Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (118)

Search Parameters:
Keywords = electrogens

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1457 KB  
Article
Toward Sustainability: Electrochemical and Spectroscopic Analysis of Microbial Fuel Cells Using Carrot Pulp
by Segundo Jonathan Rojas-Flores, Renny Nazario-Naveda, Santiago M. Benites, Daniel Delfin-Narciso and Moisés Gallozzo Cardenas
Sustainability 2025, 17(20), 9114; https://doi.org/10.3390/su17209114 - 14 Oct 2025
Viewed by 247
Abstract
Limited access to electricity and high levels of CO2 emissions—over 35 billion metric tons in recent years—highlight the urgent need for sustainable energy solutions, particularly in rural areas dependent on polluting fuels. To address this challenge, three single-chamber microbial fuel cells (MFCs) [...] Read more.
Limited access to electricity and high levels of CO2 emissions—over 35 billion metric tons in recent years—highlight the urgent need for sustainable energy solutions, particularly in rural areas dependent on polluting fuels. To address this challenge, three single-chamber microbial fuel cells (MFCs) with carbon anodes and zinc cathodes were designed and operated for 35 days in a closed circuit. Voltage, current, pH, conductivity, ORP, and COD were monitored. FTIR-ATR spectroscopy (range 4000–400 cm−1) was applied to identify structural changes, and polarization curves were constructed to estimate internal resistance. The main FTIR peaks were observed at 1027, 1636, 3237, and 3374 cm−1, indicating the degradation of polysaccharides and hydroxyl groups. The maximum voltage reached was 0.961 ± 0.025 V, and the peak current was 3.052 ± 0.084 mA on day 16, coinciding with an optimal pH of 4.977 ± 0.058, a conductivity of 194.851 ± 2.847 mS/cm, and an ORP of 126.707 ± 6.958 mV. Connecting the three MFCs in series yielded a total voltage of 2.34 V. Taxonomic analysis of the anodic biofilm revealed a community dominated by Firmicutes (genus Lactobacillus: L. acidophilus, L. brevis, L. casei, L. delbrueckii, L. fermentum, L. helveticus, and L. plantarum), along with Bacteroidota and Proteobacteria (electrogenic bacteria). This microbial synergy enhances electron transfer and validates the use of carrot waste as a renewable source of bioelectricity for low-power applications. Full article
Show Figures

Figure 1

21 pages, 4323 KB  
Article
Synergistic Enhancement of Microbial Fuel Cell Performance via Hierarchical NiCo2O4/Polypyrrole-Modified Carbon Felt Anode
by Yuchu Chen, Jiuming Lei, Zhijie Wang, Xiangquan Kong, Ting Zhang, Yishuai Li, Xianheng Yang, Jinlong Zuo, Jie Li and Yuyang Wang
Coatings 2025, 15(10), 1208; https://doi.org/10.3390/coatings15101208 - 14 Oct 2025
Viewed by 464
Abstract
In this study, a carbon felt (CF)-based ternary composite anode was developed through the decoration of nickel cobaltite (NiCo2O4) nano-needles and subsequent in situ electropolymerization of polypyrrole (PPy). The structural and electrochemical properties of the modified electrodes were systematically [...] Read more.
In this study, a carbon felt (CF)-based ternary composite anode was developed through the decoration of nickel cobaltite (NiCo2O4) nano-needles and subsequent in situ electropolymerization of polypyrrole (PPy). The structural and electrochemical properties of the modified electrodes were systematically characterized. The CF/NiCo2O4/PPy anode demonstrated significantly enhanced bioelectrochemical activity, achieving a peak current density of 96.0 A/m2 and a steady-state current density of 28.9 A/m2, which were 4.85 and 5.90 times higher than those of bare carbon felt, respectively. Geobacteriaceae is a type of electrogenic bacteria. It was hardly detected on the bare CF substrate; however, in the ternary CF/NiCo2O4/PPy electrode, the relative abundance of Geobacteriaceae significantly increased to 43%. Moreover, the composite electrode exhibited superior charge storage performance, with a total charge (Qt) of 32,509.0 C/m2 and a stored charge (Qs) of 3609.0 C/m2 measured under a 1000 s charging/discharging period. The MFC configured with the CF/NiCo2O4/PPy anode reached a maximum power density of 1901.25 mW/m2 at an external resistance of 200 Ω, nearly six times that of the unmodified CF-based MFC. These improvements are attributed to the synergistic interaction between the pseudocapacitive NiCo2O4 and conductive PPy, which collectively facilitate electron transfer, promote microbial colonization, and enhance interfacial redox kinetics. This work provides an effective strategy for designing high-performance MFC electrodes with dual functionality in energy storage and power delivery. Full article
Show Figures

Figure 1

19 pages, 300 KB  
Article
Mechanistic Insights into the Physiological and Meat Quality Responses of Broiler Chickens Fed Incremental Turmeric Rhizome Meal
by Uchenna Nonyelum Okonkwo, Christiaan Jacobus Smit and Chidozie Freedom Egbu
Animals 2025, 15(19), 2849; https://doi.org/10.3390/ani15192849 - 29 Sep 2025
Viewed by 408
Abstract
Natural products, such as turmeric rhizome meal (TRM), may hold the key to a sustainable solution to antimicrobial resistance rise and antibiotic prohibition in food-producing animals. This study evaluated the effects of dietary TRM at 0 (CON), 0.3 (TRM3), 0.6 (TRM6), and 0.9 [...] Read more.
Natural products, such as turmeric rhizome meal (TRM), may hold the key to a sustainable solution to antimicrobial resistance rise and antibiotic prohibition in food-producing animals. This study evaluated the effects of dietary TRM at 0 (CON), 0.3 (TRM3), 0.6 (TRM6), and 0.9 g/kg (TRM9) on growth, nutrient digestibility, immunity, gut function, nutrient transport biomarkers, microbiome, and meat quality in 280 one-day-old male Ross 308 chicks over a 42-day feeding trial. Birds fed TRM indicated higher body weight gain and lower feed conversion ratio (p < 0.05). The TRM groups promoted higher (p = 0.001) serum immunoglobulin Y, immunoglobulin M, and interleukin-10 compared to the CON. Birds fed CON had higher interleukin-2 (p = 0.025), interleukin-6 (p = 0.027), and TNF-α (p = 0.008) levels compared to the TRM groups. Lactobacillus counts in jejunal villi and crypts were higher in the TRM groups than in the CON (p < 0.05). Dietary TRM increased electrogenic glucose and lysine transport, accompanied by up-regulation of claudin-5, zonula occludens 1, and mucin-2 expression (p < 0.05). In breast muscle, TRM fortification reduced malondialdehyde levels (p < 0.05) while increasing long-chain polyunsaturated fatty acids (p < 0.05). Thus, TRM is a potent, residue-free phytobiotic alternative to conventional antibiotic growth promoters in poultry systems. Full article
(This article belongs to the Section Poultry)
16 pages, 2362 KB  
Article
From Waste to Resource: Valorization of Carambola (Averrhoa carambola) Residues in Sustainable Bioelectrochemical Technologies
by Jonathan Rojas-Flores, Renny Nazario-Naveda, Santiago M. Benites, Daniel Delfin-Narciso, Moisés Gallazzo Cardenas and Luis Angelats Silva
Sustainability 2025, 17(18), 8245; https://doi.org/10.3390/su17188245 - 13 Sep 2025
Viewed by 652
Abstract
The underutilization of fruit waste in agroindustry—particularly star fruit—leads to leachate generation, emissions, and disposal costs, highlighting the need for circular alternatives that treat organic fractions while producing energy. This study evaluated the bioelectrochemical conversion of carambola (Averrhoa carambola) residues in [...] Read more.
The underutilization of fruit waste in agroindustry—particularly star fruit—leads to leachate generation, emissions, and disposal costs, highlighting the need for circular alternatives that treat organic fractions while producing energy. This study evaluated the bioelectrochemical conversion of carambola (Averrhoa carambola) residues in single-chamber microbial fuel cells (MFCs). Three 1000 mL reactors were constructed using carbon anodes and zinc cathodes, operated for 35 days with continuous voltage recording and daily monitoring of pH, conductivity, and ORP. Polarization curves were obtained, and FTIR and SEM analyses were conducted to characterize substrate transformation and anode colonization. The anodic biofilm was also profiled using metagenomics. Measurements were performed using calibrated electrodes and a data logger with one minute intervals. The systems exhibited rapid startup and reached peak performance on day 22, with a voltage of 1.352 V, current of 3.489 mA, conductivity of 177.90 mS/cm, ORP of 202.01 mV, and pH of 4.89. The V–I curve indicated an internal resistance of 16.51 Ω, and the maximum power density reached 0.517 mW/cm2. FTIR revealed a reduction in bands associated with carbohydrates and proteins, consistent with biodegradation, while SEM confirmed extensive biofilm formation and increased anode surface roughness. Metagenomic analysis showed dominance of Acetobacter (59.35%), with Bacteroides (12.93%) and lactobacilli contributing to fermentative and electrogenic synergies. Finally, the series connection of three MFCs generated 2.71 V, sufficient to power an LED, demonstrating the feasibility of low-power applications and the potential for system scalability. Full article
Show Figures

Figure 1

23 pages, 2433 KB  
Review
Massive Activation of GABAA Receptors: Rundown, Ionic and Neurodegenerative Consequences
by Sergey A. Menzikov, Danila M. Zaichenko, Aleksey A. Moskovtsev, Sergey G. Morozov and Aslan A. Kubatiev
Biomolecules 2025, 15(7), 1003; https://doi.org/10.3390/biom15071003 - 13 Jul 2025
Cited by 1 | Viewed by 1087
Abstract
The GABAA receptors, through a short-term interaction with a mediator, induce hyperpolarization of the membrane potential (Vm) via the passive influx of chloride ions (Cl) into neurons. The massive (or intense) activation of the GABAARs [...] Read more.
The GABAA receptors, through a short-term interaction with a mediator, induce hyperpolarization of the membrane potential (Vm) via the passive influx of chloride ions (Cl) into neurons. The massive (or intense) activation of the GABAARs by the agonist could potentially lead to depolarization/excitation of the Vm. Although the ionic mechanisms of GABAA-mediated depolarization remain incompletely understood, a combination of the outward chloride current and the inward bicarbonate current and the resulting pH shift are the main reasons for this event. The GABAA responses are determined by the ionic gradients—neuronal pH/bicarbonate homeostasis is maintained by carbonic anhydrase and electroneutral/electrogenic bicarbonate transporters and the chloride level is maintained by secondary active cation–chloride cotransporters. Massive activation can also induce the rundown effect of the receptor function. This rundown effect partly involves phosphorylation, Ca2+ and the processes of receptor desensitization. In addition, by various methods (including fluorescence and optical genetic methods), it has been shown that massive activation of GABAARs during pathophysiological activity is also associated with an increase in [Cl]i and a decline in the pH and ATP levels in neurons. Although the relationship between the neuronal changes induced by massive activation of GABAergic signaling and the risk of developing neurodegenerative disease has been extensively studied, the molecular determinants of this process remain somewhat mysterious. The aim of this review is to summarize the data on the relationship between the massive activation of inhibitory signaling and the ionic changes in neurons. The potential role of receptor dysfunction during massive activation and the resulting ionic and metabolic disruption in neurons during the manifestation of network/seizure activity will be considered. Full article
Show Figures

Figure 1

19 pages, 3483 KB  
Article
Preparation of CF-NiO-PANI Electrodes and Study on the Efficiency of MFC in Recovering Potato Starch Wastewater
by Yiwei Han, Jingyuan Wang, Liming Jiang, Jiuming Lei, Wenjing Li, Tianyi Yang, Zhijie Wang, Jinlong Zuo and Yuyang Wang
Coatings 2025, 15(7), 776; https://doi.org/10.3390/coatings15070776 - 30 Jun 2025
Viewed by 470
Abstract
Microbial Fuel Cell (MFC) is a novel bioelectrochemical system that catalyzes the oxidation of chemical energy in organic waste and converts it directly into electrical energy through the attachment and growth of electroactive microorganisms on the electrode surface. This technology realizes the synergistic [...] Read more.
Microbial Fuel Cell (MFC) is a novel bioelectrochemical system that catalyzes the oxidation of chemical energy in organic waste and converts it directly into electrical energy through the attachment and growth of electroactive microorganisms on the electrode surface. This technology realizes the synergistic effect of waste treatment and renewable energy production. A CF-NiO-PANI capacitor composite anode was prepared by loading polyaniline on a CF-NiO electrode to improve the capacitance of a CF electrode. The electrochemical characteristics of the composite anode were evaluated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), and the electrode materials were analyzed comprehensively by scanning electron microscopy (SEM), energy diffusion spectrometer (EDS), and Fourier transform infrared spectroscopy (FTIR). MFC system based on CF-NiO-PANI composite anode showed excellent energy conversion efficiency in potato starch wastewater treatment, and its maximum power density increased to 0.4 W/m3, which was 300% higher than that of the traditional CF anode. In the standard charge–discharge test (C1000/D1000), the charge storage capacity of the composite anode reached 2607.06 C/m2, which was higher than that of the CF anode (348.77 C/m2). Microbial community analysis revealed that the CF-NiO-PANI anode surface formed a highly efficient electroactive biofilm dominated by electrogenic bacteria (accounting for 47.01%), confirming its excellent electron transfer ability. The development of this innovative capacitance-catalytic dual-function anode material provides a new technical path for the synergistic optimization of wastewater treatment and energy recovery in MFC systems. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

13 pages, 2265 KB  
Article
Sustainable Bioelectricity: Transformation of Chicha de Jora Waste into Renewable Energy
by Rojas-Flores Segundo, Cabanillas-Chirinos Luis, Nélida Milly Otiniano and Magaly De La Cruz-Noriega
Sustainability 2025, 17(10), 4499; https://doi.org/10.3390/su17104499 - 15 May 2025
Viewed by 866
Abstract
Corn is one of the most widely produced cereals worldwide, generating large amounts of waste, represents an environmental and economic challenge. In regions such as Africa and rural areas of Peru, access to electricity is limited, affecting quality of life and economic development. [...] Read more.
Corn is one of the most widely produced cereals worldwide, generating large amounts of waste, represents an environmental and economic challenge. In regions such as Africa and rural areas of Peru, access to electricity is limited, affecting quality of life and economic development. This study proposes using microbial fuel cells (MFCs) to convert chicha de jora waste—a traditional fermented beverage made from corn—into electrical energy. Single-chamber MFCs with activated carbon (anode) and zinc (cathode) electrodes were used. A total of 100 ml of chicha de jora waste was added in each MFC, and three MFCs were used in total. The MFCs demonstrated the viability of chicha de jora waste as a substrate for bioelectricity generation. Key findings include a notable peak in voltage (0.833 ± 0.041 V) and current (2.794 ± 0.241 mA) on day 14, with a maximum power density of 5.651 ± 0.817 mW/cm2. The pH increased from 3.689 ± 0.001 to 5.407 ± 0.071, indicating microorganisms’ degradation of organic acids. Electrical conductivity rose from 43.647 ± 1.025 mS/cm to 186.474 ± 6.517 mS/cm, suggesting ion release due to microbial activity. Chemical oxygen demand (COD) decreased from 957.32 ± 5.18 mg/L to 251.62 ± 61.15 mg/L by day 18, showing efficient degradation of organic matter. Oxidation-reduction potential (ORP) increased, reaching a maximum of 115.891 ± 4.918 mV on day 14, indicating more oxidizing conditions due to electrogenic microbial activity. Metagenomic analysis revealed Bacteroidota (48.47%) and Proteobacteria (29.83%) as the predominant phyla. This research demonstrates the potential of chicha de jora waste for bioelectricity generation in MFCs, offering a sustainable method for waste management and renewable energy production. Implementing MFC technology can reduce environmental pollution caused by corn waste and provide alternative energy sources for regions with limited access to electricity. Full article
(This article belongs to the Collection Advances in Biomass Waste Valorization)
Show Figures

Figure 1

13 pages, 1555 KB  
Article
Enhancing Heavy Metal Removal and Stabilization in River Sediment by Combined Application of Nanoscale Zero-Valent Iron and Sediment Microbial Fuel Cells
by Xun Xu, Mingsong Wu and Guoling Ren
Processes 2025, 13(4), 1235; https://doi.org/10.3390/pr13041235 - 18 Apr 2025
Viewed by 732
Abstract
This study investigates the effect of nanoscale zero-valent iron (NZVI) and sediment microbial fuel cells (SMFCs) on the three typical heavy metals’ (Pb, Cr and As) removal and stabilization. Results showed that the combined use of NZVI and SMFCs obtained the highest removal [...] Read more.
This study investigates the effect of nanoscale zero-valent iron (NZVI) and sediment microbial fuel cells (SMFCs) on the three typical heavy metals’ (Pb, Cr and As) removal and stabilization. Results showed that the combined use of NZVI and SMFCs obtained the highest removal efficiencies in the sediment (Pb 37.7 ± 2.2%, Cr 26.4 ± 1.5% and As 30.1 ± 2.0%) and overlying water (Pb 55.8 ± 2.3%, Cr 47.6 ± 1.9% and As 45.8 ± 2.1%). The use of an NZVI electrode can transform heavy metals with relatively weak binding into forms with stronger binding, thereby diminishing their bioavailability and toxicity. After 60 days of operation with the addition of NZVI in the SMFC system, over 50% of the Pb, Cr and As in the sediment was transformed into the residual fraction. An anodic microbial communities analysis indicated that operating a SMFC can mitigate the adverse effects of NZVI on the community diversity and increase the content of electrogenic bacteria in sediments. Consequently, our findings indicated that integrating SMFCs and NZVI represents a viable approach for remediating rivers contaminated with heavy-metal-polluted sediments. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Graphical abstract

19 pages, 5556 KB  
Article
Investigation into the Preparation and Electrochemical Energy Storage Performance of Nickel Cobalt Oxide-Based Composite Anode Materials
by Yuyang Wang, Xiangquan Kong, Zhijie Wang, Dongming Zhang, Yu Song, Su Ma, Ying Duan, Andrii Vyshnikin, Vitalii Palchykov and Jinlong Zuo
Coatings 2025, 15(4), 373; https://doi.org/10.3390/coatings15040373 - 22 Mar 2025
Viewed by 595
Abstract
Microbial fuel cells (MFCs) are a novel bioenergy technology that utilizes microorganisms to catalyze the conversion of fuels into electricity. However, traditional MFCs are constrained by the low electricity generation capacity of microorganisms, resulting in relatively low power output. Additionally, the inability of [...] Read more.
Microbial fuel cells (MFCs) are a novel bioenergy technology that utilizes microorganisms to catalyze the conversion of fuels into electricity. However, traditional MFCs are constrained by the low electricity generation capacity of microorganisms, resulting in relatively low power output. Additionally, the inability of traditional MFCs to store electricity significantly limits their practical applications. In this study, we fabricate a novel oxide graphite/nickel cobalt oxide (GO/NiCo2O4) capacitive composite bioanode material supported on stainless-steel fiber felt (SSFF). This composite material combines the excellent biocompatibility of graphite oxide and the energy storage capacity of nickel cobalt oxide. Consequently, the prepared anode exhibits significant advantages, including high specific capacitance, efficient electron transport, and enhanced biocompatibility. The MFC with the SSFF/GO/NiCo2O4 anode demonstrated a significantly enhanced power density, achieving a maximum of 1267.5 mW/m2—1.38-fold and 2.23-fold higher than those of the SSFF/GO and SSFF anodes, respectively. Moreover, the modified anode (SSFF/GO/NiCo2O4) exhibited a stored charge (Qs) of 1405.35 C/m2, representing 2.61-fold and 35.79-fold increases compared to the SSFF/GO and SSFF anodes, respectively. High-throughput analysis revealed that SSFF/GO/NiCo2O4-modified anode achieved an electrogenic bacterial efficiency exceeding 81%, which was significantly higher than that of the SSFF/GO and SSFF anodes. The results of this study not only provide valuable insights and theoretical guidance for the development of MFCs using capacitive composite anode materials, they also present sustainable power solutions for low-power electronic systems, such as miniaturized sensors and IoT devices. Full article
Show Figures

Figure 1

27 pages, 35081 KB  
Article
Carbon Felt/Nickel Oxide/Polyaniline Nanocomposite as a Bifunctional Anode for Simultaneous Power Generation and Energy Storage in a Dual-Chamber MFC
by Yuyang Wang, Zhijie Wang, Dongming Zhang, Xiangquan Kong, Yu Song, Su Ma, Ying Duan, Andrii Vyshnikin and Vitalii Palchykov
Coatings 2025, 15(3), 356; https://doi.org/10.3390/coatings15030356 - 19 Mar 2025
Cited by 3 | Viewed by 639
Abstract
Microbial fuel cell (MFC) technology has become a novel and attractive method for generating renewable energy during wastewater treatment. In this study, researchers combined carbon felt (CF), metal oxide (NiO), and polyaniline (PANI) to prepare CF/NiO/PANI multilayer capacitive bioelectrodes. The MFC equipped with [...] Read more.
Microbial fuel cell (MFC) technology has become a novel and attractive method for generating renewable energy during wastewater treatment. In this study, researchers combined carbon felt (CF), metal oxide (NiO), and polyaniline (PANI) to prepare CF/NiO/PANI multilayer capacitive bioelectrodes. The MFC equipped with a CF/NiO/PANI bioanode has a peak power density of 1988.31 ± 50.96 mW/m2, which is 3.8 times higher than that of the MFC with a bare CF electrode, having a peak power density of 518.29 ± 27.07 mW/m2. Charge–discharge cycle tests show that the storage charge capacity of the CF/NiO/PANI bioanode is 3304.64 C/m2, which is 10.5 times greater than that of the bare CF anode. The electrochemical, morphological, and chemical properties of the prepared anodes are characterized using techniques such as SEM, EDS, FTIR, XPS, and XRD. Notably, high-throughput sequencing reveals that electrogenic bacteria account for 79.2% of the total microbial population on the CF/NiO/PANI multilayer capacitive bioelectrode. The synergistic effects of the composite materials result in the formation of a richer biofilm on the electrode surface, providing more active sites and enhancing capacitive characteristics. This innovative approach significantly improves the output power and peak current of MFCs, while also endowing the electrode with dual functions of simultaneous power generation and energy storage. Full article
Show Figures

Figure 1

16 pages, 6476 KB  
Article
Investigation of the Anion Migration Mechanism in Microbial Desalination Cells: Interaction and Actual Operational Impact
by Jinyue Liang, Yong Gao, Wei Wu, Siqi Tong and Yi Wang
Water 2025, 17(4), 587; https://doi.org/10.3390/w17040587 - 18 Feb 2025
Cited by 1 | Viewed by 747
Abstract
Microbial desalination cells (MDCs) are an efficient method for the desalination of saline wastewater driven by the metabolism of bacteria via an organic oxidation mechanism. Systematic studies have been conducted to elucidate anion-dominated interactions to avoid unforeseen risks in microbial desalination cells during [...] Read more.
Microbial desalination cells (MDCs) are an efficient method for the desalination of saline wastewater driven by the metabolism of bacteria via an organic oxidation mechanism. Systematic studies have been conducted to elucidate anion-dominated interactions to avoid unforeseen risks in microbial desalination cells during the long-term treatment of complex wastewater containing various anions. Despite different anion migration interactions having less effect on MDC operation compared with cations, they are influenced by their own properties (hydrated ion radius, diffusion coefficient and equivalent conductance) and the ambient solution. This also led to the removal efficiency of different anions in MDC in the following sequence: NO3 > Cl > SO42−. The high Gibbs hydration energy of SO42− and the hydrophobicity of the anion exchange membrane affect the transmembrane migration of SO42−. However, the high steric hindrance formed on the membrane also inhibits reverse diffusion at the end of the cycle. In addition, the anodic biotopography and community caused by the migration of different anions change, such that the number of denitrifying bacteria increases and the relative abundance of electrogenic bacteria further improves. With decreasing anodic pH, electrogenic microorganisms form a shell to protect against anodic biogenesis. In this study, MDC was used to treat actual industrial tailwater, and the salt removal efficiency stabilized at 63.2–74.1%. Full article
(This article belongs to the Special Issue Low-Carbon Wastewater Treatment and Resource Recovery)
Show Figures

Figure 1

17 pages, 3468 KB  
Article
Electrogenic Bacteria Enhance the Structure and Performance of Nitrite-Reducing Electroactive Biofilms
by Zhufan Lin, Xinyuan He, Huahua Li, Yi Lu and Shaoan Cheng
Processes 2025, 13(2), 509; https://doi.org/10.3390/pr13020509 - 12 Feb 2025
Viewed by 1029
Abstract
The reverse polarity biocathode culture (RPBC) is a technology for the rapid preparation of biocathodes, which quickly enrich electroactive bacteria (EAB) in the microbial fuel cell (MFC) anode and then transform the electrode function from bioanode to biocathode by reversing bioelectrode polarity. However, [...] Read more.
The reverse polarity biocathode culture (RPBC) is a technology for the rapid preparation of biocathodes, which quickly enrich electroactive bacteria (EAB) in the microbial fuel cell (MFC) anode and then transform the electrode function from bioanode to biocathode by reversing bioelectrode polarity. However, the mechanism of RPBC is still unclear, and methods to regulate performance and ensure the long-term stability of cultured biocathodes have not been established. This study investigated the correlation between electrogenic bacteria and the target reducing EAB, from two aspects: energy supply and the formation of a composite biofilm. The results showed that electrogenic bacteria provided energy for the reducing EAB through interspecies electron transfer. This process could be regulated by changing the electrode potential and substrate concentration to obtain an optimized biocathode. In addition, the RPBC forms a composite biofilm of electrogenic bacteria and reducing EAB, which significantly improves the enrichment efficiency and the amount of reducing EAB (compared with a direct biocathode culture, respectively, shortening the enrichment time by 80%, increasing the electroactivity by 12.4 times, and increasing the nitrate degradation rate by 4.85 times). This study provides insights into regulating the performance and maintaining the long-term stability of RPBC-cultured biocathodes. Full article
(This article belongs to the Special Issue State of the Art of Waste Utilization and Resource Recovery)
Show Figures

Figure 1

28 pages, 3757 KB  
Article
Trehalose Interferes with the Photosynthetic Electron Transfer Chain of Cereibacter (Rhodobacter) sphaeroides Permeating the Bacterial Chromatophore Membrane
by Giovanni Venturoli, Mahir D. Mamedov, Liya A. Vitukhnovskaya, Alexey Y. Semenov and Francesco Francia
Int. J. Mol. Sci. 2024, 25(24), 13420; https://doi.org/10.3390/ijms252413420 - 14 Dec 2024
Cited by 1 | Viewed by 1257
Abstract
Disaccharide trehalose has been proven in many cases to be particularly effective in preserving the functional and structural integrity of biological macromolecules. In this work, we studied its effect on the electron transfer reactions that occur in the chromatophores of the photosynthetic bacterium [...] Read more.
Disaccharide trehalose has been proven in many cases to be particularly effective in preserving the functional and structural integrity of biological macromolecules. In this work, we studied its effect on the electron transfer reactions that occur in the chromatophores of the photosynthetic bacterium Cereibacter sphaeroides. In the presence of a high concentration of trehalose, following the activation of the photochemistry by flashes of light, a slowdown of the electrogenic reactions related to the activity of the photosynthetic reaction center and cytochtome (cyt) bc1 complexes is observable. The kinetics of the third phase of the electrochromic carotenoid shift, due to electrogenic events linked to the reduction in cyt bH heme via the low-potential branch of the cyt bc1 complex and its oxidation by quinone molecule on the Qi site, is about four times slower in the presence of trehalose. In parallel, the reduction in oxidized cyt (c1 + c2) and high-potential cyt bH are strongly slowed down, suggesting that the disaccharide interferes with the electron transfer reactions of the high-potential branch of the bc1 complex. A slowing effect of trehalose on the kinetics of the electrogenic protonation of the secondary quinone acceptor QB in the reaction center complex, measured by direct electrometrical methods, was also found, but was much less pronounced. The direct detection of carbohydrate content indicates that trehalose, at high concentrations, permeates the membrane of chromatophores. The possible mechanisms underlying the observed effect of trehalose on the electron/proton transfer process are discussed in terms of trehalose’s propensity to form strong hydrogen bonds with its surroundings. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 2564 KB  
Article
Utilizing Microbial Electrochemical Methods to Enhance Lycopene Production in Rhodopseudomonas palustris
by Ningxin Huang, Zhengxiao Wang, Xiao Xiao, Te’er Gai, Dongyue Zhao, Lu Liu and Wei Wu
Foods 2024, 13(23), 3811; https://doi.org/10.3390/foods13233811 - 26 Nov 2024
Cited by 1 | Viewed by 1250
Abstract
Utilizing Rhodopseudomonas palustris (R. pal), this study constructed a dual-chamber microbial electrosynthesis system, based on microbial electrolysis cells, that was capable of producing lycopene. Cultivation within the electrosynthesis chamber yielded a lycopene concentration of 282.3722 mg/L when the optical density (OD) [...] Read more.
Utilizing Rhodopseudomonas palustris (R. pal), this study constructed a dual-chamber microbial electrosynthesis system, based on microbial electrolysis cells, that was capable of producing lycopene. Cultivation within the electrosynthesis chamber yielded a lycopene concentration of 282.3722 mg/L when the optical density (OD) reached 0.6, which was four times greater than that produced by original strains. The mutant strain showed significantly higher levels of extracted riboflavin compared to the wild-type strain, and the riboflavin content of the mutant strain was 61.081 mg/L, which was more than 10 times that of the original strain. Furthermore, sequencing and analyses were performed on the mutant strains observed during the experiment. The results indicated differences in antibiotic resistance genes, carbohydrate metabolism-related genes, and the frequencies of functional genes between the mutant and original strains. The mutant strain displayed potential advantages in specific antibiotic resistance and carbohydrate degradation capabilities, likely attributable to its adaptation to electrogenic growth conditions. Moreover, the mutant strain demonstrated an enrichment of gene frequencies associated with transcriptional regulation, signal transduction, and amino acid metabolism, suggesting a complex genetic adaptation to electrogenic environments. This study presents a novel approach for the efficient and energy-conserving production of lycopene while also providing deeper insights into the genetic basis of electro-resistance genes. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

15 pages, 2617 KB  
Article
Bio-Power Generation in Microbial Fuel Cell with Vermicompost Using Eisenia foetida
by Adriana Solares Basurto, Mateo Pérez Ruiz, María Angélica Luján Vega, Juan Manuel Olivares-Ramírez, Irma Lucía Vera-Estrada, José Eli Eduardo González-Duran and Juvenal Rodríguez Reséndiz
Eng 2024, 5(4), 2560-2574; https://doi.org/10.3390/eng5040134 - 10 Oct 2024
Cited by 2 | Viewed by 2643
Abstract
This research emphasizes the effect of using Eisenia foetida in vermicompost for power generation in microbial fuel cells (MFCs). By accelerating the organic decomposition, the bioenergy generation is improved. A vermicompost-microbial fuel cell employing electrogenic microorganisms was used to convert chemical energy into [...] Read more.
This research emphasizes the effect of using Eisenia foetida in vermicompost for power generation in microbial fuel cells (MFCs). By accelerating the organic decomposition, the bioenergy generation is improved. A vermicompost-microbial fuel cell employing electrogenic microorganisms was used to convert chemical energy into electrical energy. In this work, substrates of black soil, tree bark, leaves, eggshells, and ground tomatoes were used. The vermicompost MFC has a copper cathode and a stainless steel anode. In this study, the performance of MFCs was evaluated using different numbers of Eisenia foetida specimens, with three specimens (MFCW3), five specimens (MFCW5), and seven specimens (MFCW7). Our key findings show that by increasing the number of Eisenia foetida specimens does not bring higher power densities; as a result, the best power density was observed in MFCW3 and MFCW5 at the end of the fourth week, both presenting a total of five Eisenia foetida specimens with a power density of 192 mW m−2. Therefore, optimal results were found when 330 g of substrate and five Eisenia foetida specimens were used to achieve a maximum current density of 900 mW m−2 and a maximum power density of 192 mW m−2. This type of microbial fuel cell can be considered as an alternative for power generation with a significantly reduced environmental impact, considering the use of organic waste. It can be considered a game-changer in waste management and bioenergy projects. Full article
(This article belongs to the Special Issue Green Engineering for Sustainable Development 2024)
Show Figures

Figure 1

Back to TopTop