A Decade-Old Atlas of TMEM (Transmembrane) Protein Family in Lung Cancer: Lessons Learnt and Future Directions
Abstract
1. Introduction
2. From Characterized TMEM Proteins to Survival-Guided Shortlisting in Lung Cancer
2.1. STING1 or TMEM173
2.2. ANO1 or TMEM16A
2.3. ORAI Proteins
2.4. NDC1 or TMEM48
2.5. Other Renamed TMEMs in Lung Cancer
2.6. TMEM Survival Association
3. TMEM Proteins with Tumor-Suppressive Roles in Lung Cancer
3.1. TMEM8B
3.2. TMEM17
3.3. TMEM52B
3.4. TMEM139
3.5. TMEM100
3.6. TMEM106A
3.7. TMEM164
3.8. TMEM176A
3.9. TMEM229A
3.10. TMEM196
4. TMEM Proteins Associated with Tumor Promotion in Lung Cancer
4.1. TMEM14A
4.2. TMEM33
4.3. TMEM45A
4.4. TMEM45B
4.5. TMEM74
4.6. TMEM98
4.7. TMEM106B
4.8. TMEM116
4.9. TMEM158
4.10. TMEM160
4.11. TMEM176B
4.12. TMEM179
4.13. TMEM243
5. Dual Roles of TMEM88 in Lung Cancer
5.1. Tumor Suppressor
5.2. Dual Roles of CRA-a
6. Less Characterized TMEMs with Predicative Values
6.1. TMEM92
6.2. TMEM161A
6.3. TMEM163
6.4. TMEM184A
6.5. TMEM125
7. Discordance Between GEPIA Survival Curves and Published Functional Findings
8. Genetic Alterations
8.1. TMEM106B–ROS1 Fusion
8.2. TMEM87A-RASGRF1 Fusion
8.3. Mutations
9. Indirect Modulators of Lung Tumors
9.1. TMEM59
9.2. TMEM132A
9.3. TMEM215
10. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| TMEM | transmembrane |
| EGFR | epidermal growth factor receptor |
| ALK | anaplastic lymphoma kinase |
| ICB | immune checkpoint blockade therapy |
| ER | endoplasmic reticulum |
| GPCRs | G protein-coupled receptors |
| STING1 | stimulator of interferon response cGAMP interactor 1 |
| IFN-I | type-I IFN |
| ANO1 | anoctamin-1 |
| ORAI1 | ORAI calcium release-activated calcium modulator 1 |
| Wnt | Wingless-type MMTV integration site family |
| CRAC | calcium release-activated calcium |
| STIM1 | stromal interaction molecules 1 |
| SOCE | store operated Ca2+ entry |
| ARC | arachidonic acid-regulated Ca2+ |
| NSCLC | non-small cell lung cancer |
| LUAD | lung adenocarcinoma |
| CDK | Cyclin-dependent kinase |
| miR | microRNA |
| NDC1 | NDC1 transmembrane nucleoporin |
| CEMIP | cell migration-inducing and hyaluronan-binding protein |
| VMP1 | Vacuole membrane protein 1 |
| DRAM2 | DNA damage regulated autophagy modulator 2 |
| EMC6 | ER membrane protein complex subunit 6 |
| EVA1A | eva-1 homolog A |
| PEDS1 | plasmanylethanolamine desaturase-1 |
| IGFLR1 | IGF-like family receptor 1 |
| RNFT2 | ring finger protein, transmembrane 2 |
| WDR82 | WD repeat domain 82 |
| PFS | progression-free survival |
| OS | overall survival |
| GEPIA | Gene Expression Profiling Interactive Analysis |
| GEO | Gene Expression Omnibus database |
| TCGA | The Cancer Genome Atlas |
| EGA | European Genome-phenome Archive |
| ATM | Ataxia telangiectasia mutated |
| ATR | AT- and Rad3-related |
| DFS/DSS | disease-free or specific survival |
| DVL | disheveled segment polarity protein |
| Snail | Snail family transcriptional repressor 1 (used interchangeably with SNAI1) |
| ZO-1 | Zonula occludens-1 |
| PDPK1 | 3-phosphoinositide-dependent protein kinase 1 For clarity, we use the official gene symbol PDPK1 throughout this review (formerly called PDK1 in many original studies) |
| TWIST1 | twist family bHLH transcription factor 1 |
| FOXO3A | Forkhead box O3 |
| BAX | BCL2-associated X protein |
| BCL2 | B-cell lymphoma 2 |
| HIF-1α | hypoxia-inducible factor 1-alpha |
| EMT | epithelial-mesenchymal transition |
| FZD | frizzled class receptor |
| GPX4 | glutathione peroxidase 4 |
| HDAC6 | histone deacetylase 6 |
| KO | knockout |
| LUSC | lung squamous cell carcinoma |
| PI3K/Akt/NF-κB | phosphoinositide 3-kinase, protein kinase B, and nuclear factor-κB |
| ERK | extracellular signal-regulated kinase |
| ROR1 | receptor tyrosine kinase like orphan receptor 1 |
| SPP1 | secreted phosphoprotein 1 (osteopontin) |
| TAp63 | tumor protein p63, transcriptionally active isoform |
| aNL | adjacent histologically normal lung |
| TNM | TNM stage |
| IHC | Immunohistochemistry |
| HBE1 | human bronchial epithelial cell line |
| HPA | Human Protein Atlas |
| MS4A | membrane-spanning 4A |
| A2M | alpha-2-macroglobulin |
| AXL | AXL receptor tyrosine kinase |
| RhoC | Ras homolog family member C |
| TFEB | transcription factor EB |
| GSEA | gene set enrichment analysis |
| KPNA6 | Karyopherin subunit alpha 6 |
| MS | Mass spectrometry |
| NUP | nucleoporin |
| P53 | tumor protein p53 |
| Co-IP | co-immunoprecipitation |
| ROS | reactive oxygen species |
| MS | mass spectrometry |
| CLEAR | coordinated lysosomal expression and regulation |
| ECM | extracellular matrix |
| PH1 | Pleckstrin homology 1 |
| SOX2 | SRY-box transcription factor 2 |
| PARD3 | par-3 family cell polarity regulator |
| FGFR1 | fibroblast growth factor receptor 1 |
| JNK | c-Jun N-terminal kinase |
| ITGAL | integrin subunit alpha L |
| ITGAX | integrin subunit alpha X |
| H3K4me3 | histone H3 lysine 4 trimethylation |
| ROS1 | ROS proto-oncogene 1 |
| RASGRF1 | RAS guanyl releasing factor 1 |
| MEK | MAPK/ERK kinase |
| RAF | RAF proto-oncogene serine/threonine-protein kinase |
| SCLC | small-cell lung cancer |
Appendix A
| Name | Gene Description | Aliases | Log-Rank p Value 1 (Raw Values) | |
|---|---|---|---|---|
| DFS | OS | |||
| AGMO | Alkylglycerol monooxygenase | TMEM195 | / | / |
| ANO1 | Anoctamin 1 | TMEM16A | / | (−)Q:0.016 |
| ANO10 | Anoctamin 10 | TMEM16K | (−)M:0.00039 | (−)M:0.042 |
| ANO2 | Anoctamin 2 | TMEM16B | / | / |
| ANO3 | Anoctamin 3 | TMEM16C | / | / |
| ANO4 | Anoctamin 4 | TMEM16D | (−)M:0.046 | / |
| ANO5 | Anoctamin 5 | TMEM16E | / | / |
| ANO6 | Anoctamin 6 | TMEM16F | (−)Q:0.03 | (−)Q:0.0058 |
| ANO7 | Anoctamin 7 | TMEM16G | (−)M:0.012 | / |
| ANO8 | Anoctamin 8 | TMEM16H | (−)Q:0.011 | / |
| ANO9 | Anoctamin 9 | TMEM16J | (−)Q:0.042 | / |
| ARHGAP42 | Rho GTPase activating protein 42 | AD031, GRAF3, TMEM133 | / | / |
| B3GNT3 | UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 3 | B3GAL-T8, B3GN-T3, B3GNT-3, HP10328, TMEM3, beta3Gn-T3 | (−)M:3.2 × 10−5 | (−)Q:0.011 |
| C2CD2 | C2 calcium-dependent domain containing 2 | C21orf25, C21orf258, TMEM24L | / | / |
| C2CD2L | C2CD2 like | DLNB23, TMEM24 | / | / |
| CATSPERD | Cation channel sperm-associated auxiliary subunit delta | TMEM146 | / | / |
| CCDC200 | Coiled-coil domain containing 200 | LINC00854, TMEM106A-AS | / | / |
| CEMIP | Cell migration inducing hyaluronidase 1 | CCSP11, HYBID, KIAA1199, TMEM2L | / | / |
| CLRN3 | Clarin 3 | TMEM12, USH3AL1 | (−)Q:0.019 | (−)Q:0.038 |
| CLTRN | Collectrin, amino acid transport regulator | NX-17, NX17, TMEM27 | (−)M: 0.045 | / |
| CNPY2 | Canopy FGF signaling regulator 2 | TMEM4 | (−)M:5 × 10−4 | / |
| DOLK | Dolichol kinase | TMEM15 | / | / |
| DRAM2 | DNA damage regulated autophagy modulator 2 | TMEM77 | (+)Q:0.047 | (+)Q:0.037 |
| ELP6 | Elongator acetyltransferase complex subunit 6 | C3orf75, TMEM103 | / | / |
| EMC3 | ER membrane protein complex subunit 3 | POB; TMEM111 | / | / |
| EMC4 | ER membrane protein complex subunit 4 | PIG17, TMEM85 | / | / |
| EMC6 | ER membrane protein complex subunit 6 | RAB5IFL, TMEM93 | / | (−)M:0.0023 |
| EVA1A | Eva-1 homolog A, regulator of programmed cell death | FAM176A, TMEM166 | (−)Q:0.0027 | / |
| FAM156A | Family with sequence similarity 156 member A | TMEM29 | / | / |
| FAM156B | Family with sequence similarity 156 member B | TMEM29B | / | (+)M:0.035 |
| FAM174A | Family with sequence similarity 174 member A | TMEM157 | (−)M:0.0063 | / |
| FAM187B | Family with sequence similarity 187 member B | TMEM162 | Error | Error |
| HGSNAT | Heparan-alpha-glucosaminide N-acetyltransferase | RP73, HGNAT, MPS3C, TMEM76 | (−)M:0.0068 | (−)M:0.0084 |
| IGFLR1 | IGF-like family receptor 1 | TMEM149 | / | / |
| LDAF1 | Lipid droplet assembly factor 1 | TMEM159 | / | / |
| LMF1 | Lipase maturation factor 1 | TMEM112, TMEM112A | / | / |
| LMF2 | Lipase maturation factor 2 | TMEM112B, TMEM153 | / | / |
| MMGT1 | Membrane magnesium transporter 1 | TMEM32 | / | / |
| NALF2 | NALCN channel auxiliary factor 2 | CXorf63, FAM155B, TED, TMEM28, bB57D9.1 | (+)Q:0.046 | / |
| NDC1 | NDC1 transmembrane nucleoporin | NEDAPA, NET3, TMEM48 | / | (−)Q:0.017 |
| NEMP1 | Nuclear envelope integral membrane protein 1 | TMEM194, TMEM194A | / | / |
| NEMP2 | Nuclear envelope integral membrane protein 2 | TMEM194B | / | / |
| OOSP2 | Oocyte secreted protein 2 | OOSP2A, PLAC1L, TMEM122 | Error | Error |
| OPALIN | Oligodendrocytic myelin paranodal and inner loop protein | TMEM10 | Error | Error |
| OPN5 | Opsin 5 | TMEM13 | Error | Error |
| ORAI1 | ORAI calcium release-activated calcium modulator 1 | TMEM142A | / | / |
| ORAI2 | ORAI calcium release-activated calcium modulator 2 | TMEM142B | / | / |
| ORAI3 | ORAI calcium release-activated calcium modulator 3 | TMEM142C | / | / |
| PACC1 | Proton-activated chloride channel 1 | ASOR, C1orf75, PAC, PAORAC, TMEM206, hPAC | / | / |
| PEDS1 | Plasmanylethanolamine desaturase 1 | CarF, KUA, TMEM189 | (+)M:0.00019 | / |
| PEDS1-UBE2V1 | PEDS1-UBE2V1 readthrough | CROC-1B, CROC1B, KUA-UEV, TMEM189-UBE2V1 | (+)M:0.037 | (−)Q:0.023 |
| PIP4P2 | Phosphatidylinositol-4,5-bisphosphate 4-phosphatase 2 | TMEM55A | / | / |
| RBM14 | RNA binding motif protein 14 | TMEM137 | / | / |
| RNFT2 | Ring finger protein, transmembrane 2 | TMEM118 | (−)Q:0.00037 | / |
| RTP3 | Receptor transporter protein 3 | LTM1, TMEM7, Z3CXXC3 | error | error |
| RXYLT1 | Ribitol xylosyltransferase 1 | HP10481, MDDGA10, TMEM5 | / | (−)M:0.021 |
| SARAF | Store-operated calcium entry-associated regulatory factor | FOAP-7, HSPC035, TMEM66, XTP3 | / | / |
| SGMS1 | Sphingomyelin synthase 1 | MOB, MOB1, SMS1, TMEM23, hmob33 | (−)Q:0.04 | / |
| SHISA2 | Shisa family member 2 | TMEM46, C13orf13, PRO28631, WGAR9166, bA398O19.2 | / | (+)Q:0.031 |
| SHISA4 | Shisa family member 4 | C1orf40, TMEM58 | (−)Q:0.0043 | / |
| SLC35G1 | Solute carrier family 35 member G1 | C10orf60, POST, TMEM20 | (+)Q:0.0096 | / |
| SLC35G2 | Solute carrier family 35 member G2 | TMEM22 | / | (−)M:0.037 |
| SLC35G3 | Solute carrier family 35 member G3 | AMAC1, TMEM21A | error | error |
| SLC35G6 | Solute carrier family 35 member G6 | AMAC1L3, TMEM21B | (−)M:0.06 | / |
| SLITRK2 | SLIT- and NTRK-like family member 2 | CXorf1, CXorf2, SLITL1, TMEM257, XLID111, KIAA1854 | (−)Q:0.046 | / |
| STIMATE | STIM activating enhancer | TMEM110 | / | / |
| STIMATE-MUSTN1 | STIMATE-MUSTN1 readthrough | TMEM110-MUSTN1 | / | / |
| SYNDIG1 | Synapse differentiation inducing 1 | C20orf39, DSPC2, IFITMD5, TMEM90B | / | / |
| SYNDIG1L | Synapse differentiation inducing 1 like | CAPUCIN, DSPC1, IFITMD4, SynDIG2, TMEM90A | / | / |
| TEDDM1 | Transmembrane epididymal protein 1 | EDDM9, Epdd1, HE9, HEL-S-45e, TMEM45C | (+)M:0.05 | / |
| TEX2 | Testis expressed 2 | HT008, TMEM96 | / | / |
| TLCD4 | TLC domain containing 4 | TMEM56, FLJ31842 | (−)M: 0.03 | / |
| TLCD4-RWDD3 | TLCD4-RWDD3 readthrough | TMEM56-RWDD3 | (−)M:0.0087 | / |
| TLCD5 | TLC domain containing 5 | TMEM136 | / | / |
| TPRA1 | Transmembrane protein adipocyte associated 1 | GPR175, TPRA40, TMEM227 | (+)M:0.035 | / |
| TRAPPC10 | Trafficking protein particle complex subunit 10 | TMEM1 | / | / |
| VMP1 | Vacuole membrane protein 1 | EPG3, TANGO5, TMEM49 | / | / |
| WDR82 | WD repeat domain 82 | TMEM113 | / | / |
| Log-Rank p Value 1 | Raw Values | Normalized by Reference Genes | |||||||
|---|---|---|---|---|---|---|---|---|---|
| GAPDH | ACTB | GNAS | |||||||
| Name | Aliases | DFS | OS | DFS | OS | DFS | OS | DFS | OS |
| TMEM107 | GRVS638, JBTS29, MKS13, PRO1268 | (−)M:8 × 10−6 | / | (−)Q:0.042 | (+)Q:0.014 | (−)M:0.039 | / | (−)Q:0.0018 | / |
| TMEM11 | C17orf35, PM1, PMI | / | (−)Q:0.014 | / | (+)M:0.029 | (+)Q:0.033 | / | / | / |
| TMEM115 | PL6 | (−)Q:0.027 | / | / | (+)M:0.032 | (+)M:0.0047 | (+)M:0.0035 | / | / |
| TMEM125 | — | (−)M:0.018 | / | (−)M:0.028 | / | (−)M:0.042 | (+)Q:0.024 | (−)M:0.0013 | / |
| TMEM127 | — | (−)Q:0.02 | (−)Q:0.04 | / | / | / | / | / | / |
| TMEM129 | D4S2561E | (−)M:0.03 | / | / | (+)M:0.049 | / | / | / | / |
| TMEM135 | PMP52 | (−)M:0.029 | / | / | / | / | / | / | / |
| TMEM140 | — | (−)Q:0.0057 | (−)Q:0.0077 | / | / | / | / | / | / |
| TMEM14C | C6orf53, HSPC194, MSTP073, NET26, bA421M1.6 | (−)M:0.011 | / | / | (+)M:0.0039 | / | / | (−)Q:0.023 | / |
| TMEM150A | TM6P1, TMEM150, TTN1 | (−)Q:2 × 10−4 | / | (−)M:0.015 | (+)M:0.049 | / | (+)M:0.0013 | (−)Q:0.0025 | / |
| TMEM161B | FLB3342, PRO1313 | (−)M:0.0097 | / | / | (+)Q:0.026 | / | / | / | / |
| TMEM163 | DC29, HLD25, SLC30A11, SV31 | / | (+)Q:0.017 | / | (+)Q:0.0043 | / | (+)Q:0.0036 | (−)M:0.05 | (+)Q:0.013 |
| TMEM170A | TMEM170 | (−)M:0.012 | (−)Q:0.013 | / | / | / | / | / | / |
| TMEM171 | PRP2 | / | (−)M:0.017 | / | / | (+)Q:0.018 | / | / | / |
| TMEM175 | — | / | / | / | (+)Q:0.021 | / | (+)M:0.003 | (−)M:0.031 | / |
| TMEM184C | TMEM34, SLC51C3 | / | (−)Q:0.014 | / | / | (+)M:0.035 | / | / | / |
| TMEM187 | CXorf12, DXS9878E, ITBA1 | / | / | (−)M:0.023 | (+)Q:0.016 | / | (+)Q:0.035 | / | / |
| TMEM19 | — | (+)M:0.029 | (−)Q:0.039 | / | / | (+)Q:0.0041 | / | / | / |
| TMEM192 | — | / | (−)M:0.0047 | / | / | / | / | / | / |
| TMEM200B | TTMB | / | (−)Q:0.025 | / | (+)M:0.026 | / | / | / | / |
| TMEM205 | UNQ501 | (−)M:0.01 | / | / | (+)Q:0.033 | / | (+)M:0.02 | / | / |
| TMEM219 | IGFBP-3R, IGFBP3R | (−)M:0.0037 | / | / | (+)M:0.038 | / | / | (−)M:0.029 | / |
| TMEM222 | C1orf160, NEDMOSBA | (−)Q:0.01 | / | / | (+)Q:0.038 | / | / | / | / |
| TMEM223 | Mrx15 | (−)M:0.031 | / | / | (+)M:0.0045 | / | / | / | / |
| TMEM228 | ENTREP2, FAM189A1 | (−)Q:0.031 | / | / | (+)Q:0.01 | (+)M:0.029 | (+)Q:0.0068 | / | / |
| TMEM230 | C20orf30, HSPC274, dJ1116H23.2.1 | / | (−)Q:0.021 | / | / | / | / | / | / |
| TMEM231 | ALYE870, JBTS20, MKS11, PRO1886 | / | (−)M:0.04 | / | / | (+)Q:0.047 | / | / | / |
| TMEM233 | DSPB2, IFITMD2 | (−)Q:0.033 | / | / | (+)Q:0.014 | / | (+)Q:0.001 | / | / |
| TMEM240 | C1orf70, SCA21 | (−)Q:0.046 | (−)Q:0.04 | / | / | / | / | / | / |
| TMEM256 | C17orf61 | (−)Q:0.029 | / | / | (+)M:0.018 | / | / | / | / |
| TMEM258 | C11orf10, Kud, Kuduk | (−)Q:0.024 | Q:0.0058 | / | (+)M:0.031 | / | / | / | / |
| TMEM30A | C6orf67, CDC50A | (−)Q: 0.015 | / | / | (+)Q:0.047 | / | / | / | / |
| TMEM33 | 1600019D15Rik, Pom33, SHINC-3, SHINC3 | / | (−)Q:0.011 | / | / | / | / | / | / |
| TMEM38B | C9orf87, D4Ertd89e, OI14, TRIC-B, TRICB, bA219P18.1 | / | (−)M:0.041 | / | / | / | / | / | / |
| TMEM39B | — | / | / | / | (+)M:0.013 | (+)M:8.9 × 10−5 | / | / | / |
| TMEM41B | — | (−)M:0.0064 | / | / | / | / | / | / | / |
| TMEM50A | IFNRC, SMP1 | (−)Q:0.0011 | / | / | (+)M:0.046 | / | (+)Q:0.034 | (−)Q:0.04 | / |
| TMEM52B | C12orf59 | (−)Q:0.049 | / | / | (+)Q:0.026 | (+)M:0.032 | (+)Q:0.018 | / | / |
| TMEM53 | CTDI, NET4 | (−)Q:0.017 | / | (−)M:0.024 | (+)Q:0.028 | / | (+)M:0.011 | (−)Q:0.0094 | / |
| TMEM59 | C1orf8, DCF1, HSPC001, PRO195, UNQ169 | (−)Q:0.023 | / | / | (+)Q:0.033 | / | (+)Q:0.016 | (−)Q:0.031 | / |
| TMEM5 | RXYLT1, HP10481, MDDGA10 | / | (−)M: 0.021 | / | / | (+)M:0.035 | / | / | / |
| TMEM62 | — | (−)M:0.0065 | / | (−)M:0.0075 | (+)Q:0.033 | / | (+)Q:0.0087 | (−)M:0.0021 | / |
| TMEM63A | HLD19, KIAA0792 | (−)M:0.00023 | / | (−)Q:0.0076 | (+)M:0.0076 | (−)Q:0.013 | (+)Q:0.039 | (−)M:0.0012 | / |
| TMEM65 | — | / | (−)Q:0.032 | / | (+)Q:0.03 | / | / | / | / |
| TMEM74 | NET36 | (−)Q:0.041 | / | / | (+)Q:0.0053 | / | (+)M:0.02 | / | / |
| TMEM80 | — | (−)M:0.011 | / | / | (+)Q:0.039 | / | (+)Q:0.022 | (−)Q:0.018 | / |
| TMEM86A | — | (−)Q:0.017 | / | / | (+)M:0.013 | / | (+)M:0.036 | / | / |
| TMEM9 | TMEM9A, DERM4, DERM4A | (−)M:0.006 | / | / | / | / | / | / | / |
| TMEM9B | C11orf15 | (−)Q:0.0087 | / | / | / | / | (+)Q:0.025 | / | / |
| TMEM98 | TADA1 | (−)M:0.037 | / | / | (+)M:0.021 | / | (+)M:0.049 | (−)Q:0.036 | (+)M:0.02 |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Zheng, R.S.; Chen, R.; Han, B.F.; Wang, S.M.; Li, L.; Sun, K.X.; Zeng, H.M.; Wei, W.W.; He, J. Cancer incidence and mortality in China, 2022. Zhonghua Zhong Liu Za Zhi 2024, 46, 221–231. [Google Scholar] [CrossRef]
- Du, X.; Yang, B.; An, Q.; Assaraf, Y.G.; Cao, X.; Xia, J. Acquired resistance to third-generation EGFR-TKIs and emerging next-generation EGFR inhibitors. Innovation 2021, 2, 100103. [Google Scholar] [CrossRef]
- Herrera-Juárez, M.; Serrano-Gómez, C.; Bote-de-Cabo, H.; Paz-Ares, L. Targeted therapy for lung cancer: Beyond EGFR and ALK. Cancer 2023, 129, 1803–1820. [Google Scholar] [CrossRef]
- Gang, X.; Yan, J.; Li, X.; Shi, S.; Xu, L.; Liu, R.; Cai, L.; Li, H.; Zhao, M. Immune checkpoint inhibitors rechallenge in non-small cell lung cancer: Current evidence and future directions. Cancer Lett. 2024, 604, 217241. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Qin, C.; Hu, H.; Liu, T.; He, Y.; Guo, H.; Yan, H.; Zhang, J.; Tang, S.; Zhou, H. Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer: Progress, Challenges, and Prospects. Cells 2022, 11, 320. [Google Scholar] [CrossRef]
- Cooper, A.J.; Sequist, L.V.; Lin, J.J. Third-generation EGFR and ALK inhibitors: Mechanisms of resistance and management. Nat. Rev. Clin. Oncol. 2022, 19, 499–514. [Google Scholar] [CrossRef] [PubMed]
- Konen, J.M.; Wu, H.; Gibbons, D.L. Immune checkpoint blockade resistance in lung cancer: Emerging mechanisms and therapeutic opportunities. Trends Pharmacol. Sci. 2024, 45, 520–536. [Google Scholar] [CrossRef] [PubMed]
- Passaro, A.; Brahmer, J.; Antonia, S.; Mok, T.; Peters, S. Managing Resistance to Immune Checkpoint Inhibitors in Lung Cancer: Treatment and Novel Strategies. J. Clin. Oncol. 2022, 40, 598–610. [Google Scholar] [CrossRef]
- Tian, Y.; Li, Q.; Yang, Z.; Zhang, S.; Xu, J.; Wang, Z.; Bai, H.; Duan, J.; Zheng, B.; Li, W.; et al. Single-cell transcriptomic profiling reveals the tumor heterogeneity of small-cell lung cancer. Signal Transduct. Target. Ther. 2022, 7, 346. [Google Scholar] [CrossRef]
- Kashima, Y.; Shibahara, D.; Suzuki, A.; Muto, K.; Kobayashi, I.S.; Plotnick, D.; Udagawa, H.; Izumi, H.; Shibata, Y.; Tanaka, K.; et al. Single-Cell Analyses Reveal Diverse Mechanisms of Resistance to EGFR Tyrosine Kinase Inhibitors in Lung Cancer. Cancer Res. 2021, 81, 4835–4848. [Google Scholar] [CrossRef]
- Marx, S.; Dal Maso, T.; Chen, J.W.; Bury, M.; Wouters, J.; Michiels, C.; Le Calvé, B. Transmembrane (TMEM) protein family members: Poorly characterized even if essential for the metastatic process. Semin. Cancer Biol. 2020, 60, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Schmit, K.; Michiels, C. TMEM Proteins in Cancer: A Review. Front. Pharmacol. 2018, 9, 1345. [Google Scholar] [CrossRef]
- Xu, H.; Yang, S.; Liu, P.; Zhang, Y.; Zhang, T.; Lan, J.; Jiang, H.; Wu, D.; Li, J.; Bai, X. The roles and functions of TMEM protein family members in cancers, cardiovascular and kidney diseases (Review). Biomed. Rep. 2025, 22, 63. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Lee, C.J. Transmembrane proteins with unknown function (TMEMs) as ion channels: Electrophysiological properties, structure, and pathophysiological roles. Exp. Mol. Med. 2024, 56, 850–860. [Google Scholar] [CrossRef] [PubMed]
- Wrzesiński, T.; Szelag, M.; Cieślikowski, W.A.; Ida, A.; Giles, R.; Zodro, E.; Szumska, J.; Poźniak, J.; Kwias, Z.; Bluyssen, H.A.; et al. Expression of pre-selected TMEMs with predicted ER localization as potential classifiers of ccRCC tumors. BMC Cancer 2015, 15, 518. [Google Scholar] [CrossRef]
- Fan, T.; Liu, Y.; Liu, H.; Wang, L.; Tian, H.; Zheng, Y.; Zheng, B.; Xue, L.; Li, C.; He, J. Transmembrane Protein-Based Risk Model and H3K4me3 Modification Characteristics in Lung Adenocarcinoma. Front. Oncol. 2022, 12, 828814. [Google Scholar] [CrossRef]
- Le Naour, J.; Zitvogel, L.; Galluzzi, L.; Vacchelli, E.; Kroemer, G. Trial watch: STING agonists in cancer therapy. Oncoimmunology 2020, 9, 1777624. [Google Scholar] [CrossRef]
- Zhang, R.; Kang, R.; Tang, D. STING1 in Different Organelles: Location Dictates Function. Front. Immunol. 2022, 13, 842489. [Google Scholar] [CrossRef]
- Chen, X.; Yu, C.; Kang, R.; Kroemer, G.; Tang, D. Cellular degradation systems in ferroptosis. Cell Death Differ. 2021, 28, 1135–1148. [Google Scholar] [CrossRef]
- Zhang, R.; Kang, R.; Tang, D. The STING1 network regulates autophagy and cell death. Signal Transduct. Target. Ther. 2021, 6, 208. [Google Scholar] [CrossRef]
- Pedemonte, N.; Galietta, L.J. Structure and function of TMEM16 proteins (anoctamins). Physiol. Rev. 2014, 94, 419–459. [Google Scholar] [CrossRef]
- Al-Hosni, R.; Ilkan, Z.; Agostinelli, E.; Tammaro, P. The pharmacology of the TMEM16A channel: Therapeutic opportunities. Trends Pharmacol. Sci. 2022, 43, 712–725. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zou, L.; Ma, K.; Yu, J.; Wu, H.; Wei, M.; Xiao, Q. Cell-specific mechanisms of TMEM16A Ca2+-activated chloride channel in cancer. Mol. Cancer 2017, 16, 152. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, Y.; He, J.; Rao, H.; Zhang, D.; Shen, Z.; Zhou, C. ANO1: Central role and clinical significance in non-neoplastic and neoplastic diseases. Front. Immunol. 2025, 16, 1570333. [Google Scholar] [CrossRef]
- Li, H.; Yu, Z.; Wang, H.; Wang, N.; Sun, X.; Yang, S.; Hua, X.; Liu, Z. Role of ANO1 in tumors and tumor immunity. J. Cancer Res. Clin. Oncol. 2022, 148, 2045–2068. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Zhang, L.; Li, N. ANO1: More Than Just Calcium-Activated Chloride Channel in Cancer. Front. Oncol. 2022, 12, 922838. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, R.; Jiang, D. TMEM16A as a Potential Biomarker in the Diagnosis and Prognosis of Lung Cancer. Arch. Iran. Med. 2019, 22, 32–38. [Google Scholar]
- He, Y.; Li, H.; Chen, Y.; Li, P.; Gao, L.; Zheng, Y.; Sun, Y.; Chen, J.; Qian, X. Expression of anoctamin 1 is associated with advanced tumor stage in patients with non-small cell lung cancer and predicts recurrence after surgery. Clin. Transl. Oncol. 2017, 19, 1091–1098. [Google Scholar] [CrossRef]
- Seo, Y.; Jeong, S.B.; Woo, J.H.; Kwon, O.B.; Lee, S.; Oh, H.I.; Jo, S.; Park, S.J.; Namkung, W.; Moon, U.Y.; et al. Diethylstilbestrol, a Novel ANO1 Inhibitor, Exerts an Anticancer Effect on Non-Small Cell Lung Cancer via Inhibition of ANO1. Int. J. Mol. Sci. 2021, 22, 7100. [Google Scholar] [CrossRef]
- Tian, Y.; Schreiber, R.; Wanitchakool, P.; Kongsuphol, P.; Sousa, M.; Uliyakina, I.; Palma, M.; Faria, D.; Traynor-Kaplan, A.E.; Fragata, J.I.; et al. Control of TMEM16A by INO-4995 and other inositolphosphates. Br. J. Pharmacol. 2013, 168, 253–265. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Geng, R.; Zhang, W.; Wan, H.; Kang, X.; Guo, S. TMEM16A ion channel: A novel target for cancer treatment. Life Sci. 2023, 331, 122034. [Google Scholar] [CrossRef] [PubMed]
- Sonneville, F.; Ruffin, M.; Coraux, C.; Rousselet, N.; Le Rouzic, P.; Blouquit-Laye, S.; Corvol, H.; Tabary, O. MicroRNA-9 downregulates the ANO1 chloride channel and contributes to cystic fibrosis lung pathology. Nat. Commun. 2017, 8, 710. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Liu, F.; Ji, K.; Liu, N.; He, Y.; Zhang, W.; Wang, L. MicroRNA-381 inhibits the metastasis of gastric cancer by targeting TMEM16A expression. J. Exp. Clin. Cancer Res. 2017, 36, 29. [Google Scholar] [CrossRef]
- Tanwar, J.; Arora, S.; Motiani, R.K. Orai3: Oncochannel with therapeutic potential. Cell Calcium 2020, 90, 102247. [Google Scholar] [CrossRef] [PubMed]
- Roberts-Thomson, S.J.; Peters, A.A.; Grice, D.M.; Monteith, G.R. ORAI-mediated calcium entry: Mechanism and roles, diseases and pharmacology. Pharmacol. Ther. 2010, 127, 121–130. [Google Scholar] [CrossRef]
- Moccia, F.; Zuccolo, E.; Poletto, V.; Turin, I.; Guerra, G.; Pedrazzoli, P.; Rosti, V.; Porta, C.; Montagna, D. Targeting Stim and Orai Proteins as an Alternative Approach in Anticancer Therapy. Curr. Med. Chem. 2016, 23, 3450–3480. [Google Scholar] [CrossRef]
- Hou, M.F.; Kuo, H.C.; Li, J.H.; Wang, Y.S.; Chang, C.C.; Chen, K.C.; Chen, W.C.; Chiu, C.C.; Yang, S.; Chang, W.C. Orai1/CRACM1 overexpression suppresses cell proliferation via attenuation of the store-operated calcium influx-mediated signalling pathway in A549 lung cancer cells. Biochim. Biophys. Acta 2011, 1810, 1278–1284. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.; Zhang, R.; Zhang, Y.; Wang, X.; Leung, E.L.; Ma, L.; Wong, V.K.W.; Liu, L.; Neher, E.; et al. Suppression of PD-L1 release from small extracellular vesicles promotes systemic anti-tumor immunity by targeting ORAI1 calcium channels. J. Extracell. Vesicles 2022, 11, e12279. [Google Scholar] [CrossRef]
- Zhan, Z.Y.; Zhong, L.X.; Feng, M.; Wang, J.F.; Liu, D.B.; Xiong, J.P. Over-expression of Orai1 mediates cell proliferation and associates with poor prognosis in human non-small cell lung carcinoma. Int. J. Clin. Exp. Pathol. 2015, 8, 5080–5088. [Google Scholar]
- Sanchez-Collado, J.; Jardin, I.; López, J.J.; Ronco, V.; Salido, G.M.; Dubois, C.; Prevarskaya, N.; Rosado, J.A. Role of Orai3 in the Pathophysiology of Cancer. Int. J. Mol. Sci. 2021, 22, 11426. [Google Scholar] [CrossRef]
- Benzerdjeb, N.; Sevestre, H.; Ahidouch, A.; Ouadid-Ahidouch, H. Orai3 is a predictive marker of metastasis and survival in resectable lung adenocarcinoma. Oncotarget 2016, 7, 81588–81597. [Google Scholar] [CrossRef]
- Daya, H.A.; Kouba, S.; Ouled-Haddou, H.; Benzerdjeb, N.; Telliez, M.S.; Dayen, C.; Sevestre, H.; Garçon, L.; Hague, F.; Ouadid-Ahidouch, H. Orai3-Mediates Cisplatin-Resistance in Non-Small Cell Lung Cancer Cells by Enriching Cancer Stem Cell Population through PI3K/AKT Pathway. Cancers 2021, 13, 2314. [Google Scholar] [CrossRef]
- Ay, A.S.; Benzerdjeb, N.; Sevestre, H.; Ahidouch, A.; Ouadid-Ahidouch, H. Orai3 constitutes a native store-operated calcium entry that regulates non small cell lung adenocarcinoma cell proliferation. PLoS ONE 2013, 8, e72889. [Google Scholar] [CrossRef]
- Vashisht, A.; Tanwar, J.; Motiani, R.K. Regulation of proto-oncogene Orai3 by miR18a/b and miR34a. Cell Calcium 2018, 75, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Qiao, W.; Han, Y.; Jin, W.; Tian, M.; Chen, P.; Min, J.; Hu, H.; Xu, B.; Zhu, W.; Xiong, L.; et al. Overexpression and biological function of TMEM48 in non-small cell lung carcinoma. Tumour Biol. 2016, 37, 2575–2586. [Google Scholar] [CrossRef]
- Mauro, M.S.; Celma, G.; Zimyanin, V.; Magaj, M.M.; Gibson, K.H.; Redemann, S.; Bahmanyar, S. Ndc1 drives nuclear pore complex assembly independent of membrane biogenesis to promote nuclear formation and growth. eLife 2022, 11, e75513. [Google Scholar] [CrossRef]
- Liu, Q.; Gu, L.; Qiu, J.; Qian, J. Elevated NDC1 expression predicts poor prognosis and correlates with immunity in hepatocellular carcinoma. J. Gastrointest. Oncol. 2023, 14, 245–264. [Google Scholar] [CrossRef]
- Liu, Y.P.; Guo, G.; Ren, M.; Li, Y.R.; Guo, D.; She, J.J.; He, S.X. NDC1 promotes hepatocellular carcinoma tumorigenesis by targeting BCAP31 to activate PI3K/AKT signaling. J. Biochem. Mol. Toxicol. 2024, 38, e23647. [Google Scholar] [CrossRef]
- Akkafa, F.; Koyuncu, İ.; Temiz, E.; Dagli, H.; Dïlmec, F.; Akbas, H. miRNA-mediated apoptosis activation through TMEM 48 inhibition in A549 cell line. Biochem. Biophys. Res. Commun. 2018, 503, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.Y.; Wang, L.; Liu, Z.Y.; Song, W.X.; Zhou, M.; Xi, L. TMEM48 promotes cell proliferation and invasion in cervical cancer via activation of the Wnt/β-catenin pathway. J. Recept. Signal Transduct. Res. 2021, 41, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Li, J.; Zhang, C.; Pan, X.; Li, Y.; Zhang, X.; En, G.; Pang, B. Pan-cancer analysis and experimental validation identify ndc1 as a potential immunological, prognostic and therapeutic biomarker in pancreatic cancer. Aging 2023, 15, 9779–9796. [Google Scholar] [CrossRef]
- Liu, M.; Yuan, R.; Liu, S.; Xue, Y.; Wang, X. NDC1 is a Prognostic Biomarker and Associated with Immune Infiltrates in Colon Cancer. Int. J. Gen. Med. 2021, 14, 8811–8817. [Google Scholar] [CrossRef]
- Domanegg, K.; Sleeman, J.P.; Schmaus, A. CEMIP, a Promising Biomarker That Promotes the Progression and Metastasis of Colorectal and Other Types of Cancer. Cancers 2022, 14, 5093. [Google Scholar] [CrossRef]
- Rodrigues, G.; Hoshino, A.; Kenific, C.M.; Matei, I.R.; Steiner, L.; Freitas, D.; Kim, H.S.; Oxley, P.R.; Scandariato, I.; Casanova-Salas, I.; et al. Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nat. Cell Biol. 2019, 21, 1403–1412. [Google Scholar] [CrossRef]
- Renna, F.J.; Gonzalez, C.D.; Vaccaro, M.I. Decoding the Versatile Landscape of Autophagic Protein VMP1 in Cancer: A Comprehensive Review across Tissue Types and Regulatory Mechanisms. Int. J. Mol. Sci. 2024, 25, 3758. [Google Scholar] [CrossRef]
- Loncle, C.; Molejon, M.I.; Lac, S.; Tellechea, J.I.; Lomberk, G.; Gramatica, L.; Fernandez Zapico, M.F.; Dusetti, N.; Urrutia, R.; Iovanna, J.L. The pancreatitis-associated protein VMP1, a key regulator of inducible autophagy, promotes Kras(G12D)-mediated pancreatic cancer initiation. Cell Death Dis. 2016, 7, e2295. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.H.; Her, S.; Kim, M.; Jang, I.S.; Park, J. The expression of damage-regulated autophagy modulator 2 (DRAM2) contributes to autophagy induction. Mol. Biol. Rep. 2012, 39, 1087–1093. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.W.; Chen, Z.H.; Zhang, X.J.; Han, B.W.; Lin, K.Y.; Li, X.J.; Wei, P.P.; Zhang, H.; Li, Y.; Chen, Y.Q. MIR125B1 represses the degradation of the PML-RARA oncoprotein by an autophagy-lysosomal pathway in acute promyelocytic leukemia. Autophagy 2014, 10, 1726–1737. [Google Scholar] [CrossRef]
- Kim, J.K.; Lee, H.M.; Park, K.S.; Shin, D.M.; Kim, T.S.; Kim, Y.S.; Suh, H.W.; Kim, S.Y.; Kim, I.S.; Kim, J.M.; et al. MIR144* inhibits antimicrobial responses against Mycobacterium tuberculosis in human monocytes and macrophages by targeting the autophagy protein DRAM2. Autophagy 2017, 13, 423–441. [Google Scholar] [CrossRef]
- Shen, X.; Kan, S.; Hu, J.; Li, M.; Lu, G.; Zhang, M.; Zhang, S.; Hou, Y.; Chen, Y.; Bai, Y. EMC6/TMEM93 suppresses glioblastoma proliferation by modulating autophagy. Cell Death Dis. 2016, 7, e2043. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, X.; Zhang, X.; Yu, J.; Feng, J.; Lv, P.; Lou, Y.; Chen, Y. Ad5-EMC6 mediates antitumor activity in gastric cancer cells through the mitochondrial apoptosis pathway. Biochem. Biophys. Res. Commun. 2019, 513, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Wang, H. EVA1A Plays an Important Role by Regulating Autophagy in Physiological and Pathological Processes. Int. J. Mol. Sci. 2021, 22, 6181. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, H.; Yang, Y.; Wang, H. The Emerging Role of EVA1A in Different Types of Cancers. Int. J. Mol. Sci. 2022, 23, 6665. [Google Scholar] [CrossRef]
- Wudu, M.; Ren, H.; Hui, L.; Jiang, J.; Zhang, S.; Xu, Y.; Wang, Q.; Su, H.; Jiang, X.; Dao, R.; et al. DRAM2 acts as an oncogene in non-small cell lung cancer and suppresses the expression of p53. J. Exp. Clin. Cancer Res. 2019, 38, 72. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Xiao, B.; Jiang, M.; Rui, J. Pan-cancer analysis identifies EMC6 as a potential target for lung adenocarcinoma. iScience 2024, 27, 108648. [Google Scholar] [CrossRef]
- Yu, J.; Qu, L.; Xia, Y.; Zhang, X.; Feng, J.; Duan, M.; Guo, P.; Lou, Y.; Lv, P.; Lu, W.; et al. TMEM189 negatively regulates the stability of ULK1 protein and cell autophagy. Cell Death Dis. 2022, 13, 316. [Google Scholar] [CrossRef]
- Chen, S.; Tie, M.; Wu, M.; He, A.; Chen, Y. Blockage of TMEM189 induces G2/M arrest and inhibits the growth of breast tumors. Biochem. Biophys. Rep. 2024, 38, 101744. [Google Scholar] [CrossRef]
- Liu, J.; Sun, M.; Sun, Y.; Li, H. TMEM189 promotes breast cancer through inhibition of autophagy-regulated ferroptosis. Biochem. Biophys. Res. Commun. 2022, 622, 37–44. [Google Scholar] [CrossRef]
- Fan, D.; Ma, Y.; Qi, Y.; Yang, X.; Zhao, H. TMEM189 as a target gene of MiR-499a-5p regulates breast cancer progression through the ferroptosis pathway. J. Clin. Biochem. Nutr. 2023, 73, 154–160. [Google Scholar] [CrossRef]
- Qiu, G.; Song, C.; Lou, M.; Lin, J. Decoding the Expressions, Immune Relevance, and Prognostic Values of Ferroptosis Gene TMEM189: A Pan-cancer Analysis. Curr. Cancer Drug Targets 2025, 25, 520–537. [Google Scholar] [CrossRef]
- Jin, R.; Du, F.; Han, X.; Guo, J.; Song, W.; Xia, Y.; Yue, X.; Yang, D.; Tong, J.; Zhang, Q.; et al. Prognostic Value of Insulin Growth Factor-Like Receptor 1 (IGFLR1) in Stage II and III Colorectal Cancer and Its Association with Immune Cell Infiltration. Appl. Biochem. Biotechnol. 2025, 197, 427–442. [Google Scholar] [CrossRef]
- Song, W.; Shao, Y.; He, X.; Gong, P.; Yang, Y.; Huang, S.; Zeng, Y.; Wei, L.; Zhang, J. IGFLR1 as a Novel Prognostic Biomarker in Clear Cell Renal Cell Cancer Correlating With Immune Infiltrates. Front. Mol. Biosci. 2020, 7, 565173. [Google Scholar] [CrossRef]
- Tang, S.; Wen, P.; Chen, Y.; Li, K.; Deng, J.; Chen, J.; Lai, L. RNFT2 promotes malignancy of triple-negative breast cancer and predicts poor outcomes. J. Mol. Histol. 2025, 56, 222. [Google Scholar] [CrossRef]
- Lv, J.; Song, Q.; Bai, K.; Han, J.; Yu, H.; Li, K.; Zhuang, J.; Yang, X.; Yang, H.; Lu, Q. N6-methyladenosine-related single-nucleotide polymorphism analyses identify oncogene RNFT2 in bladder cancer. Cancer Cell Int. 2022, 22, 301. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, Q.; Zhu, Z.; Sang, H.; Fan, H.; Li, Z. Silencing of RNFT2 suppresses cell proliferation and migration through mTORC1 signaling pathway in gastric cancer. Amino Acids 2025, 57, 19. [Google Scholar] [CrossRef]
- Spencley, A.L.; Bar, S.; Swigut, T.; Flynn, R.A.; Lee, C.H.; Chen, L.F.; Bassik, M.C.; Wysocka, J. Co-transcriptional genome surveillance by HUSH is coupled to termination machinery. Mol. Cell 2023, 83, 1623–1639.e1628. [Google Scholar] [CrossRef] [PubMed]
- Hughes, A.L.; Szczurek, A.T.; Kelley, J.R.; Lastuvkova, A.; Turberfield, A.H.; Dimitrova, E.; Blackledge, N.P.; Klose, R.J. A CpG island-encoded mechanism protects genes from premature transcription termination. Nat. Commun. 2023, 14, 726. [Google Scholar] [CrossRef] [PubMed]
- Erickson, B.; Fedoryshchak, R.; Fong, N.; Sheridan, R.; Larson, K.Y.; Saviola, A.J.; Mouilleron, S.; Hansen, K.C.; Treisman, R.; Bentley, D.L. PP1/PNUTS phosphatase binds the restrictor complex and stimulates RNA Pol II transcription termination. Cell Rep. 2025, 44, 115564. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yin, M.Y.; Zhang, S.T.; Xie, S.A. The role of canopy family proteins: Biological mechanism and disease function. Mol. Biol. Rep. 2025, 52, 164. [Google Scholar] [CrossRef]
- Mullick Chowdhury, S.; Hong, F.; Rolfo, C.; Li, Z.; He, K.; Wesolowski, R.; Mortazavi, A.; Meng, L. CNPY2 in Solid Tumors: Mechanisms, Biomarker Potential, and Therapeutic Implications. Biology 2025, 14, 214. [Google Scholar] [CrossRef]
- Chen, K.Q.; Zhang, Y.Q.; Wang, Z.B.; Wang, S.Z. Progress in Research on CNPY2 in Diseases. Mini Rev. Med. Chem. 2024, 24, 391–402. [Google Scholar] [CrossRef]
- Sato, K.; Ohuchi, H. Molecular Property, Manipulation, and Potential Use of Opn5 and Its Homologs. J. Mol. Biol. 2024, 436, 168319. [Google Scholar] [CrossRef]
- Zou, J.; Li, Z.; Deng, H.; Hao, J.; Ding, R.; Zhao, M. TMEM213 as a novel prognostic and predictive biomarker for patients with lung adenocarcinoma after curative resection: A study based on bioinformatics analysis. J. Thorac. Dis. 2019, 11, 3399–3410. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, S.; Li, X.; Ding, Y.; Zhang, M.; Lin, L.; Xu, H.; Cheng, Y.; Zhang, X.; Xu, H.; et al. Integrated Analysis of lncRNA-miRNA-mRNA ceRNA Network Identified lncRNA EPB41L4A-AS1 as a Potential Biomarker in Non-small Cell Lung Cancer. Front. Genet. 2020, 11, 511676. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; He, Y.; Jiang, Y.; Bao, Y.; Chen, Q.; Xie, D.; Yu, H.; Wang, X. TMEM229A suppresses non-small cell lung cancer progression via inactivating the ERK pathway. Oncol. Rep. 2021, 46, 176. [Google Scholar] [CrossRef]
- Wang, L.; Fan, M.; Zeng, C.; Li, W.; Hu, Q.; Liu, W.; Huang, X.; Li, G.; Yu, F. Expression and purification of a rapidly degraded protein, TMEM8B-a, in mammalian cell line. Protein Expr. Purif. 2018, 151, 38–45. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Miao, Y.; Zhou, H.; Jiang, G.; Wang, E. TMEM17 depresses invasion and metastasis in lung cancer cells via ERK signaling pathway. Oncotarget 2017, 8, 70685–70694. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Wang, T.; Han, S.; Chen, Y.; Chen, T.; Jia, Q.; Li, B.; Li, B.; Wang, J.; Chen, G.; et al. Low-expression of TMEM100 is associated with poor prognosis in non-small-cell lung cancer. Am. J. Transl. Res. 2017, 9, 2567–2578. [Google Scholar] [PubMed]
- Kadonaga, T.; Sakabe, T.; Kidokoro, Y.; Haruki, T.; Nosaka, K.; Nakamura, H.; Umekita, Y. Gene expression profiling using targeted RNA-sequencing to elucidate the progression from histologically normal lung tissues to non-invasive lesions in invasive lung adenocarcinoma. Virchows Arch. 2022, 480, 831–841. [Google Scholar] [CrossRef]
- He, Q.; Dong, Y.; Zhu, Y.; Ding, Z.; Zhang, X.; Wang, Z.; Ai, R.; He, Y. TMEM100 induces cell death in non-small cell lung cancer via the activation of autophagy and apoptosis. Oncol. Rep. 2021, 45, 63. [Google Scholar] [CrossRef]
- Ma, J.; Yan, T.; Bai, Y.; Ye, M.; Ma, C.; Ma, X.; Zhang, L. TMEM100 negatively regulated by microRNA-106b facilitates cellular apoptosis by suppressing survivin expression in NSCLC. Oncol. Rep. 2021, 46, 185. [Google Scholar] [CrossRef]
- Wang, Y.; Ha, M.; Li, M.; Zhang, L.; Chen, Y. Histone deacetylase 6-mediated downregulation of TMEM100 expedites the development and progression of non-small cell lung cancer. Hum. Cell 2022, 35, 271–285. [Google Scholar] [CrossRef]
- Hong, Y.; Si, J.; Xiao, B.; Xiong, Y.; Dai, C.; Yang, Y.; Li, S.; Ma, Y. circ_0000567/miR-421/TMEM100 Axis Promotes the Migration and Invasion of Lung Adenocarcinoma and Is Associated with Prognosis. J. Cancer 2022, 13, 1540–1552. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, H. TMEM106A inhibits cell proliferation, migration, and induces apoptosis of lung cancer cells. J. Cell. Biochem. 2019, 120, 7825–7833. [Google Scholar] [CrossRef]
- Zhang, S.; He, Y.; Xuan, Q.; Ling, X.; Men, K.; Zhao, X.; Xue, D.; Li, L.; Zhang, Y. TMEM139 prevents NSCLC metastasis by inhibiting lysosomal degradation of E-cadherin. Cancer Sci. 2022, 113, 1999–2007. [Google Scholar] [CrossRef]
- Su, Y.; Li, L.; Chen, J.; Gao, C. TMEM164 promotes ferroptosis by selectively mediating ATG5-dependent autophagosome formation to inhibit the progression of LUAD. Autoimmunity 2024, 57, 2410192. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Chen, K. TRIM59 regulates autophagy-dependent ferroptosis in non-small cell lung cancer by modulating the ubiquitination of TMEM164. Biosci. Biotechnol. Biochem. 2025, 89, 1563–1571. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, W.; Zhang, M.; He, T.; Zhou, F.; G Herman, J.; Hu, L.; Guo, M. Methylation of TMEM176A, a key ERK signaling regulator, is a novel synthetic lethality marker of ATM inhibitors in human lung cancer. Epigenomics 2021, 13, 1403–1419. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, D.; Chen, H.; Gu, J.; Jiang, X.; Han, F.; Cao, J.; Liu, W.; Liu, J. TMEM196 inhibits lung cancer metastasis by regulating the Wnt/β-catenin signaling pathway. J. Cancer Res. Clin. Oncol. 2023, 149, 653–667. [Google Scholar] [CrossRef]
- Liu, W.B.; Han, F.; Jiang, X.; Chen, H.Q.; Zhao, H.; Liu, Y.; Li, Y.H.; Huang, C.; Cao, J.; Liu, J.Y. TMEM196 acts as a novel functional tumour suppressor inactivated by DNA methylation and is a potential prognostic biomarker in lung cancer. Oncotarget 2015, 6, 21225–21239. [Google Scholar] [CrossRef]
- Liu, W.B.; Han, F.; Huang, Y.S.; Chen, H.Q.; Chen, J.P.; Wang, D.D.; Jiang, X.; Yin, L.; Cao, J.; Liu, J.Y. TMEM196 hypermethylation as a novel diagnostic and prognostic biomarker for lung cancer. Mol. Carcinog. 2019, 58, 474–487. [Google Scholar] [CrossRef]
- Jang, J.S.; Jeon, H.S.; Sun, Z.; Aubry, M.C.; Tang, H.; Park, C.H.; Rakhshan, F.; Schultz, D.A.; Kolbert, C.P.; Lupu, R.; et al. Increased miR-708 expression in NSCLC and its association with poor survival in lung adenocarcinoma from never smokers. Clin. Cancer Res. 2012, 18, 3658–3667. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Feng, N.; Yu, X.; Lin, H.; Zhang, X.; Shi, O.; Zhang, H.; Zhang, S.; Li, L.; Zheng, M.; et al. Promoter methylation of Wnt/β-Catenin signal inhibitor TMEM88 is associated with unfavorable prognosis of non-small cell lung cancer. Cancer Biol. Med. 2017, 14, 377–386. [Google Scholar] [CrossRef]
- Lee, Y.; Ko, D.; Yoon, J.; Lee, Y.; Kim, S. TMEM52B suppression promotes cancer cell survival and invasion through modulating E-cadherin stability and EGFR activity. J. Exp. Clin. Cancer Res. 2021, 40, 58. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhang, W.; Hu, Y.; Yi, X. Bioinformatics approach reveals systematic mechanism underlying lung adenocarcinoma. Tumori 2015, 101, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Hu, Y.; Qian, M.; Mao, L.; Yuan, Y.; Xu, H.; Liu, Y.; Qiu, A.; Zhou, Y.; Dong, Y.; et al. A novel APA-based prognostic signature may predict the prognosis of lung adenocarcinoma in an East Asian population. iScience 2023, 26, 108068. [Google Scholar] [CrossRef]
- Moon, E.H.; Kim, Y.S.; Seo, J.; Lee, S.; Lee, Y.J.; Oh, S.P. Essential role for TMEM100 in vascular integrity but limited contributions to the pathogenesis of hereditary haemorrhagic telangiectasia. Cardiovasc. Res. 2015, 105, 353–360. [Google Scholar] [CrossRef]
- Frullanti, E.; Colombo, F.; Falvella, F.S.; Galvan, A.; Noci, S.; De Cecco, L.; Incarbone, M.; Alloisio, M.; Santambrogio, L.; Nosotti, M.; et al. Association of lung adenocarcinoma clinical stage with gene expression pattern in noninvolved lung tissue. Int. J. Cancer 2012, 131, E643–E648. [Google Scholar] [CrossRef]
- Zeng, Y.; Tan, P.; Ren, C.; Gao, L.; Chen, Y.; Hu, S.; Tang, N.; Chen, C.; Du, S. Comprehensive Analysis of Expression and Prognostic Value of MS4As in Glioma. Front. Genet. 2022, 13, 795844. [Google Scholar] [CrossRef]
- Cuajungco, M.P.; Podevin, W.; Valluri, V.K.; Bui, Q.; Nguyen, V.H.; Taylor, K. Abnormal accumulation of human transmembrane (TMEM)-176A and 176B proteins is associated with cancer pathology. Acta Histochem. 2012, 114, 705–712. [Google Scholar] [CrossRef]
- Ren, J.; Yang, Y.; Li, C.; Xie, L.; Hu, R.; Qin, X.; Zhang, M. A Novel Prognostic Model of Early-Stage Lung Adenocarcinoma Integrating Methylation and Immune Biomarkers. Front. Genet. 2020, 11, 634634. [Google Scholar] [CrossRef]
- An, J.; Shi, H.; Zhang, N.; Song, S. Elevation of circular RNA circ_0003645 forecasts unfavorable prognosis and facilitates cell progression via miR-1179/TMEM14A pathway in non-small cell lung cancer. Biochem. Biophys. Res. Commun. 2019, 511, 921–925. [Google Scholar] [CrossRef]
- Jang, T.H.; Lin, S.C.; Yang, Y.Y.; Wu, S.H.; Kuo, T.H.; Chuang, S.E. AXL transcriptionally up-regulates TMEM14A expression to mediate cell proliferation in non-small-cell lung cancer cells. Biochem. Biophys. Res. Commun. 2023, 682, 365–370. [Google Scholar] [CrossRef]
- You, G.; Yang, Q.; Li, X.; Chen, L. TMEM33, an oncogene regulated by miR-214-3p, promotes the progression of lung adenocarcinoma through the Wnt/β-catenin signaling pathway. Oncol. Res. 2025, 33, 905–917. [Google Scholar] [CrossRef]
- Alföldi, R.; Balog, J.; Faragó, N.; Halmai, M.; Kotogány, E.; Neuperger, P.; Nagy, L.I.; Fehér, L.Z.; Szebeni, G.J.; Puskás, L.G. Single Cell Mass Cytometry of Non-Small Cell Lung Cancer Cells Reveals Complexity of In vivo And Three-Dimensional Models over the Petri-dish. Cells 2019, 8, 1093. [Google Scholar] [CrossRef]
- Neuperger, P.; Balog, J.; Tiszlavicz, L.; Furák, J.; Gémes, N.; Kotogány, E.; Szalontai, K.; Puskás, L.G.; Szebeni, G.J. Analysis of the Single-Cell Heterogeneity of Adenocarcinoma Cell Lines and the Investigation of Intratumor Heterogeneity Reveals the Expression of Transmembrane Protein 45A (TMEM45A) in Lung Adenocarcinoma Cancer Patients. Cancers 2021, 14, 144. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Hu, F.; Xie, X.; Wang, L.; Li, G.; Qiao, T.; Wang, M.; Xiao, H. TMEM45B, up-regulated in human lung cancer, enhances tumorigenicity of lung cancer cells. Tumour Biol. 2016, 37, 12181–12191. [Google Scholar] [CrossRef]
- Sun, Y.; Deng, J.; Xia, P.; Chen, W.; Wang, L. The Expression of TMEM74 in Liver Cancer and Lung Cancer Correlating With Survival Outcomes. Appl. Immunohistochem. Mol. Morphol. 2019, 27, 618–625. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, X.; Jiang, G.; Miao, Y.; Wang, L.; Zhang, Y.; Liu, Y.; Fan, C.; Lin, X.; Dong, Q.; et al. Cytosolic TMEM88 promotes invasion and metastasis in lung cancer cells by binding DVLS. Cancer Res. 2015, 75, 4527–4537. [Google Scholar] [CrossRef]
- Wu, J.; Feng, Z.; Wang, R.; Li, A.; Wang, H.; He, X.; Shen, Z. Integration of bioinformatics analysis and experimental validation identifies plasma exosomal miR-103b/877-5p/29c-5p as diagnostic biomarkers for early lung adenocarcinoma. Cancer Med. 2022, 11, 4411–4421. [Google Scholar] [CrossRef]
- Mao, M.; Chen, J.; Li, X.; Wu, Z. siRNA-TMEM98 inhibits the invasion and migration of lung cancer cells. Int. J. Clin. Exp. Pathol. 2015, 8, 15661–15669. [Google Scholar]
- Kundu, S.T.; Grzeskowiak, C.L.; Fradette, J.J.; Gibson, L.A.; Rodriguez, L.B.; Creighton, C.J.; Scott, K.L.; Gibbons, D.L. TMEM106B drives lung cancer metastasis by inducing TFEB-dependent lysosome synthesis and secretion of cathepsins. Nat. Commun. 2018, 9, 2731. [Google Scholar] [CrossRef]
- Zhang, S.; Dai, H.; Li, W.; Wang, R.; Wu, H.; Shen, M.; Hu, Y.; Xie, L.; Xing, Y. TMEM116 is required for lung cancer cell motility and metastasis through PDK1 signaling pathway. Cell Death Dis. 2021, 12, 1086. [Google Scholar] [CrossRef]
- Mohammed Ael, S.; Eguchi, H.; Wada, S.; Koyama, N.; Shimizu, M.; Otani, K.; Ohtaki, M.; Tanimoto, K.; Hiyama, K.; Gaber, M.S.; et al. TMEM158 and FBLP1 as novel marker genes of cisplatin sensitivity in non-small cell lung cancer cells. Exp. Lung Res. 2012, 38, 463–474. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Yin, F.; Shi, K. TMEM158 functions as an oncogene and promotes lung adenocarcinoma progression through the PI3K/AKT pathway via interaction with TWIST1. Exp. Cell Res. 2024, 437, 114010. [Google Scholar] [CrossRef] [PubMed]
- Jeon, M.; Yoo, S.; Park, S.; Choi, Y.; An, J.; Noh, Y.R.; Kim, I. Over-expression of Transmembrane Protein 158 Predicts Aggressive Tumor Behavior and Poor Prognosis in Lung Cancer. Anticancer Res. 2024, 44, 4885–4893. [Google Scholar] [CrossRef]
- Herrera-Quiterio, G.A.; Valencia-González, H.A.; de la Cruz-López, K.G.; Fernández-Coto, D.L.; Gil, J.; Marko-Varga, G.; Morales-Gálvez, J.; Sánchez, N.C.; Rodríguez-Bautista, R.; Avilés-Salas, A.; et al. TMEM160 Promotes Tumor Growth in Lung Adenocarcinoma and Cervical Adenocarcinoma Cell Lines. Int. J. Mol. Sci. 2025, 26, 1097. [Google Scholar] [CrossRef]
- Sun, P.H.; Xia, S.; Yuan, R.; Zhang, B.; Wang, G. TMEM176B Promotes EMT via FGFR/JNK Signalling in Development and Tumourigenesis of Lung Adenocarcinoma. Cancers 2024, 16, 2447. [Google Scholar] [CrossRef] [PubMed]
- Fujitomo, T.; Daigo, Y.; Matsuda, K.; Ueda, K.; Nakamura, Y. Critical function for nuclear envelope protein TMEM209 in human pulmonary carcinogenesis. Cancer Res. 2012, 72, 4110–4118. [Google Scholar] [CrossRef]
- Fan, X.; Xue, H.; Liu, Z.; Zhou, Y.; Huang, X.; Dong, X.; Sun, Q.; Yao, J.; Liu, J. Restoration of A2M reduces drug resistance and malignancy in paclitaxel-resistant lung cancer cells. Int. J. Biochem. Cell Biol. 2025, 185, 106789. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, K.; Zhao, Z.; Qin, Z.; Tang, H. Prognosis-related autophagy genes in female lung adenocarcinoma. Medicine 2022, 101, e28500. [Google Scholar] [CrossRef]
- Chengcheng, L.; Raza, S.H.A.; Shengchen, Y.; Mohammedsaleh, Z.M.; Shater, A.F.; Saleh, F.M.; Alamoudi, M.O.; Aloufi, B.H.; Mohajja Alshammari, A.; Schreurs, N.M.; et al. Bioinformatics role of the WGCNA analysis and co-expression network identifies of prognostic marker in lung cancer. Saudi J. Biol. Sci. 2022, 29, 3519–3527. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, S. Identification of Overlapping Genetic Signatures Between Obstructive Sleep Apnea and Lung Cancer: Moving Beyond “One Drug, One Disease” Paradigm of Pharmaceutical Innovation. Omics 2025, 29, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Xiao, K.; Wang, Y.; Zhou, L.; Wang, J.; Wang, Y.; Tong, D.; Zhu, Z.; Jiang, J. Construction of ceRNA network to identify the lncRNA and mRNA related to non-small cell lung cancer. PLoS ONE 2021, 16, e0259091. [Google Scholar] [CrossRef]
- Dorman, S.N.; Baranova, K.; Knoll, J.H.; Urquhart, B.L.; Mariani, G.; Carcangiu, M.L.; Rogan, P.K. Genomic signatures for paclitaxel and gemcitabine resistance in breast cancer derived by machine learning. Mol. Oncol. 2016, 10, 85–100. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Chen, Y.; Yang, L.; Chen, S. A prognostic 4-gene expression signature for squamous cell lung carcinoma. J. Cell. Physiol. 2017, 232, 3702–3713. [Google Scholar] [CrossRef]
- Chiou, S.H.; Tseng, D.; Reuben, A.; Mallajosyula, V.; Molina, I.S.; Conley, S.; Wilhelmy, J.; McSween, A.M.; Yang, X.; Nishimiya, D.; et al. Global analysis of shared T cell specificities in human non-small cell lung cancer enables HLA inference and antigen discovery. Immunity 2021, 54, 586–602.e588. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, L.; Zhang, L.; Zheng, X.; Xu, H.; Wang, K.; Weng, X. Identification of a Four-Gene Signature Associated with the Prognosis Prediction of Lung Adenocarcinoma Based on Integrated Bioinformatics Analysis. Genes 2022, 13, 238. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Dong, Y.; Gu, Y.; Wei, F.; Peng, J.; Su, Y.; Wang, Y.; Yang, C.; Neira, S.V.; Kapoor, A.; et al. Taxifolin Inhibits the Growth of Non-Small-Cell Lung Cancer via Downregulating Genes Displaying Novel and Robust Associations with Immune Evasion Factors. Cancers 2023, 15, 4818. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, G.; Zhang, Q.; Zhao, S.; Li, X.; Cao, W.; Luo, H.; Zhou, C. In-depth proteomic analysis identifies key gene signatures predicting therapeutic efficacy of anti-PD-1/PD-L1 monotherapy in non-small cell lung cancer. Transl. Lung Cancer Res. 2024, 13, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Pang, Z.; Li, G.; Gu, T. Bioinformatics analysis of differentially expressed miRNAs in non-small cell lung cancer. J. Clin. Lab. Anal. 2021, 35, e23588. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017, 45, W98–W102. [Google Scholar] [CrossRef]
- Li, C.; Tang, Z.; Zhang, W.; Ye, Z.; Liu, F. GEPIA2021: Integrating multiple deconvolution-based analysis into GEPIA. Nucleic Acids Res. 2021, 49, W242–W246. [Google Scholar] [CrossRef] [PubMed]
- Ou, S.H.; Chalmers, Z.R.; Azada, M.C.; Ross, J.S.; Stephens, P.J.; Ali, S.M.; Miller, V.A. Identification of a novel TMEM106B-ROS1 fusion variant in lung adenocarcinoma by comprehensive genomic profiling. Lung Cancer 2015, 88, 352–354. [Google Scholar] [CrossRef]
- Cooper, A.J.; Kobayashi, Y.; Kim, D.; Clifford, S.E.; Kravets, S.; Dahlberg, S.E.; Chambers, E.S.; Li, J.; Rangachari, D.; Nguyen, T.; et al. Identification of a RAS-activating TMEM87A-RASGRF1 Fusion in an Exceptional Responder to Sunitinib with Non-Small Cell Lung Cancer. Clin. Cancer Res. 2020, 26, 4072–4079. [Google Scholar] [CrossRef]
- Iwakawa, R.; Kohno, T.; Totoki, Y.; Shibata, T.; Tsuchihara, K.; Mimaki, S.; Tsuta, K.; Narita, Y.; Nishikawa, R.; Noguchi, M.; et al. Expression and clinical significance of genes frequently mutated in small cell lung cancers defined by whole exome/RNA sequencing. Carcinogenesis 2015, 36, 616–621. [Google Scholar] [CrossRef]
- Asiedu, M.K.; Thomas, C.F., Jr.; Dong, J.; Schulte, S.C.; Khadka, P.; Sun, Z.; Kosari, F.; Jen, J.; Molina, J.; Vasmatzis, G.; et al. Pathways Impacted by Genomic Alterations in Pulmonary Carcinoid Tumors. Clin. Cancer Res. 2018, 24, 1691–1704. [Google Scholar] [CrossRef]
- Liang, Y.X.; Xie, Y.P.; Yu, H.M.; Zhu, W.J.; Yin, C.Y.; Dong, Z.H.; Zhang, X.L. Whole-Exome Sequencing and Experimental Validation Unveil the Roles of TMEM229A Q200del Mutation in Lung Adenocarcinoma. Clin. Respir. J. 2024, 18, e70006. [Google Scholar] [CrossRef]
- Tse, S.W.; Tan, C.F.; Park, J.E.; Gnanasekaran, J.; Gupta, N.; Low, J.K.; Yeoh, K.W.; Chng, W.J.; Tay, C.Y.; McCarthy, N.E.; et al. Microenvironmental Hypoxia Induces Dynamic Changes in Lung Cancer Synthesis and Secretion of Extracellular Vesicles. Cancers 2020, 12, 2917. [Google Scholar] [CrossRef]
- Huang, L.; Zhong, L.; Cheng, R.; Chang, L.; Qin, M.; Liang, H.; Liao, Z. Ferroptosis and WDFY4 as novel targets for immunotherapy of lung adenocarcinoma. Aging 2023, 15, 9676–9694. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Liu, Y.; Bai, P.; Ming, Y.; Zheng, Q.; Zhu, L.; Qi, Y. TMEM132A: A novel susceptibility gene for lung adenocarcinoma combined with venous thromboembolism identified through comprehensive bioinformatic analysis. Front. Oncol. 2025, 15, 1564114. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Yan, X.; Zhang, X.; Liu, Y.; Feng, X.; Yang, Z.; Zhang, J.; Xu, X.; Zheng, Q.; Liang, L.; et al. TMEM215 Prevents Endothelial Cell Apoptosis in Vessel Regression by Blunting BIK-Regulated ER-to-Mitochondrial Ca Influx. Circ. Res. 2023, 133, 739–757. [Google Scholar] [CrossRef] [PubMed]
| Log-Rank p Value 1 | Raw Values | Normalized by Reference Genes | |||||||
|---|---|---|---|---|---|---|---|---|---|
| GAPDH | ACTB | GNAS | |||||||
| Name | Aliases | DFS | OS | DFS | OS | DFS | OS | DFS | OS |
| TMEM101 | — | / | / | / | M:0.015 | / | Q:0.015 | / | / |
| TMEM108 | CT124, RTLN | / | / | / | M:0.039 | / | Q:0.031 | / | / |
| TMEM109 | SND3, hSND3 | / | / | / | Q:0.0097 | Q:2.2 × 10−5 | Q:0.0095 | / | / |
| TMEM114 | — | / | / | / | Q:0.008 | M:0.001 | M:0.026 | / | / |
| TMEM117 | — | M:0.00016 | / | M:0.0034 | M:0.012 | M:1 × 10−4 | / | M:0.0073 | / |
| TMEM120A | NET29, TACAN, TMPIT | / | / | / | M:0.022 | / | M:0.029 | / | / |
| TMEM123 | KCT3, PORIMIN, PORMIN | / | / | / | / | Q:0.0019 | / | M:0.049 | / |
| TMEM130 | — | / | M:0.02 | / | M:0.0014 | / | Q:8.6 × 10−6 | / | Q:0.024 |
| TMEM131 | CC28, PRO1048, RW1, YR-23 | / | / | / | Q:0.045 | / | M:0.048 | / | / |
| TMEM132B | — | / | / | / | Q:0.0032 | / | Q:0.021 | / | M:0.0093 |
| TMEM132C | PPP1R152 | / | / | / | Q:0.014 | Q:0.0017 | Q:0.024 | / | / |
| TMEM132D | MOLT, PPP1R153 | / | / | / | Q:0.0076 | M:0.017 | Q:0.0022 | / | / |
| TMEM132E | DFNB99 | / | / | / | Q:0.021 | Q:0.013 | Q:0.0012 | / | / |
| TMEM134 | — | / | / | / | Q:0.013 | M:0.0017 | Q:0.023 | / | / |
| TMEM138 | HSPC196 | / | / | / | M:0.00075 | M:0.0061 | M:0.0025 | / | / |
| TMEM145 | — | / | / | / | Q:0.0019 | / | Q:0.019 | / | / |
| TMEM14A | C6orf73, PTD011 | Q:0.014 | / | / | Q:0.0014 | Q:0.0014 | / | M:0.048 | / |
| TMEM14B | — | / | / | / | Q:0.03 | / | M:0.033 | / | / |
| TMEM150C | TTN3 | / | / | / | M:0.0015 | / | M:0.025 | / | Q:0.037 |
| TMEM151B | TMEM193, C6orf137, bA444E17.5 | / | / | / | M:0.01 | Q:0.0065 | M:0.0048 | / | / |
| TMEM154 | — | Q:0.019 | / | / | / | M:0.00037 | / | / | / |
| TMEM158 | BBP, RIS1, p40BBP | M:0.035 | / | M:0.022 | M:0.045 | M:0.00024 | / | M:0.042 | / |
| TMEM161A | AROS-29, AROS29 | / | / | / | M:0.00044 | M:0.0023 | M:0.016 | / | / |
| TMEM168 | — | / | / | / | M:0.00065 | Q:0.018 | / | / | Q:0.049 |
| TMEM17 | — | Q:0.023 | / | / | M:0.045 | Q:0.0028 | / | / | / |
| TMEM170B | — | / | / | / | Q:0.0049 | Q:0.046 | M:0.00031 | / | / |
| TMEM173 | STING, STING1 | / | / | / | Q:0.0083 | / | Q:0.00059 | / | Q:0.025 |
| TMEM174 | — | / | / | / | M:0.0097 | Q:0.0051 | Q:0.028 | / | / |
| TMEM177 | — | / | / | / | M:0.00039 | Q:0.015 | Q:0.0056 | / | / |
| TMEM178A | TMEM178 | / | / | / | M:0.0028 | / | Q:0.0058 | / | / |
| TMEM178B | — | / | / | / | Q:0.023 | M:0.037 | M:0.033 | / | / |
| TMEM179A | C14orf90, FLJ42486, TMEM179 | / | / | / | M:0.027 | Q:0.014 | M:0.029 | / | / |
| TMEM179B | — | / | / | / | Q:0.022 | / | M:0.0098 | / | / |
| TMEM180 | SLC68A1, MFSD13A, FLJ22529, C10orf77, bA18I14.8 | / | / | / | M:0.021 | / | Q:0.028 | / | / |
| TMEM185A | CXorf13, FAM11A, FRAXF, ee3 | / | / | / | Q:0.015 | / | M:0.00037 | / | / |
| TMEM186 | C16orf51 | / | / | / | Q:0.0029 | Q:0.038 | M:0.029 | / | / |
| TMEM196 | — | / | / | / | M:0.0081 | Q:0.0038 | M:0.04 | / | / |
| TMEM198 | TMEM198A | / | / | / | Q:0.008 | Q:0.025 | Q:0.015 | / | / |
| TMEM200C | TTMA | / | / | / | Q:0.0034 | Q:0.033 | M:0.013 | / | / |
| TMEM201 | Ima1, NET5, SAMP1 | M:0.0025 | / | / | Q:0.011 | Q:5.8 × 10−5 | / | / | / |
| TMEM202 | — | / | / | / | M:0.0027 | Q:0.0029 | M:0.045 | / | / |
| TMEM203 | HBEBP1 | / | / | / | Q:0.0042 | / | M:0.002 | / | / |
| TMEM207 | UNQ846 | / | / | / | M:0.0025 | Q:0.0031 | Q:0.019 | / | / |
| TMEM209 | NET31 | / | / | / | M:0.0095 | Q:0.0056 | M:0.01 | / | / |
| TMEM210 | — | / | / | / | M:0.0075 | Q:0.011 | Q:0.034 | / | / |
| TMEM211 | LHFPL7 | M: 0.024 | / | / | Q:0.0059 | M:0.0016 | M:0.025 | / | / |
| TMEM212 | — | / | / | / | Q:0.027 | M: 0.006 | M:0.008 | / | / |
| TMEM213 | — | / | / | / | M:0.0065 | Q:0.019 | Q:0.00084 | / | / |
| TMEM215 | — | / | / | / | M:0.002 | Q:0.0014 | Q:0.0012 | / | M:0.033 |
| TMEM216 | HSPC244, RP98 | / | / | / | Q:0.00034 | Q:0.0031 | M:0.011 | / | / |
| TMEM218 | JBTS39 | M:0.022 | / | / | / | Q:0.0036 | / | / | / |
| TMEM221 | Jiraiya | / | / | / | Q:0.0096 | M:0.0094 | M:0.042 | / | / |
| TMEM225 | PMP22CD, SPATA47, PPP1R154 | / | / | / | M:0.0085 | Q:0.0076 | M:0.026 | / | / |
| TMEM227 | TPRA1, GPR175, TPRA40 | M:0.035 | / | / | Q:0.011 | Q:0.00025 | Q:0.045 | / | / |
| TMEM229A | — | / | / | / | M:0.0051 | Q:0.015 | Q:0.008 | / | / |
| TMEM229B | C14orf83 | / | / | / | M:0.011 | / | Q:0.03 | / | / |
| TMEM235 | ARGM1 | / | / | / | M:0.0019 | Q:0.0031 | M:0.016 | / | / |
| TMEM236 | FAM23A/B, bA162I21.2, bA16O1.2 | / | / | / | M:0.037 | Q:0.015 | Q:0.0015 | / | / |
| TMEM237 | ALS2CR4, JBTS14 | M:0.016 | / | / | Q:0.023 | Q:0.00022 | / | M:0.045 | / |
| TMEM238 | — | / | / | / | M:0.0073 | / | Q:0.015 | / | M:0.035 |
| TMEM241 | SLC35D4, C18orf45, hVVT | / | / | / | Q:0.00092 | / | M:0.00066 | / | / |
| TMEM242 | BM033, C6orf35 | / | / | / | M:0.018 | Q:0.0056 | Q:0.039 | / | / |
| TMEM243 | C7orf23, MM-TRAG, MMTRAG | / | Q:0.028 | / | Q:0.0015 | / | M:2.2 × 10−6 | / | Q:0.044 |
| TMEM244 | C6orf191, bA174C7.4 | / | / | / | M:0.0011 | Q:0.0061 | M:0.031 | / | / |
| TMEM246 | C9orf125, PGAP4 | Q: 0.00039 | / | Q:0.00017 | / | Q:0.00011 | / | Q:0.00083 | / |
| TMEM247 | — | / | / | / | M:0.0022 | Q:0.0022 | Q:0.023 | / | / |
| TMEM25 | — | / | M:0.02 | / | Q:0.0012 | M:0.022 | Q:0.0069 | / | / |
| TMEM251 | LYSET, DMAN, GCAF, C14orf109 | / | / | / | M:8.1 × 10−5 | / | M:0.001 | / | Q:0.017 |
| TMEM252 | C9orf71 | / | / | / | M/Q:0.013 | Q:0.0077 | Q:0.0011 | / | / |
| TMEM26 | — | / | / | / | Q:0.023 | Q:0.011 | M:0.046 | / | / |
| TMEM260 | C14orf101, SHDRA | / | / | / | Q:0.00026 | Q:0.026 | Q:0.0076 | / | M:0.017 |
| TMEM261 | DMAC1, C9orf123, MGC4730 | / | / | / | Q:0.0044 | M:0.015 | Q:0.011 | / | / |
| TMEM31 | — | / | / | / | Q:0.017 | Q:0.048 | M:0.03 | / | / |
| TMEM35 | TMEM35A, NACHO, TUF-1 | / | Q:0.013 | / | Q:0.0027 | Q:0.031 | Q:0.00067 | / | Q:0.011 |
| TMEM38A | TRIC-A, TRICA | / | Q:0.0053 | / | Q:6 × 10−4 | / | M:0.0039 | / | Q:0.017 |
| TMEM40 | — | M:1.5 × 10−5 | / | M:2.3 × 10−5 | / | M:3.9 × 10−7 | / | M:5.5 × 10−5 | / |
| TMEM42 | — | / | / | / | M:0.0037 | / | Q:0.01 | / | / |
| TMEM50B | C21orf4, HCVP7TP3 | / | Q:0.014 | / | Q:0.0046 | / | Q:4.7 × 10−5 | / | / |
| TMEM52 | — | / | / | / | Q:0.0039 | M:0.022 | M:0.0084 | / | M:0.03 |
| TMEM55B | PIP4P1, C14orf9, MGC26684 | / | / | / | Q: 0.012 | / | Q:0.0011 | / | / |
| TMEM57 | MACO1, MACOILIN, FLJ10747 | / | / | / | M:0.014 | M:0.029 | M:0.00097 | / | M:0.013 |
| TMEM60 | C7orf35, DC32 | / | / | / | M:0.0029 | / | Q:0.00011 | / | Q:0.014 |
| TMEM63C | C14orf171, CSC1, SPG87 | / | / | / | Q:0.00064 | M:0.021 | Q:0.0026 | / | M:0.011 |
| TMEM69 | C1orf154 | / | / | / | Q:0.0012 | Q:0.003 | Q:0.026 | / | / |
| TMEM72 | C10orf127, KSP37 | / | / | / | M:0.0051 | Q:0.0097 | Q:0.0062 | / | / |
| TMEM82 | — | / | / | / | Q:0.014 | / | Q:0.023 | / | / |
| TMEM8B | C9orf127, FP588, LINC00950, NAG-5, NAG5, NGX6, NGX6a | / | / | / | M:0.0082 | Q:0.0064 | Q:0.035 | / | / |
| TMEM8C | MYMK, TMEM226, MYOMAKER | Error | Error | / | M:0.02 | Q:0.022 | Q:0.031 | / | / |
| TMEM94 | ERMA, IDDCDF, KIAA0195 | / | / | / | Q:0.032 | / | Q:0.046 | / | / |
| TMEM95 | UNQ9390 | / | / | / | M:0.0028 | Q:0.007 | M:0.029 | / | / |
| Log-Rank p Value 1 | Raw Values | Normalized by Reference Genes | |||||||
|---|---|---|---|---|---|---|---|---|---|
| GAPDH | ACTB | GNAS | |||||||
| Name | Aliases | DFS | OS | DFS | OS | DFS | OS | DFS | OS |
| TMEM106A | — | M:0.0019 | / | / | / | / | / | M:0.0063 | Q:0.048 |
| TMEM126B | HT007, MC1DN29 | M:0.031 | Q:0.029 | Q:0.031 | / | / | / | M:0.017 | / |
| TMEM139 | — | Q:0.014 | / | Q:0.0029 | / | / | / | Q:0.025 | / |
| TMEM141 | — | Q:0.03 | Q:0.034 | M:0.042 | / | / | / | Q:0.024 | / |
| TMEM144 | SLC35G7 | M:0.00062 | M:0.035 | M:0.05 | / | / | / | Q:0.019 | / |
| TMEM165 | CDG2K, FT27, GDT1, SLC64A1, TMPT27, TPARL | Q:0.0016 | / | Q:0.019 | / | / | / | M:0.03 | / |
| TMEM167A | TMEM167, kish | M:0.0057 | Q:0.026 | / | / | / | / | Q:0.046 | / |
| TMEM184A | SDMG1, SLC51C1 | M:0.028 | / | / | / | / | / | Q:0.034 | / |
| TMEM2 | CEMIP2 | Q:0.00027 | / | Q:0.028 | / | / | / | M:6.6 × 10−5 | / |
| TMEM208 | HSPC171, SND2, hSND2 | M:0.0024 | M:0.014 | M:0.027 | / | / | / | / | / |
| TMEM214 | — | Q:0.0036 | / | Q:0.018 | / | / | / | Q:0.0081 | / |
| TMEM217 | C6orf128, dJ355M6.2 | Q:0.014 | / | M:0.028 | / | / | / | Q:0.014 | / |
| TMEM220 | — | Q:0.0085 | Q:0.03 | M:0.027 | / | / | / | Q:0.026 | / |
| TMEM255B | FAM70B | M:0.033 | / | Q:0.032 | / | / | / | / | / |
| TMEM263 | C12orf23 | Q:0.03 | / | M:0.014 | / | / | / | Q:0.002 | / |
| TMEM265 | IFITMD8 | Q:0.033 | / | Q:0.05 | / | / | / | / | / |
| TMEM45A | DERP7, DNAPTP4 | / | Q:0.03 | / | / | / | / | / | M:0.022 |
| TMEM45B | — | M:0.0013 | / | M:0.033 | / | M:0.016 | / | M:5 × 10−4 | / |
| TMEM51 | C1orf72 | M: 0.00018 | M: 0.0055 | Q:0.0016 | / | / | / | Q:0.0041 | / |
| TMEM61 | — | M:1.5 × 10−5 | / | M:0.037 | / | M:0.025 | / | M:0.00095 | / |
| TMEM6 | PGAP6, M83, TMEM8, TMEM8A, GPI-PLA2 | Q:2.3 × 10−5 | / | M:0.027 | / | M:0.029 | / | Q:0.00019 | / |
| TMEM81 | HC3107, KVLA2788, UNQ2788 | Q:0.0017 | Q:0.034 | M:0.027 | / | / | / | M:0.036 | / |
| TMEM87B | — | Q:0.023 | / | Q:0.036 | / | / | / | Q:0.045 | / |
| TMEM92 | — | M:0.00039 | Q:0.0066 | M:0.0012 | / | Q:0.034 | / | M:0.00047 | / |
| TMEM ID | Clinical Association | Function or Role | Molecular Mechanism | References |
|---|---|---|---|---|
| TMEM8B-a | Tumor metastasis suppressor | Ubiquitination-independent, ezrin-mediated proteasomal degradation | [87] | |
| TMEM17 | Protein expression: lung cancer < adjacent normal tissue Expression↓ → differentiation↓; TNM stage and lymph node metastasis↑; OS↓ | Downstream effectors: TMEM17↑ → p-ERK/p90RSK/Snail↓; Occludin/ZO-1↑ → invasion and migration↓ | [88] | |
| TMEM100 | Protein expression: NSCLC < adjacent normal lung tissues; mainly expressed in the cytomembrane Expression↓ → OS↓ | Overexpression in NSCLC cell lines: proliferation↓ in vitro and in vivo; migration and invasion↓ | TMEM100 worked as a cancer suppressor gene mainly by inhibiting the TNF signaling pathway | [89] |
| mRNA and protein expression: noninvasive or invasive lesions of early-stage LUAD < normal tissue Expression↑ → relapse-free survival↑ | [90] | |||
| mRNA expression (TCGA): NSCLC < normal tissues Expression↑ → TNM stage↓; better prognosis | Overexpression in NSCLC cell lines: apoptosis and autophagy↑; tumor growth↓ | Downstream effectors: • BAX/BCL2 → apoptosis; • PI3K/AKT signaling↓ → autophagy Autophagy↓ → TMEM100-induced apoptosis↑ (compensate for the cell death) | [91] | |
| mRNA expression: NSCLC < paired peritumoral tissues (GEO) mRNA expression↓ → OS↓ (GEO) | Overexpression in NSCLC cell lines: colony formation↓; apoptosis↑ | Upstream regulator: miR-106b → TMEM100↓ Downstream effectors: TMEM100 → survivin↓/Bim/caspase-3 | [92] | |
| mRNA expression: NSCLC < normal tissues Expression↑ → OS↑ | Overexpression in NSCLC cell lines: proliferation↓, migration↓, invasion↓, and TGF-β1-induced EMT↓ in vitro; metastasis↓ in vivo | Upstream regulator: HDAC6 → TMEM100↓ Downstream effectors: TMEM100 → Wnt/β-catenin pathway↓ | [93] | |
| mRNA expression: LUAD < non-tumor tissue | Overexpression in LUAD cell lines: migration and invasion↓ | Upstream regulator: circ_0000567 acts as a sponge for miR-421 and prevents miR-421 from degrading TMEM100 mRNA | [94] | |
| TMEM106A | mRNA expression: NSCLC < adjacent normal lung tissues | Overexpression in NSCLC cell lines: apoptosis↑; proliferation↓, migration↓, invasion↓, and EMT↓ | Downstream effectors: TMEM106A → PI3K/Akt/NF-κB activation↓ | [95] |
| TMEM139 | mRNA and protein expression: NSCLC < adjacent normal lung tissues Expression↑ → OS↑ and DFS↑ | Overexpression in NSCLC cell lines: migration↓, invasion↓, and EMT↓ in vitro; metastasis↓ in vivo | TMEM139 binds E-cadherin at the plasma membrane and focal adhesion sites and prevents the lysosomal degradation of E-cadherin | [96] |
| TMEM164 | mRNA and protein expression: LUAD< normal lung tissues (PHA database and clinical samples) Expression↑ in LUAD → better prognosis | mRNA expression: A549 and NCI-H358 < Base-2b Overexpression in LUAD cell lines: proliferation↓, migration↓, invasion↓, and autophagy↑ in vitro; synergizes with anti-PD-1 in vivo | Downstream effectors: TMEM164↑ → ATG5-dependent autophagosome formation (autophagy) → ferroptosis mainly through GPX4 degradation | [97] |
| Downregulation: lipid peroxidation and autophagy-dependent ferroptosis↓; cell viability↑ in A549 | Upstream regulator: TRIM59 → ubiquitination and degradation of TMEM164 | [98] | ||
| TMEM176A | Methylated in 53.66% of primary lung cancer | Overexpression: colony formation↓, cell proliferation↓, migration↓, and invasion↓ in vitro; apoptosis↑ and G2/M phase arrest↑ in vitro; H1299 cell xenograft growth↓ in vivo | Downstream effectors:TMEM176A methylation → activation of ERK signaling↑ but not ATM or ATR pathway | [99] |
| TMEM196 | mRNA and protein expression: lung cancer < adjacent normal tissues Expression↑ in LUAD and LUSC → better prognosis only in TNM stages I–II, not III–IV | Overexpression: migration and invasion↓ in vitro; lung and liver metastasis↓ in vivo Downregulation: migration and invasion↑ in vitro Lung metastases produced by tail vein-injected B16 cells: tumor volume: KO-TMEM196 > wild-type mice; number of nodules: KO-TMEM196 > wild-type mice | Downstream effectors: TMEM196↑ → Wnt signaling pathway↓ and β-catenin promoter transcription↓ | [100] |
| Protein expression: lung cancer < adjacent normal tissues; Protein expression↑ in LUAD/LUSC/TNM stages I–II or III–IV → better prognosis; Frequency of methylation: Positively correlates with pathological severity (no methylation in normal lung tissues); Lung cancer > adjacent normal tissues; Hypermethylation → poor differentiation and advanced stage | A549, SPC-A-1, 95D, H1975, H358, H1650, LTEP-a-2, H1395, H446 and H460 cell lines: hypermethylated; HBE cell line: unmethylated Overexpression: apoptosis↑; S phase↓; G2 or M phase arrest↑; proliferation↓, clonogenicity↓, and migration↓ in vitro; tumor formation↓ in vivo; Downregulation: opposite effects | TMEM196 methylation negatively associated with expression level during chemically induced rat lung carcinogenesis in cell lines and in clinical samples Downstream effectors: TMEM196↑ → p21↑ and Bax↑; cyclin D1↓, c-Myc↓, CD44↓, and β-catenin↓ | [101] | |
| Methylation↑ or expression↓ is an independent prognostic marker for poorer survival (TCGA); Methylation levels in plasma or sputum correlate with corresponding paired tissue and effectively discriminate patients from healthy subjects | [102] | |||
| TMEM213 | mRNA expression↑ in LUAD (especially in adjuvant paclitaxel-carboplatin treated patients) → 3-year OS rate↑ and OS↑; an independent predictor for OS (TCGA) | Related pathway: drug metabolism cytochrome P450, ABC transporter, butyric acid, arachidonic acid, tryptophan, fatty acid, histidine, and bile acid synthesis and other metabolic pathways (TCGA GSEA database, KEGG gene sets) | [84] | |
| TMEM229A | mRNA and protein expression: NSCLC < adjacent normal lung tissues Protein expression↓ → TNM stage↑, cancer thrombus↑, differentiation↓, and lymph node metastasis↑ Expression↑ in LUAD/LUSC: OS↑ (GEO, EGA, and TCGA) | Expression: A549, H23, 95D, H226, and H1975 cell lines < BEAS-2B cells Overexpression: proliferation↓, colony formation, EMT↓, migration↓, and invasion↓ Knockdown exerted opposite effects | Downstream effectors: TMEM229A↑ → p-ERK/p-AKT↓ (knockdown exerted opposite effects), which was partially reversed by ERK inhibitor PD98059 | [86] |
| TMEM245 | mRNA expression↑ in NSCLC patients → OS↑ | [85] | ||
| TMEM88 | mRNA expression: LUAD < adjacent normal tissues; mRNA expression↑ → OS↑ | miR-708 expression↑ → TMEM88↓ → cell proliferation, invasion, and migration↑ | Upstream Regulator: miR-708 binds and reduces the transcript for TMEM88 | [103] |
| Hypermethylation: NSCLC > adjacent normal tissues; hypermethylation in NSCLC → tumor size↑, mRNA expression↓, and OS↓ mRNA expression: NSCLC < adjacent normal tissues; not associated with OS | Demethylation agent treated A549 and H1299: TMEM88 expression↑, proliferation↓, migration and invasion↓ (abolished by TMEM88 siRNA), arrested cell cycle at the G2 or M phase↑ | TCGA data: weak positive correlations with Wnt pathway factor DVL1, FZD4/5, and ROR1 | [104] |
| TMEM ID | Clinical Association | Function or Role | Molecular Mechanism | References |
|---|---|---|---|---|
| TMEM14A | TMEM14A↓ (via circ_0003645↓) → NSCLC proliferation, migration, invasion↓ | Upstream regulator: circ_0003645 sponges miR-1179 → TMEM14A mRNA stabilization | [113] | |
| mRNA expression: LUAD > normal tissues (GEPIA2) LUAD: TMEM14A↑ → OS↓ | Downregulation: NSCLC proliferation↓ and ATP↓ | Upstream regulator: AXL → TMEM14A↑ Downstream effectors: TMEM14A↑ → mitochondrial ATP↑ → proliferation↑ | [114] | |
| TMEM33 | mRNA and protein expression: LUAD > matched non-carcinoma samples TMEM33↑ in LUAD: tumor grade (GEPIA)↑; lymph node metastasis↑; TNM stage↑; OS↓ | Expression: LUAD cell lines > BEAS-2B cells Downregulation: proliferation↓, invasion↓, and stemness↓ in vitro; tumor growth and metastasis↓ in vivo | Upstream regulator: miR-214-3p → TMEM33↓ Downstream effectors: TMEM33↓ → Wnt and β-catenin (β-cat, c-Myc, Cyclin D1)↓ | [115] |
| TMEM45A | Protein expression and prevalence: primary LUAD > nontumorous tissues | mRNA expression: late stage in vivo > early stage in vivo > in vitro 2D or 3D culture [116] | [117] | |
| TMEM45B | mRNA expression↑ in lung cancer → OS↓ | Downregulation: proliferation, migration, and invasion↓ in vitro; tumor growth↓ in vivo; cell cycle arrest↑ (reduction of G1/S transition) and apoptosis↑ | Downstream effectors: cell cycle-related proteins (CDK2, CDC25A, and PCNA), cell apoptosis-related proteins (Bcl-2, Bax, and cleaved caspase 3), and metastasis-related proteins (MMP-9, Twist, and Snail) | [118] |
| TMEM74 | Protein expression: LUAD and LUSC > adjacent normal tissues; protein expression↑ in LUAD and LUSC → OS↓ | Expression: lung cancer cell lines > normal cell lines Overexpression: proliferation↑ Downregulation: proliferation↓ | Reported as an autophagy inducer, promoting tumor cell proliferation by triggering autophagy | [119] |
| TMEM88 isoform 1 (CRA-a) | Protein expression: NSCLC (cytosol, nuclear, and membrane) > paired noncancerous tissues (membrane/cytosol) Cytosolic expression↑ in NSCLC: OS↓; histologic differentiation, lymph node metastasis, and TNM stage CRA-a protein expression: NSCLC tissues > paired noncancerous tissues; CRA-b: NSCLC tissues ≈ paired noncancerous tissues | Endogenous CRA-a expression: A549, H1299, H292, PG-BE1, PG-LH7, SPC-A-1, and LTEP-A-2 cells > HEB cells > LK2 and H460 cells CRA-a subcellular localization: cytoplasm and nuclear (except LK2 cells: membrane) Exogenous overexpression: Membrane-localized CRA-a (LK2 cells): colony formation↓, proliferation↓, migration, and invasion↓ in vitro; tumor volume↓, and metastasis↓ in vivo. Cytosol-localized CRA-a (H1299, A549, and SPC-A-1 cells): migration and invasion↑ in vitro; metastasis↑ in vivo. Verified by CRA-a downregulation. | Membrane-localized CRA-a → Wnt signaling↓ Downstream effectors: Cytosol-localized CRA-a↑ (H1299, A549) → active form of p38↑ (phosphorylated-P38) → GSK3β (Thr390)↑, ATF2↑, and Snail↑; tight junction-associated proteins ZO-1↓, and occludin↓. CRA-a (H1299, SPC-A-1)↓ → Snail expression↓, occludin↑, and ZO-1↑. | [120] |
| TMEM98 | Upstream Regulator: miR-29c-5p | [121] | ||
| mRNA expression: lung carcinoma tissues > adjacent normal tissues | Downregulation (siRNA): proliferation↓, migration↓, and invasion↓ in NSCLC cell lines | Downstream effectors: MMP-2, MMP-9, RhoC and MTA1 | [122] | |
| TMEM106B | LUAD patients (19%) with elevated gene amplification/mRNA expression of TMEM106B → DFS↓ and OS↓ (TCGA) | Overexpression in nonmetastatic 393P cells: metastasis↑; no influence on primary tumor growth Downregulation in metastastic 344SQ cells: metastasis↓; no influence on primary tumor growth Conditioned medium from 344SQ/393P cells (TMEM106B↑) → 393P parental cell metastasis↑ TMEM106B-mediated cancer cell invasion and metastasis in vivo | Downstream effectors: TMEM106B↑ → nuclear translocation of TFEB↑ → expression of lysosomal genes of CLEAR pathway↑ → formation of enlarged vesicular lysosomes containing high levels of active cathepsins↑ → calcium-dependent exocytosis of lysosomes↑ → releasing active lysosomal proteases↑ in ECM → cancer cell invasion and metastasis↑ | [123] |
| TMEM116 | Protein expression: NSCLC > non-tumor areas mRNA expression↑ → OS↓(GEPIA) | Downregulation: proliferation↓, migration↓, and invasion↓ in vitro and metastasis↓ in tail vein injection mice model | Downstream effectors: TMEM116↓ → PDPK1/AKT/FOXO3A signaling pathway↓ → accumulation of TAp63 | [124] |
| TMEM158 | Downregulation in PC-9 and CDDP cells; reduction in chemo-resistance against cisplatin | [125] | ||
| mRNA expression: LUAD > healthy tissues (TCGA-LUAD and GSE140797; verified at RNA and protein levels using clinical samples); LUAD patients without lymph node metastasis < patients developed lymph node metastasis. Duration of smoking history↑ → TMEM158 expression↑ in LUAD → OS↓ and DSS↓. | mRNA and protein expression: A549, PC9, and H1650 > non-cancerous BEAS-2B cell line Overexpression: proliferation↑, cell cycle↑ (cells in G2/M phase), colony formation↑, migration↑, and invasion↑; cells arrested at the G0/G1 phase↓, and apoptosis↓ Downregulation: opposite effects | Co-expression: external encapsulating construction organization, collagen-containing ECM, and ECM structural constituent-related genes Downstream effectors: TMEM158↑ → TWIST1↑ and physical interaction with TWIST1 → activates PI3K/AKT signaling | [126] | |
| Expression↑ → stage↑, OS↓ | Overexpression in lung cancer: EMT↑, migration↑ Downregulation: opposite effects | Upstream regulator: hypoxia via HIF-1α → TMEM158↑ Downstream: TMEM158 links to EMT, hypoxia, and tumor-promoting pathways | [127] | |
| TMEM160 | Protein expression: LUAD > adjacent non-tumor tissue; Predominantly localized in cytoplasm in LUAD | Subcellular localization cycles with mitosis of lung cancer cells: interphase, primarily in nucleus; pro-metaphase-anaphase-telophase, predominantly in cytoplasm; cytokinesis; returns to chromosomes while remaining cytoplasmic distribution Protein expression: A549 > BEAS cells. TMEM160↓ (A549) → proliferation↓, migratory ability↓ in vitro; tumor volume↓, necrotic areas↓ in vivo | TMEM160 interactome enriched in: apical junctions, xenobiotic metabolism, glycolysis, EMT, ROS, UV response DNA, the P53 pathway, and the mitotic spindle, especially nucleocytoplasmic transport, with nucleoporin NUP50, importin KPNA6, and SRRM1 (Co-IP-MS GSEA); DNA replication, amino acid biosynthesis, and cell cycle (UALCAN database) | [128] |
| TMEM176B | mRNA and protein expression: LUAD > adjacent normal tissues> LUSC; stages II and III > stage I (TCGA/GTEx and tissue arrays) mRNA expression↑ in LUAD → OS↓ (GEPIA2) | Overexpression in LUAD cell lines (PC9 and A549): cell proliferation↑, invasion↑, migration↑, cell–matrix adhesion↑ in vitro; tumor growth↑ in vivo FGFR inhibitors (fexagratinib and infigratinib) and JNK inhibitor (SP600125) but no ERK, p38, AKT, or PI3K inhibitor treatment: the enhancements↓ caused by TMEM176B overexpression in vitro | Downstream effectors: TMEM176B↑ → ligand–receptor interactions (primarily involved in JAM, SPP1, gelatin, and ECMs, including fibronectin and collagen) → interaction strength between cancer cells and endothelial cells↑ TMEM176B↑ → FGFR1/JNK/vimentin/Snail axis and E-cadherin↓ → EMT↑ | [129] |
| TMEM209 | Widely expressed in lung cancer; mRNA expression: lung cancer > normal lung Localization: nuclear envelope, Golgi apparatus, and cytoplasm | Overexpression: COS-7 and SBC-3 cell growth↑; Downregulation: opposite effects | Downstream effectors: TMEM209 interacts with nucleoporin protein NUP205 (MS) → NUP205 stabilization↑ and c-Myc in the nucleus↑ | [130] |
| TMEM243 | mRNA expression: sensitive < low acquired paclitaxel-resistant < high acquired paclitaxel-resistant NCI-H446 cells. Downregulation: resensitize resistant cells to paclitaxel, proliferation↓ and invasion↓ | Upstream regulator: A2M↑ → TMEM243↓ → resensitize the resistant cells to paclitaxel | [131] |
| Article Section | Name | Log-Rank p Value 1 | |||||
|---|---|---|---|---|---|---|---|
| LUAD + LUSC | LUAD | LUSC | |||||
| DFS | OS | DFS | OS | DFS | OS | ||
| Section 3 | TMEM8B | / | / | / | (+)Q:0.033 | / | / |
| TMEM17 | (+)Q:0.023 | / | (−)M:0.042 | (−)Q:0.019 | / | / | |
| TMEM52B | (−)Q:0.049 | / | / | / | (−)Q:0.027 | / | |
| TMEM100 | / | / | / | / | / | / | |
| TMEM106A | (−)M:0.0019 | / | / | / | (−)M:0.047 | (−)Q:0.02 | |
| TMEM139 | (−)Q:0.014 | / | / | / | / | / | |
| TMEM164 | / | / | / | / | (−)M:0.03 | / | |
| TMEM176A | / | / | / | / | / | / | |
| TMEM196 | / | / | / | / | Error | Error | |
| TMEM213 | / | / | (+)M:0.0034 | (+)Q:0.0083 | / | / | |
| TMEM229A | / | / | / | / | Error | Error | |
| TMEM245 | / | / | / | / | (−)M:0.012 | / | |
| Section 4 | TMEM14A | (+)Q:0.014 | / | (−)Q:0.046 | (−)Q:0.0058 | (+)Q:0.026 | (+)Q:0.027 |
| TMEM33 | / | (−)Q:0.011 | / | (−)Q:0.017 | / | / | |
| TMEM45A | / | (−)Q:0.03 | / | (−)Q:0.0018 | / | / | |
| TMEM45B | (−)M:0.0013 | / | / | / | / | / | |
| TMEM74 | (−)Q:0.041 | / | / | / | / | / | |
| TMEM98 | (−)M:0.037 | / | / | / | / | / | |
| TMEM106B | / | / | (−)M:0.017 | (−)M:0.0051 | / | / | |
| TMEM116 | / | / | / | / | / | / | |
| TMEM158 | (+)M:0.035 | / | / | (−)M:0.023 | / | / | |
| TMEM160 | / | / | / | / | / | / | |
| TMEM176B | / | / | / | / | / | / | |
| TMEM179A | / | / | / | / | / | / | |
| TMEM209 | / | / | / | / | / | / | |
| TMEM243 | / | (+)Q:0.028 | (+)M:0.0099 | (+)M:0.015 | / | / | |
| Section 5 | TMEM88 | / | / | / | / | / | (−)Q:0.0075 |
| Section 6 | TMEM92 | (−)M:0.00039 | (−)Q:0.0066 | / | / | (−)M:0.042 | (−)Q:0.0029 |
| TMEM161A | / | / | / | / | / | / | |
| TMEM163 | / | (+)Q:0.017 | / | (+)Q:0.0049 | / | / | |
| TMEM184A | (−)M:0.028 | / | / | / | / | / | |
| TMEM125 | (−)M:0.018 | / | (+)M:0.024 | (+)M:9.1 × 10−5 | / | (−)M:0.043 | |
| TMEM164 | / | / | / | / | (−)M:0.03 | / | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, S.; Cao, G.; Hu, X.; Chen, C.; Chen, P. A Decade-Old Atlas of TMEM (Transmembrane) Protein Family in Lung Cancer: Lessons Learnt and Future Directions. Int. J. Mol. Sci. 2026, 27, 1120. https://doi.org/10.3390/ijms27021120
Zhang S, Cao G, Hu X, Chen C, Chen P. A Decade-Old Atlas of TMEM (Transmembrane) Protein Family in Lung Cancer: Lessons Learnt and Future Directions. International Journal of Molecular Sciences. 2026; 27(2):1120. https://doi.org/10.3390/ijms27021120
Chicago/Turabian StyleZhang, Siwei, Guojie Cao, Xuelin Hu, Chen Chen, and Peng Chen. 2026. "A Decade-Old Atlas of TMEM (Transmembrane) Protein Family in Lung Cancer: Lessons Learnt and Future Directions" International Journal of Molecular Sciences 27, no. 2: 1120. https://doi.org/10.3390/ijms27021120
APA StyleZhang, S., Cao, G., Hu, X., Chen, C., & Chen, P. (2026). A Decade-Old Atlas of TMEM (Transmembrane) Protein Family in Lung Cancer: Lessons Learnt and Future Directions. International Journal of Molecular Sciences, 27(2), 1120. https://doi.org/10.3390/ijms27021120

