Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,258)

Search Parameters:
Keywords = electronic skin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 23926 KiB  
Article
Electrical Connector Assembly Based on Compliant Tactile Finger with Fingernail
by Wenhui Yang, Hongliang Zhao, Chengxiao He and Longhui Qin
Biomimetics 2025, 10(8), 512; https://doi.org/10.3390/biomimetics10080512 - 5 Aug 2025
Viewed by 30
Abstract
Robotic assembly of electrical connectors enables the automation of high-efficiency production of electronic products. A rigid gripper is adopted as the end-effector by the majority of existing works with a force–torque sensor installed at the wrist, which suffers from very limited perception capability [...] Read more.
Robotic assembly of electrical connectors enables the automation of high-efficiency production of electronic products. A rigid gripper is adopted as the end-effector by the majority of existing works with a force–torque sensor installed at the wrist, which suffers from very limited perception capability of the manipulated objects. Moreover, the grasping and movement actions, as well as the inconsistency between the robot base and the end-effector frame, tend to result in angular misalignment, usually leading to assembly failure. Bio-inspired by the human finger, we designed a tactile finger in this paper with three characteristics: (1) Compliance: A soft ‘skin’ layer provides passive compliance for plenty of manipulation actions, thus increasing the tolerance for alignment errors. (2) Tactile Perception: Two types of sensing elements are embedded into the soft skin to tactilely sense the involved contact status. (3) Enhanced manipulation force: A rigid fingernail is designed to enhance the manipulation force and enable potential delicate operations. Moreover, a tactile-based alignment algorithm is proposed to search for the optimal orientation angle about the z axis. In the application of U-disk insertion, the three characteristics are validated and a success rate of 100% is achieved, whose generalization capability is also validated through the assembly of three types of electrical connectors. Full article
(This article belongs to the Section Bioinspired Sensorics, Information Processing and Control)
Show Figures

Figure 1

24 pages, 5797 KiB  
Article
Topical Meglumine Antimoniate Gel for Cutaneous Leishmaniasis: Formulation, Evaluation, and In Silico Insights
by Lilian Sosa, Lupe Carolina Espinoza, Alba Pujol, José Correa-Basurto, David Méndez-Luna, Paulo Sarango-Granda, Diana Berenguer, Cristina Riera, Beatriz Clares-Naveros, Ana Cristina Calpena, Rafel Prohens and Marcelle Silva-Abreu
Gels 2025, 11(8), 601; https://doi.org/10.3390/gels11080601 - 1 Aug 2025
Viewed by 306
Abstract
Leishmaniasis is an infectious disease common in tropical and subtropical regions worldwide. This study aimed to develop a topical meglumine antimoniate gel (MA-gel) for the treatment of cutaneous leishmaniasis. The MA-gel was characterized in terms of morphology, pH, swelling, porosity, rheology, and thermal [...] Read more.
Leishmaniasis is an infectious disease common in tropical and subtropical regions worldwide. This study aimed to develop a topical meglumine antimoniate gel (MA-gel) for the treatment of cutaneous leishmaniasis. The MA-gel was characterized in terms of morphology, pH, swelling, porosity, rheology, and thermal properties by differential scanning calorimetry (DSC). Biopharmaceutical evaluation included in vitro drug release and ex vivo skin permeation. Safety was evaluated through biomechanical skin property measurements and cytotoxicity in HaCaT and RAW 267 cells. Leishmanicidal activity was tested against promastigotes and amastigotes of Leishmania infantum, and in silico studies were conducted to explore possible mechanisms of action. The composition of the MA-gel included 30% MA, 20% Pluronic® F127 (P407), and 50% water. Scanning electron microscopy revealed a sponge-like and porous internal structure of the MA-gel. This formula exhibited a pH of 5.45, swelling at approximately 12 min, and a porosity of 85.07%. The DSC showed that there was no incompatibility between MA and P407. Drug release followed a first-order kinetic profile, with 22.11 µg/g/cm2 of the drug retained in the skin and no permeation into the receptor compartment. The MA-gel showed no microbial growth, no cytotoxicity in keratinocytes, and no skin damage. The IC50 for promastigotes and amastigotes of L. infantum were 3.56 and 23.11 µg/mL, respectively. In silico studies suggested that MA could act on three potential therapeutic targets according to its binding mode. The MA-gel demonstrated promising physicochemical, safety, and antiparasitic properties, supporting its potential as a topical treatment for cutaneous leishmaniasis. Full article
(This article belongs to the Special Issue Functional Hydrogels: Design, Processing and Biomedical Applications)
Show Figures

Figure 1

18 pages, 6795 KiB  
Article
Strain-Rate-Dependent Tensile Behaviour and Viscoelastic Modelling of Kevlar® 29 Plain-Woven Fabric for Ballistic Applications
by Kun Liu, Ying Feng, Bao Kang, Jie Song, Zhongxin Li, Zhilin Wu and Wei Zhang
Polymers 2025, 17(15), 2097; https://doi.org/10.3390/polym17152097 - 30 Jul 2025
Viewed by 190
Abstract
Aramid fibre has become a critical material for individual soft body armour due to its lightweight nature and exceptional impact resistance. To investigate its energy absorption mechanism, quasi-static and dynamic tensile experiments were conducted on Kevlar® 29 plain-woven fabric using a universal [...] Read more.
Aramid fibre has become a critical material for individual soft body armour due to its lightweight nature and exceptional impact resistance. To investigate its energy absorption mechanism, quasi-static and dynamic tensile experiments were conducted on Kevlar® 29 plain-woven fabric using a universal material testing machine and a Split Hopkinson Tensile Bar (SHTB) apparatus. Tensile mechanical responses were obtained under various strain rates. Fracture morphology was characterised using scanning electron microscopy (SEM) and ultra-depth three-dimensional microscopy, followed by an analysis of microstructural damage patterns. Considering the strain rate effect, a viscoelastic constitutive model was developed. The results indicate that the tensile mechanical properties of Kevlar® 29 plain-woven fabric are strain-rate dependent. Tensile strength, elastic modulus, and toughness increase with strain rate, whereas fracture strain decreases. Under quasi-static loading, the fracture surface exhibits plastic flow, with slight axial splitting and tapered fibre ends, indicating ductile failure. In contrast, dynamic loading leads to pronounced axial splitting with reduced split depth, simultaneous rupture of fibre skin and core layers, and fibrillation phenomena, suggesting brittle fracture characteristics. The modified three-element viscoelastic constitutive model effectively captures the strain-rate effect and accurately describes the tensile behaviour of the plain-woven fabric across different strain rates. These findings provide valuable data support for research on ballistic mechanisms and the performance optimisation of protective materials. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

13 pages, 8086 KiB  
Article
Flexible FLIG-Based Temperature Sensor Enabled by Femtosecond Laser Direct Writing for Thermal Monitoring in Health Systems
by Huansheng Wu, Cong Wang, Linpeng Liu and Ji’an Duan
Sensors 2025, 25(15), 4643; https://doi.org/10.3390/s25154643 - 26 Jul 2025
Viewed by 370
Abstract
In this study, a facile and mask-free femtosecond laser direct writing (FLDW) approach is proposed to fabricate porous graphene (FLIG) patterns directly on polyimide (PI) substrates. By systematically adjusting the laser scanning spacing (10–25 μm), denser and more continuous microstructures are obtained, resulting [...] Read more.
In this study, a facile and mask-free femtosecond laser direct writing (FLDW) approach is proposed to fabricate porous graphene (FLIG) patterns directly on polyimide (PI) substrates. By systematically adjusting the laser scanning spacing (10–25 μm), denser and more continuous microstructures are obtained, resulting in significantly enhanced thermal sensitivity. The optimized sensor demonstrated a temperature coefficient of 0.698% °C−1 within the range of 40–120 °C, with response and recovery times of 10.3 s and 20.9 s, respectively. Furthermore, it exhibits remarkable signal stability across multiple thermal cycles, a testament to its reliability in extreme conditions. Moreover, the sensor was successfully integrated into a 3D-printed robotic platform, achieving both contact and non-contact temperature detection. These results underscore the sensor’s practical adaptability for real-time thermal sensing. This work presents a viable and scalable methodology for fabricating high-performance FLIG-based flexible temperature sensors, with extensive application prospects in wearable electronics, electronic skin, and intelligent human–machine interfaces. Full article
(This article belongs to the Special Issue State of the Art in Wearable Sensors for Health Monitoring)
Show Figures

Figure 1

12 pages, 3166 KiB  
Article
Impedance Characterization and Modeling of Gold, Silver, and PEDOT:PSS Ultra-Thin Tattoo Electrodes for Wearable Bioelectronics
by Antonello Mascia, Riccardo Collu, Nasreddine Makni, Mattia Concas, Massimo Barbaro and Piero Cosseddu
Sensors 2025, 25(15), 4568; https://doi.org/10.3390/s25154568 - 23 Jul 2025
Viewed by 349
Abstract
This study presents a comprehensive evaluation and an equivalent circuit modeling of the skin–electrode impedance characteristics of three types of ultra-thin tattoo electrodes, all based on Parylene C nanofilms but with different active materials: Gold, Silver, and PEDOT:PSS. Their performance was compared to [...] Read more.
This study presents a comprehensive evaluation and an equivalent circuit modeling of the skin–electrode impedance characteristics of three types of ultra-thin tattoo electrodes, all based on Parylene C nanofilms but with different active materials: Gold, Silver, and PEDOT:PSS. Their performance was compared to standard disposable Ag/AgCl electrodes. Impedance measurements were carried out on six human subjects under controlled conditions, assessing the frequency response in the range of 20 Hz to 1 kHz. For each subject, the impedance was recorded six times over one hour to investigate the stability and the temporal performance. The collected data were subsequently analyzed to model the electrical properties and interface behavior of each electrode type. The findings demonstrate that the tattoo electrodes offer impedance levels comparable to those of Ag/AgCl electrodes (in the order of tens of kΩ at 20 Hz), while providing additional benefits such as enhanced conformability, improved skin adhesion, and reduced skin irritation during use. Furthermore, the modeling of the skin–electrode interface through a more detailed equivalent circuit than the single time constant model enables a more detailed interface analysis and description, with fitting algorithm R2 scores of about 0.999 and 0.979 for the impedance magnitude and impedance phase, respectively. The proposed equivalent circuit offers valuable insights for optimizing electrode design, supporting the potential of Parylene C-based tattoo electrodes as promising alternatives for next-generation wearable bioelectronic applications. Full article
(This article belongs to the Special Issue Bioimpedance Measurements and Microelectrodes)
Show Figures

Figure 1

13 pages, 2020 KiB  
Article
Micro-Gas Flow Sensor Utilizing Surface Network Density Regulation for Humidity-Modulated Ion Transport
by Chuanjie Liu and Zhihong Liu
Gels 2025, 11(8), 570; https://doi.org/10.3390/gels11080570 - 23 Jul 2025
Viewed by 260
Abstract
As a bridge for human–machine interaction, the performance improvement of sensors relies on the in-depth understanding of ion transport mechanisms. This study focuses on the surface effect of resistive gel sensors and designs a polyacrylic acid/ferric ion hydrogel (PAA/Fe3+) gas flow [...] Read more.
As a bridge for human–machine interaction, the performance improvement of sensors relies on the in-depth understanding of ion transport mechanisms. This study focuses on the surface effect of resistive gel sensors and designs a polyacrylic acid/ferric ion hydrogel (PAA/Fe3+) gas flow sensor. Prepared by one-pot polymerization, PAA/Fe3+ forms a three-dimensional network through the entanglement of crosslinked and uncrosslinked PAA chains, where the coordination between Fe3+ and carboxyl groups endows the material with excellent mechanical properties (tensile strength of 80 kPa and elongation at break of 1100%). Experiments show that when a gas flow acts on the hydrogel surface, changes in surface humidity alter the density of the network structure, thereby regulating ion migration rates: the network loosens to promote ion transport during water absorption, while it tightens to hinder transport during water loss. This mechanism enables the sensor to exhibit significant resistance responses (ΔR/R0 up to 0.55) to gentle breezes (0–13 m/s), with a response time of approximately 166 ms and a sensitivity 40 times higher than that of bulk deformation. The surface ion transport model proposed in this study provides a new strategy for ultrasensitive gas flow sensing, showing potential application values in intelligent robotics, electronic skin, and other fields. Full article
(This article belongs to the Special Issue Polymer Gels for Sensor Applications)
Show Figures

Graphical abstract

14 pages, 2149 KiB  
Article
Polymer Prosthetic Hand with Finger Copies for Persons with Congenital Defects or After Amputation Using 3D Printing Technology
by Anna Włodarczyk-Fligier, Magdalena Polok-Rubiniec, Aneta Kania, Sebastian Jakubik, Jakub Painta, Justyna Ryś, Jakub Wieczorek, Marta Marianek, Agata Ociepka, Mikołaj Micuła and Jakub Osuch
Polymers 2025, 17(14), 1983; https://doi.org/10.3390/polym17141983 - 19 Jul 2025
Viewed by 445
Abstract
The research presented in this paper focuses on the utilization of 3D printing technology in the design and manufacture of a prosthetic hand, equipped with a digit replicator. The subject of this study was a young man who had undergone the amputation of [...] Read more.
The research presented in this paper focuses on the utilization of 3D printing technology in the design and manufacture of a prosthetic hand, equipped with a digit replicator. The subject of this study was a young man who had undergone the amputation of two fingers on his right hand. The electronic control of the movement of the finger copy was developed using Arduino language. A concept and outline drawings were developed in ProCreate. Three-dimensional scan of the hand and forearm was made using an EinScan PRO HD SHINING 3D scanner. Using CAD software—Autodesk Inventor and Autodesk Meshmixer, the prosthesis was designed. Printing was carried out on a 3D printer of the i3 MK3 and MK3+ series using a PLA (polylactic acid) filament. It was determined that PLA is an optimal material for printing, as it is considered to be safe for future patients’ skin. Work on the electronic circuitry started in Autodesk TinkerCad simulation software, allowing the code to be verified and ensuring the safety of the control system. The prosthesis’s design demonstrates the potential to reach as many people in need as possible by using readily available, low-cost, and easy-to-use components. Full article
(This article belongs to the Special Issue 3D Printing Polymer Materials and Their Biomedical Applications)
Show Figures

Figure 1

16 pages, 2201 KiB  
Article
Oral Squamous Cell Carcinoma Exosomes Upregulate PIK3/AKT, PTEN, and NOTCH Signaling Pathways in Normal Fibroblasts
by Dijana Mitic, Milica Jaksic Karisik, Milos Lazarevic, Jelena Carkic, Emilia Zivkovic, Olivera Mitrovic Ajtic and Jelena Milasin
Curr. Issues Mol. Biol. 2025, 47(7), 568; https://doi.org/10.3390/cimb47070568 - 19 Jul 2025
Viewed by 362
Abstract
Exosomes, small extracellular vesicles secreted by various cell types, have gained significant attention in cancer investigations. Isolation and characterization of exosomes derived from DOK (dysplastic oral keratinocyte), SCC (squamous cell carcinoma) and HaCaT (normal skin keratinocyte) cell lines and microRNA profiling were conducted. [...] Read more.
Exosomes, small extracellular vesicles secreted by various cell types, have gained significant attention in cancer investigations. Isolation and characterization of exosomes derived from DOK (dysplastic oral keratinocyte), SCC (squamous cell carcinoma) and HaCaT (normal skin keratinocyte) cell lines and microRNA profiling were conducted. Magnetic sorting was applied to obtain pure exosomes. Morphology and size were characterized by transmission electron microscopy and nanoparticle tracking analysis. Validation of membrane exosomal markers (CD9, CD63) was performed via Western blotting. MiR-21, miR-31, and miR-133 levels were analyzed in exosomes and parent cells by qPCR. Biological effects of the exosomes were tested by adding them to fibroblast cultures and determining the expression of relevant carcinogenesis markers by qPCR. Exosomes appeared as cup-shaped nano-sized particles, and there was no difference regarding particle diameter and concentration between the three types of exosomes. The oncogenic miR-21 was significantly upregulated both in SCC and SCC-derived exosomes compared to DOK and HaCaT cells and their respective exosomes. However, miR-31 unexpectedly showed the highest expression in normal cells and the lowest in HaCaT exosomes. MiR-133, the tumor suppressor miRNA, was downregulated in both SCC and DOK cells compared to normal (HaCaT) cells, while the opposite situation was observed in exosomes, with HaCaT cells showing the lowest levels of miR-133. The differences in exosome content were reflected in signaling pathway activation in exosome-treated fibroblasts, with SCC exosomes exerting the most potent effect on several cancer-related pathways, notably PIK3/AKT, PTEN, and NOTCH signaling cascades. Full article
Show Figures

Figure 1

35 pages, 6415 KiB  
Review
Recent Advances in Conductive Hydrogels for Electronic Skin and Healthcare Monitoring
by Yan Zhu, Baojin Chen, Yiming Liu, Tiantian Tan, Bowen Gao, Lijun Lu, Pengcheng Zhu and Yanchao Mao
Biosensors 2025, 15(7), 463; https://doi.org/10.3390/bios15070463 - 18 Jul 2025
Viewed by 380
Abstract
In recent decades, flexible electronics have witnessed remarkable advancements in multiple fields, encompassing wearable electronics, human–machine interfaces (HMI), clinical diagnosis, and treatment, etc. Nevertheless, conventional rigid electronic devices are fundamentally constrained by their inherent non-stretchability and poor conformability, limitations that substantially impede their [...] Read more.
In recent decades, flexible electronics have witnessed remarkable advancements in multiple fields, encompassing wearable electronics, human–machine interfaces (HMI), clinical diagnosis, and treatment, etc. Nevertheless, conventional rigid electronic devices are fundamentally constrained by their inherent non-stretchability and poor conformability, limitations that substantially impede their practical applications. In contrast, conductive hydrogels (CHs) for electronic skin (E-skin) and healthcare monitoring have attracted substantial interest owing to outstanding features, including adjustable mechanical properties, intrinsic flexibility, stretchability, transparency, and diverse functional and structural designs. Considerable efforts focus on developing CHs incorporating various conductive materials to enable multifunctional wearable sensors and flexible electrodes, such as metals, carbon, ionic liquids (ILs), MXene, etc. This review presents a comprehensive summary of the recent advancements in CHs, focusing on their classifications and practical applications. Firstly, CHs are categorized into five groups based on the nature of the conductive materials employed. These categories include polymer-based, carbon-based, metal-based, MXene-based, and ionic CHs. Secondly, the promising applications of CHs for electrophysiological signals and healthcare monitoring are discussed in detail, including electroencephalogram (EEG), electrocardiogram (ECG), electromyogram (EMG), respiratory monitoring, and motion monitoring. Finally, this review concludes with a comprehensive summary of current research progress and prospects regarding CHs in the fields of electronic skin and health monitoring applications. Full article
Show Figures

Figure 1

13 pages, 1990 KiB  
Article
Agreement Between a Pre-Markered T-Shirt and Manual Marker Placement for Opto-Electronic Plethysmography (OEP) Measures
by Nayani G. Adhikari, Eugénie Hunsicker, Matthew T. G. Pain, John W. Dickinson and Samantha L. Winter
Sensors 2025, 25(14), 4464; https://doi.org/10.3390/s25144464 - 17 Jul 2025
Viewed by 309
Abstract
Opto-electronic plethysmography (OEP) is used to measure chest wall compartment volumes and their synchronisation. Breathing pattern disorder (BPD) can be distinguished using the phase angles between these chest wall compartments during exercise. However, the time taken to manually place the standard OEP model [...] Read more.
Opto-electronic plethysmography (OEP) is used to measure chest wall compartment volumes and their synchronisation. Breathing pattern disorder (BPD) can be distinguished using the phase angles between these chest wall compartments during exercise. However, the time taken to manually place the standard OEP model involving 89 reflective markers is high during clinical application. The purpose of this study was to investigate the use of a pre-markered T-shirt instead of markers applied directly to the skin at rest, during different exercise intensities and recovery. Thirty-nine healthy participants (24 male, 15 female) aged 18–40 years performed an incremental cycling test with the skin-mounted OEP marker set. Participants then repeated the same cycling test with a pre-markered T-shirt. Across all test conditions, the T-shirt showed a strong level of agreement (Intraclass correlation coefficient (ICC) ≥ 0.9) with the standard breath-by-breath (BbB) gas analyser. Moreover, ICC values exceeded 0.8 for compartment contributions across all test conditions, indicating excellent agreement with the skin-mounted markers. The phase angles between compartments showed the best agreement during the moderate exercise level (0.6 < ICC < 0.8). In conclusion, the pre-markered T-shirt presents a viable solution for the quick monitoring of breathing patterns, as well as an effective tool in diagnosing BPD during exercise. Full article
(This article belongs to the Special Issue Smart Sensing for Healthcare Transformation)
Show Figures

Figure 1

20 pages, 1303 KiB  
Review
The Role of Nanomaterials in the Wearable Electrochemical Glucose Biosensors for Diabetes Management
by Tahereh Jamshidnejad-Tosaramandani, Soheila Kashanian, Kobra Omidfar and Helgi B. Schiöth
Biosensors 2025, 15(7), 451; https://doi.org/10.3390/bios15070451 - 14 Jul 2025
Viewed by 466
Abstract
The increasing prevalence of diabetes mellitus necessitates the development of advanced glucose-monitoring systems that are non-invasive, reliable, and capable of real-time analysis. Wearable electrochemical biosensors have emerged as promising tools for continuous glucose monitoring (CGM), particularly through sweat-based platforms. This review highlights recent [...] Read more.
The increasing prevalence of diabetes mellitus necessitates the development of advanced glucose-monitoring systems that are non-invasive, reliable, and capable of real-time analysis. Wearable electrochemical biosensors have emerged as promising tools for continuous glucose monitoring (CGM), particularly through sweat-based platforms. This review highlights recent advancements in enzymatic and non-enzymatic wearable biosensors, with a specific focus on the pivotal role of nanomaterials in enhancing sensor performance. In enzymatic sensors, nanomaterials serve as high-surface-area supports for glucose oxidase (GOx) immobilization and facilitate direct electron transfer (DET), thereby improving sensitivity, selectivity, and miniaturization. Meanwhile, non-enzymatic sensors leverage metal and metal oxide nanostructures as catalytic sites to mimic enzymatic activity, offering improved stability and durability. Both categories benefit from the integration of carbon-based materials, metal nanoparticles, conductive polymers, and hybrid composites, enabling the development of flexible, skin-compatible biosensing systems with wireless communication capabilities. The review critically evaluates sensor performance parameters, including sensitivity, limit of detection, and linear range. Finally, current limitations and future perspectives are discussed. These include the development of multifunctional sensors, closed-loop therapeutic systems, and strategies for enhancing the stability and cost-efficiency of biosensors for broader clinical adoption. Full article
Show Figures

Graphical abstract

12 pages, 3424 KiB  
Article
Tri-Layered Full-Thickness Artificial Skin Incorporating Adipose-Derived Stromal Vascular Fraction Cells, Keratinocytes, and a Basement Membrane
by Jung Huh, Seong-Ho Jeong, Eun-Sang Dhong, Seung-Kyu Han and Kyung-Chul Moon
Bioengineering 2025, 12(7), 757; https://doi.org/10.3390/bioengineering12070757 - 12 Jul 2025
Viewed by 427
Abstract
Tissue-engineered artificial skin has the potential to enhance wound healing without necessitating extensive surgical procedures or causing donor-site morbidity. The purpose of this study was to examine the possibility of developing tri-layered tissue-engineered full-thickness artificial skin with a basement membrane for clinical use [...] Read more.
Tissue-engineered artificial skin has the potential to enhance wound healing without necessitating extensive surgical procedures or causing donor-site morbidity. The purpose of this study was to examine the possibility of developing tri-layered tissue-engineered full-thickness artificial skin with a basement membrane for clinical use to accelerate wound healing. We engineered full-thickness artificial skin with a basement membrane for wound healing by employing stromal vascular fraction (SVF) cells for the dermal layer and autologous keratinocytes for the epidermal layer. The fabrication of a basement membrane involved the use of 100% bovine collagen and 4% elastin produced through a low-temperature three-dimensional printer. Scaffolds for cells were printed with 100% bovine collagen. The basement membrane underwent evaluations for collagenase degradation, tensile strength, and structural characteristics using scanning electron microscopy. The final tri-layered full-thickness artificial skin included two cell scaffolds with a basement membrane between them. The basement membrane may support cellular attachment without inducing significant cytotoxic effects. This study presents a novel strategy for full-thickness artificial skin development, combining SVF and keratinocytes with an optimized collagen-elastin basement membrane. This method may overcome the significant limitations of current artificial skin, thereby contributing to the advancement of tissue-engineering in wound healing for clinical use. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

16 pages, 14728 KiB  
Article
Comparative Study of the Gel-Forming Ability of Type I Collagens Extracted from Different Organs and Fish Species
by Abdul Ghani, Mantaro Okada, Beini Sun, Xi Zhang, Ichiro Higuchi and Yasuaki Takagi
Gels 2025, 11(7), 533; https://doi.org/10.3390/gels11070533 - 9 Jul 2025
Viewed by 312
Abstract
The gel-forming ability of collagens is vital for their application in cell scaffolds, yet very few comparative studies on fish collagen sources are available. This study isolated and characterized type I collagens from carp skin (CSK), scales (CSC), and swim bladders (CSB) and [...] Read more.
The gel-forming ability of collagens is vital for their application in cell scaffolds, yet very few comparative studies on fish collagen sources are available. This study isolated and characterized type I collagens from carp skin (CSK), scales (CSC), and swim bladders (CSB) and sturgeon skin (SSK) and swim bladders (SSB). The carp collagens exhibited higher thermal stability (34.75–34.78 °C) and formed more transparent, stronger gels than the sturgeon collagens. Additionally, as demonstrated by scanning electron microscopy, the sturgeon collagens exhibited faster fibril formation, with visible fibrils after 3 h which grew thicker but did not form bundles. The carp collagens, in contrast, initially displayed fewer, thinner, and longer fibrils, with their formation accelerating over time and fibril bundles emerging after 24 h. All collagen solutions of 4% (w/v) exhibited shear-thinning flow behavior, with the carp-derived solutions showing higher viscosities (103–104 Pa·s) than those demonstrated by the sturgeon-derived solutions (102–103 Pa·s). The CSBs and SSBs demonstrated the highest storage (G′) and loss (G″) moduli, with the former exhibiting the lowest loss tangent (tan δ), indicative of a stronger gel structure. The gels at 24 h showed slightly poorer mechanical properties than those at 3 h. The CSC and SSB gels had the highest thermal stability. These findings highlight the distinctiveness of the characteristics of collagens and their gels, emphasizing their potential in biomaterial applications. The present study also provides a foundational framework for assessing cellular responses in a comparative context that may help in identifying the most suitable collagen types for biomedical applications. Full article
Show Figures

Graphical abstract

21 pages, 2757 KiB  
Article
Video-Assisted Mastectomy with Immediate Breast Reconstruction: First Clinical Experience and Outcomes in an Eastern European Medical Center
by Adrian Daniel Tulin, Daniela-Elena Ion, Adelaida Avino, Daniela-Elena Gheoca-Mutu, Abdalah Abu-Baker, Andrada-Elena Țigăran, Teodora Timofan, Ileana Ostafi, Cristian Radu Jecan and Laura Răducu
Cancers 2025, 17(13), 2267; https://doi.org/10.3390/cancers17132267 - 7 Jul 2025
Viewed by 441
Abstract
Background/Objectives: The aim of this case series is to evaluate the outcomes and safety of video-assisted mastectomy, illustrating the harmonious collaboration of oncologic and plastic surgery. This novel minimally invasive technique allows immediate prosthetic reconstruction and represents a cost-effective alternative to robotic breast [...] Read more.
Background/Objectives: The aim of this case series is to evaluate the outcomes and safety of video-assisted mastectomy, illustrating the harmonious collaboration of oncologic and plastic surgery. This novel minimally invasive technique allows immediate prosthetic reconstruction and represents a cost-effective alternative to robotic breast surgery. Methods: Video-assisted, single-port nipple-sparing mastectomies were performed in patients with small to medium-sized breasts, followed by immediate direct-to-implant reconstruction with either prepectoral or dual plane implant placement. The patients’ electronic medical records were analyzed, including demographic characteristics, operative times and histopathology reports. Results: A total of 18 patients underwent successful video-assisted mastectomy, without conversion to traditional open procedure. Fifteen of the operations were risk-reducing mastectomies. Twelve patients had complementary procedures performed concurrently on the previously operated contralateral breast (delayed reconstruction/expander-to-implant exchange). Moreover, three patients benefited from additional minimally invasive techniques during the same surgery (prophylactic laparoscopic hysterectomy). Immediate breast reconstruction with polyurethane or microtextured breast implants up to 450 cc was performed, with satisfactory aesthetic outcomes and no cancer recurrences at 6 to 12 months postoperative follow-up. Early complications included transient hypercapnia, areolar congestion and cellulitis. No skin necrosis or implant-related complications were reported. The most frequently encountered late issues were contour irregularities. Conclusions: Video-assisted mastectomy facilitates the safe removal of proven pathologic or healthy breast tissue with minimal damage to the breast’s skin envelope, facilitating single-stage breast reconstruction. Full article
(This article belongs to the Special Issue Recent Advances and Challenges in Breast Cancer Surgery: 2nd Edition)
Show Figures

Figure 1

11 pages, 2829 KiB  
Article
Biomimetic Full-Thickness Artificial Skin Using Stromal Vascular Fraction Cells and Autologous Keratinocytes in a Single Scaffold for Wound Healing
by Jung Huh, Seong-Ho Jeong, Eun-Sang Dhong, Seung-Kyu Han and Kyung-Chul Moon
Bioengineering 2025, 12(7), 736; https://doi.org/10.3390/bioengineering12070736 - 5 Jul 2025
Viewed by 513
Abstract
We developed biomimetic full-thickness artificial skin using stromal vascular fraction (SVF) cells and autologous keratinocytes for the dermal and epidermal layers of skin, respectively. Full-thickness artificial skin scaffolds were fabricated using 4% porcine collagen and/or elastin in a low-temperature three-dimensional printer. Two types [...] Read more.
We developed biomimetic full-thickness artificial skin using stromal vascular fraction (SVF) cells and autologous keratinocytes for the dermal and epidermal layers of skin, respectively. Full-thickness artificial skin scaffolds were fabricated using 4% porcine collagen and/or elastin in a low-temperature three-dimensional printer. Two types of scaffolds with collagen-to-elastin ratios of 100:0 and 100:4 were printed and compared. The scaffolds were analyzed for collagenase degradation, tensile strength, and structural features using scanning electron microscopy. By 24 h, the collagen-only scaffolds showed gradual degradation, and the collagen-elastin scaffolds retained the highest structural integrity but were not degraded. In the tensile strength tests, the collagen-only scaffolds exhibited a tensile strength of 2.2 N, while the collagen-elastin scaffolds showed a tensile strength of 4.2 N. Cell viability tests for keratinocytes displayed an initial viability of 89.32 ± 3.01% on day 1, which gradually increased to 97.22 ± 4.99% by day 7. Similarly, SVF cells exhibited a viability of 93.68 ± 1.82% on day 1, which slightly improved to 97.12 ± 1.64% on day 7. This study presents a novel strategy for full-thickness artificial skin development, combining SVF and keratinocytes with an optimized single collagen scaffold and a gradient pore-density structure. Full article
(This article belongs to the Special Issue Advances and Innovations in Wound Repair and Regeneration)
Show Figures

Figure 1

Back to TopTop