that mediates a broad spectrum of cellular responses to hypoxia, including angiogenesis, extracellular matrix remodeling, and metabolic reprogramming. These activities can be achieved by upregulation of numerous genes, such as vascular endothelial growth factors, [...] Read more.
Background: Hypoxia-inducible factor-1α (HIF-1α) is a well-known transcriptional regulator that mediates a broad spectrum of cellular responses to hypoxia, including angiogenesis, extracellular matrix remodeling, and metabolic reprogramming. These activities can be achieved by upregulation of numerous genes, such as vascular endothelial growth factors, fibroblast growth factors, and platelet-derived growth factors, which are involved in the growth regulation of normal tissues and solid tumors. Notably, HIF-1α-mediated regulation of the solid tumor’s microenvironment effectively modulates tumor sensitivity to anticancer therapies and thereby can contribute to disease progression. Methods: The study was performed on breast, lung and prostate cancer cell lines. Protein expression was examined by western blotting. Antitumor activity of 2-ANPC was measured by syngeneic 4T1 breast cancer mouse model. Results: We show here that a 2-aminopyrrole derivative (2-amino-1-benzamido-5-(2-(naphthalene-2-yl)-2-oxoethylidene)-4-oxo-4,5-dihydro-1-H-pyrrole-3-carboxamide—2-ANPC), previously shown as a potent microtubule-targeting agent, effectively downregulates HIF-1α expression in a broad spectrum of cancer cell lines, including breast, lung, and prostate cancer. The downregulation of HIF-1α expression in 2-ANPC-treated cancer cells was due to enhanced proteasome-mediated degradation, whereas the proteasome inhibitor MG-132 effectively reversed this downregulation. 2-ANPC’s potency in downregulating HIF-1α was also shown in vivo by using the 4T1 breast cancer syngraft model. Importantly, this 2-aminopyrrole derivative also downregulated the expression of vascular endothelial growth factor receptors 1 and 3 (VEGFR1 and 3) in 4T1 tumors, which correlated with decreased tumor weight and size. As expected, an increase in apoptotic (i.e., cleaved caspase-3-positive) cells was detected in 4T1 tumors treated with 2-aminopyrrole derivative. Lastly, using various computational tools, we identified four potential binding sites for 2-ANPC to interact with HIF-1α, HIF-1β, and the p300 complex. Conclusions: Collectively, we show here, for the first time, that HIF-1α is a novel molecular target for the 2-aminopyrrole derivative (2-ANPC), thereby illustrating it as a potential scaffold for the development of potent chemotherapeutic agents with anti-angiogenic activity. Full article
(This article belongs to the Special Issue Hypoxia-Targeting Strategies to Improve Cancer Therapy Outcomes)
Show Figures

Figure 1

36 pages, 6557 KB  
Review
New Knowledge About Tissue Engineering Under Microgravity Conditions in Space and on Earth
by Markus Wehland, Thomas J. Corydon, Luis Fernando González-Torres, Fatima Abdelfattah, Jayashree Sahana, Herbert Schulz, Ashwini Mushunuri, Hanna Burenkova, Simon L. Wuest, Marcus Krüger, Armin Kraus and Daniela Grimm
Int. J. Mol. Sci. 2026, 27(1), 341; https://doi.org/10.3390/ijms27010341 - 28 Dec 2025
Viewed by 746
Abstract
Microgravity (µg)-generated three-dimensional (3D) multicellular aggregates can serve as models of tissue and disease development. They are relevant in the fields of cancer and in vitro metastasis or regenerative medicine (tissue engineering). Driven by the 3R concept—replacement, reduction, and refinement of [...] Read more.
Microgravity (µg)-generated three-dimensional (3D) multicellular aggregates can serve as models of tissue and disease development. They are relevant in the fields of cancer and in vitro metastasis or regenerative medicine (tissue engineering). Driven by the 3R concept—replacement, reduction, and refinement of animal testing—µg-exposure of human cells represents a new alternative method that avoids animal experiments entirely. New Approach Methodologies (NAMs) are used in biomedical research, pharmacology, toxicology, cancer research, radiotherapy, and translational regenerative medicine. Various types of human cells grow as 3D spheroids or organoids when exposed to µg-conditions provided by µg simulating instruments on Earth. Examples for such µg-simulators are the Rotating Wall Vessel, the Random Positioning Machine, and the 2D or 3D clinostat. This review summarizes the most recent literature focusing on µg-engineered tissues. We are discussing all reports examining different tumor cell types from breast, lung, thyroid, prostate, and gastrointestinal cancers. Moreover, we are focusing on µg-generated spheroids and organoids derived from healthy cells like chondrocytes, stem cells, bone cells, endothelial cells, and cardiovascular cells. The obtained data from NAMs and µg-experiments clearly imply that they can support translational medicine on Earth. Full article
Show Figures

Figure 1

19 pages, 4242 KB  
Article
Nanomodified Nexavar Enhances Efficacy in Caco-2 Cells via Targeting Aspartate β-Hydroxylase-Driven Mitochondrial Cell Death
by Ahmed M. Tabl, Mohamed E. Ebeid, Yasser B. M. Ali, Khaled A. Elawdan, Mai Alalem, Ahood A. Al-Eidan, Nedaa Alalem, Ahmed S. Mansour, Ahmed M. Awad, Eman A. El-Madawy, Shymaa A. Elbuckley, Rofaida Refaai, Amany M. Elshamy and Hany Khalil
Immuno 2026, 6(1), 5; https://doi.org/10.3390/immuno6010005 - 25 Dec 2025
Viewed by 385
Abstract
Colorectal tumors consist of diverse cell populations, including cancer cells and immune cells. Sorafenib (Nexavar), an oral multikinase inhibitor, targets tumor growth and angiogenesis while inducing apoptosis. However, its clinical use is hindered by poor solubility, rapid metabolism, and low bioavailability. This study [...] Read more.
Colorectal tumors consist of diverse cell populations, including cancer cells and immune cells. Sorafenib (Nexavar), an oral multikinase inhibitor, targets tumor growth and angiogenesis while inducing apoptosis. However, its clinical use is hindered by poor solubility, rapid metabolism, and low bioavailability. This study explores a nanotechnology-based approach to enhance Sorafenib’s efficacy against colon cancer. Nexavar was encapsulated into nanoparticles using an oil phase and Span 80 as a stabilizer to produce sub-100 nm droplets. The resulting Nano-Nexavar was evaluated for cytotoxicity on Caco-2 colorectal cancer cells and compared with free Nexavar on both Caco-2 and normal NCM-460 colon cells. Nano-Nexavar significantly reduced cancer cell viability at lower concentrations, with no observed toxicity to normal cells. Both formulations induced lactate dehydrogenase release and cell reduction at 2.5 µM, but Nano-Nexavar triggered nearly 60% apoptosis in Caco-2 cells. It inhibited Raf-1, NFκB, and ERK signaling, and reduced epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) levels over time. Notably, unlike Nexavar, the Nano-Nexavar suppressed aspartate β-hydroxylase (ASPH) and enhanced mitochondrial-mediated apoptosis by increasing Bax expression, mitochondrial accumulation, and mtDNA levels indicated by immunofluorescence, immunoblotting, flow cytometry, and qRT-PCR. These data demonstrate that Nano-Nexavar potentiates Sorafenib’s anticancer activity by targeting ASPH, thereby amplifying mitochondrial signaling–induced cell death. Full article
(This article belongs to the Special Issue New Insights of Anti-cancer Immunity and Cancer Immune Evasion)
Show Figures

Figure 1

Back to TopTop