Bio-Power Generation in Microbial Fuel Cell with Vermicompost Using Eisenia foetida
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate Preparation
2.2. MFC Assemble
2.3. Microbial Fuel Cell Performance
2.4. Substrate Analysis
2.4.1. Physicochemical Analysis
2.4.2. Microbiological Analysis
3. Results
3.1. Microbial Fuel Cell (MFC) Operation and Performance
3.2. Substrate Characterization
3.3. Eisenia foetida Development
3.4. Microbiological Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crippa, M.; Solazzo, E.; Guizzardi, D. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Rohini, C.; Geetha, P.; Vijayalakshmi, R. Global effects of food waste. J. Pharmacogn. Phytochem. 2020, 9, 690–699. [Google Scholar]
- Yadu, A.; Sahariah, B.; Anandkumar, J. Process optimization and comparative study on naphthalene biodegradation in anaerobic, anoxic, and aerobic moving bed bioreactors. Eng. Rep. 2020, 2, 12127. [Google Scholar] [CrossRef]
- Rochman, N.; Raciti, D.; Takaesu, F. Prolonged culture in aerobic environments alters escherichia coli H2 production capacity. Eng. Rep. 2020, 2, 12161. [Google Scholar] [CrossRef] [PubMed]
- Pawar, P.; Vadgama, R.; Lali, A. Extractive production of microbial oil using hydrophobic adsorbents: A comparative study. Eng. Rep. 2020, 2, 12146. [Google Scholar] [CrossRef]
- Polprasert, C.; Koottatep, T. Organic Waste Recycling: Technology, Management and Sustainability; IWA Publishing: London, UK, 2017. [Google Scholar]
- Nandy, A.; Kumar, V.; Khamrai, M. MFC with vermicompost soil: Power generation with additional importance of waste management. RSC Adv. 2015, 5, 41300–41306. [Google Scholar] [CrossRef]
- Vishwanathan, A. Microbial fuel cells: A comprehensive review for beginners. 3 Biotech 2021, 11, 248. [Google Scholar] [CrossRef]
- Niedzialkoski, R.K.; Marostica, R.; Damaceno, F.M.; de Mendonça Costa, L.A.; de Mendonça Costa, M.S.S. Combination of biological processes for agro-industrial poultry waste management: Effects on vermicomposting and anaerobic digestion. J. Environ. Manag. 2021, 297, 113127. [Google Scholar] [CrossRef]
- Zhou, Y.; Xiao, R.; Klammsteiner, T.; Kong, X.; Yan, B.; Mihai, F.C.; Liu, T.; Zhang, Z.; Awasthi, M.K. Recent trends and advances in composting and vermicomposting technologies: A review. Bioresour. Technol. 2022, 360, 127591. [Google Scholar] [CrossRef] [PubMed]
- Yasmin, N.; Jamuda, M.; Panda, A.K.; Samal, K.; Nayak, J.K. Emission of greenhouse gases (GHGs) during composting and vermicomposting: Measurement, mitigation, and perspectives. Energy Nexus 2022, 7, 100092. [Google Scholar] [CrossRef]
- Hussain, N.; Abbasi, S.A. Efficacy of the Vermicomposts of Different Organic Wastes as “Clean” Fertilizers: State-of-the-Art. Sustainability 2018, 10, 1205. [Google Scholar] [CrossRef]
- Pottipati, S.; Kundu, A.; Kalamdhad, A.S. Process optimization by combining in-vessel composting and vermicomposting of vegetable waste. Bioresour. Technol. 2022, 346, 126357. [Google Scholar] [CrossRef]
- Sivasankar, V.; Mylsamy, P.; Omine, K. Microbial Fuel Cell Technology for Bioelectricity; Springer: Cham, Swizerland, 2018. [Google Scholar] [CrossRef]
- Das, D. Microbial Fuel Cell: A Bioelectrochemical System that Converts Waste to Watts; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Wilderer, P. Treatise on Water Science; IWA Publishing: London, UK, 2010. [Google Scholar]
- Slate, A.; Whitehead, K.; Brownson, D. Microbial fuel cells: An overview of current technology. Renew. Sustain. Energy Rev. 2019, 101, 60–81. [Google Scholar] [CrossRef]
- Milner, E.; Yu, E. The effect of oxygen mass transfer on aerobic biocathode performance, biofilm growth, and distribution in microbial fuel cells. Fuel Cells 2018, 18, 4–12. [Google Scholar] [CrossRef]
- Li, B.; Zhao, Z.; Weng, Z. Modification of ppy-nw anode by carbon dots for high-performance mini-microbial fuel cells. Fuel Cells 2020, 20, 203–211. [Google Scholar] [CrossRef]
- Rashid, F.; Joardder, M. Future options of electricity generation for sustainable development: Trends and prospects. Eng. Rep. 2022, 4, 12508. [Google Scholar] [CrossRef]
- Sharma, M.; Salama, E.S.; Zhang, P.; Zhang, L.; Xing, X.; Yue, J.; Song, Z.; Nan, L.; Yujun, S.; Li, X. Microalgae-assisted microbial fuel cells for electricity generation coupled with wastewater treatment: Biotechnological perspective. J. Water Process Eng. 2022, 49, 102966. [Google Scholar] [CrossRef]
- Ribeiro, V.R.; Osório, H.D.D.; Ulrich, A.C.; Rizzetti, T.M.; Barrios, A.S.; de Souza Schneider, R.D.C.; Benitez, L.B. The use of microalgae-microbial fuel cells in wastewater bioremediation and bioelectricity generation. J. Water Process Eng. 2022, 48, 102882. [Google Scholar] [CrossRef]
- Elshobary, M.; Zabed, H.; Yun, J.; Zhang, G.; Qi, X. Recent insights into microalgae-assisted microbial fuel cells for generating sustainable bioelectricity. Int. J. Hydrogen Energy 2021, 46, 3135–3159. [Google Scholar] [CrossRef]
- Jaiswal, K.K.; Kumar, V.; Vlaskin, M.S.; Sharma, N.; Rautela, I.; Nanda, M.; Arora, N.; Singh, A.; Chauhan, P.K. Microalgae fuel cell for wastewater treatment: Recent advances and challenges. J. Water Process Eng. 2020, 38, 101549. [Google Scholar] [CrossRef]
- Tay, Z.; Ng, F.; Ling, T. The use of marine microalgae in microbial fuel cells, photosynthetic microbial fuel cells and biophotovoltaic platforms for bioelectricity generation. 3 Biotech 2022, 12, 148. [Google Scholar] [CrossRef] [PubMed]
- Sadegh Hassani, S.; Ziaedini, A.; Samiee, L. One step synthesis of tertiary co-doped graphene electrocatalyst using microalgae synechococcus elangatus for applying in microbial fuel cell. Fuel Cells 2019, 19, 623–634. [Google Scholar] [CrossRef]
- Segundo, R.-F.; Magaly, D.L.C.-N.; Luis, C.-C.; Otiniano, N.M.; Soto-Deza, N.; Terrones-Rodriguez, N.; Mayra, D.L.C.-C. Obtaining Sustainable Electrical Energy from Pepper Waste. Sustainability 2024, 16, 3448. [Google Scholar] [CrossRef]
- Chen, K.; Der Bai, M.; Yang, H.; Chen, Y.; Lu, W.; Huang, C. Removal of ammonia from leachate using thermophilic microbial fuel cells equipped with membrane electrode. Sustain. Environ. Res. 2020, 30, 5. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, Z.; Li, S.; Li, B.; Weng, Z.; Fang, Y.; Lei, W.; Jiang, H. Fabrication of 3D graphene anode for improving performance of miniaturized microbial fuel cells. 3 Biotech 2022, 12, 302. [Google Scholar] [CrossRef]
- Michie, I.; Kim, J.; Dinsdale, R.; Guwy, A.; Premier, G. The influence of psychrophilic and mesophilic start-up temperature on microbial fuel cell system performance. Energy Environ. Sci. 2011, 4, 1011–1019. [Google Scholar] [CrossRef]
- Ahn, Y.; Logan, B. Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresour. Technol. 2010, 101, 469–475. [Google Scholar] [CrossRef]
- Martin, E.; Savadogo, O.; Guiot, S.; Tartakovsky, B. The influence of operational conditions on the performance of a microbial fuel cell seeded with mesophilic anaerobic sludge. Biochem. Eng. J. 2010, 51, 132–139. [Google Scholar] [CrossRef]
- Bélafi-Bako, K.; Vajda, B.; Nemestothy, N. Study on operation of a microbial fuel cell using mesophilic anaerobic sludge. Desalin. Water Treat. 2011, 35, 222–226. [Google Scholar] [CrossRef]
- Pagilla, T.; Cheunbarn, K. Aerobic thermophilic and anaerobic mesophilic treatment of sludge. J. Environ. Eng. 2000, 126, 790–795. [Google Scholar] [CrossRef]
- Tremouli, A.; Kamperidis, T.; Pandis, P.; Argirusis, C.; Lyberatos, G. Exploitation of digestate from thermophilic and mesophilic anaerobic digesters fed with fermentable food waste using the MFC technology. Waste Biomass Valorization 2021, 12, 5361–5370. [Google Scholar] [CrossRef]
- Dessì, P.; Porca, E.; Haavisto, J.; Lakaniemi, A.M.; Collins, G.; Lens, P.N.L. Composition and role of the attached and planktonic microbial communities in mesophilic and thermophilic xylose-fed microbial fuel cells. RSC Adv. 2018, 8, 3069–3080. [Google Scholar] [CrossRef] [PubMed]
- Lalitha Priya, R.; Ramachandran, T.; Suneesh, P.V. Fabrication and characterization of high power dual chamber E. coli microbial fuel cell. IOP Conf. Ser. Mater. Sci. Eng. 2016, 149, 012215. [Google Scholar] [CrossRef]
- Othman, A.S.; Ahmed, N.A.; Elneklawi, M.S.; Hassan, M.M.; El-Mongy, M.A. Generation of green electricity from sludge using photo-stimulated bacterial consortium as a sustainable technology. Microb. Cell Fact. 2023, 22, 1–14. [Google Scholar] [CrossRef]
- Santoro, C.; Arbizzani, C.; Erable, B. Microbial fuel cells: From fundamentals to applications. A review. J. Power Source 2017, 356, 225–244. [Google Scholar] [CrossRef]
- Goel, S. From waste to watts in micro-devices: Review on development of membraned and membraneless microfluidic microbial fuel cell. Appl. Mater. Today 2018, 11, 270–279. [Google Scholar] [CrossRef]
- Thung, W.E.; Ong, S.A.; Ho, L.N. Simultaneous wastewater treatment and power generation with the innovative design of an up-flow membrane-less microbial fuel cell. Water Air Soil Pollut. 2015, 226, 165. [Google Scholar] [CrossRef]
- Ghangrekar, M.M.; Shinde, V.B. Simultaneous sewage treatment and electricity generation in membrane-less microbial fuel cell. Water Sci. Technol. 2008, 58, 37–43. [Google Scholar] [CrossRef]
- Du, Z.; Li, Q.; Tong, M.; Li, S.; Li, H. Electricity generation using membrane-less microbial fuel cell during wastewater treatment. Chin. J. Chem. Eng. 2008, 16, 772–777. [Google Scholar] [CrossRef]
- He, L.; Du, P.; Chen, Y.; Lu, H.; Chen, X.; Chang, B.; Wang, Z. Advances in microbial fuel cells for wastewater treatment. Renew. Sustain. Energy Rev. 2017, 71, 388–403. [Google Scholar] [CrossRef]
- Abbas, S.Z.; Rafatullah, M. Recent advances in soil microbial fuel cells for soil contaminants remediation. Chemosphere 2021, 272, 129691. [Google Scholar] [CrossRef]
- Cao, X.; Song, L.H.; Yu, C.Y.; Li, X.N. Simultaneous degradation of toxic refractory organic pesticide and bioelectricity generation using a soil microbial fuel cell. Bioresour. Technol. 2015, 189, 87–93. [Google Scholar] [CrossRef]
- Deng, H.; Wu, Y.C.; Zhang, F.; Huang, Z.C.; Chen, Z.; Xu, H.J. Factors affecting the performance of single-chamber soil microbial fuel cells for power generation. Pedosphere 2014, 24, 330–338. [Google Scholar] [CrossRef]
- Huang, D.Y.; Zhou, S.G.; Chen, Q.; Zhao, B.; Yuan, Y.; Zhuang, L. Enhanced anaerobic degradation of organic pollutants in a soil microbial fuel cell. Chem. Eng. J. 2011, 172, 647–653. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Zhao, Q. Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells. Biosens. Bioelectron. 2016, 85, 135–141. [Google Scholar] [CrossRef]
- Wolinska, A.; Stepniewska, Z.; Bielecka, A. Bioelectricity production from soil using microbial fuel cells. Appl. Biochem. Biotechnol. 2014, 173, 2287–2296. [Google Scholar] [CrossRef]
- Karim, R.A.; Ghani, N.M.A.; Nasari, N.N.S. Natural discovery: Electricity potential from vermicompost (waste to energy). Int. J. Energy Power Eng. 2011, 5, 1361–1366. [Google Scholar]
- Youn, S.; Yeo, J.; Joung, H.; Yang, Y. Energy harvesting from food waste by inoculation of vermicomposted organic matter into Microbial Fuel Cell (MFC). In Proceedings of the IEEE SENSORS 2015, Busan, Republic of Korea, 1–4 November 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Yukimoto, H.; Shohei, E.; Ohike, T. Improved performance of soil microbial fuel cell by adding earthworms. J. Renew. Energy Environ. 2017, 4, 33–38. [Google Scholar] [CrossRef]
- Edwards, C.; Arancon, N. Biology and Ecology of Earthworms; Springer: New York, NY, USA, 2022. [Google Scholar]
- Hajam, Y.A.; Kumar, R.; Kumar, A. Environmental waste management strategies and vermi transformation for sustainable development. Environ. Chall. 2023, 13, 100747. [Google Scholar] [CrossRef]
- Calderon, S.L.; Avelino, P.G.; Baena-Moncada, A.M.; Paredes-Diog, A.L.; La Rosa-Toro, A. Electrical energy generation in a double-compartment microbial fuel cell using Shewanella spp. strains isolated from Odontesthes regia. Sustain. Environ. 2020, 30, 31. [Google Scholar] [CrossRef]
- NOM-092-SSA1-1994; Bienes y Servicios. Método para la Cuenta de Bacterias Aerobias en Placa. Secretaria de Salud: Ciudad de México, México, 1994.
- NOM-112-SSA1-1994; Bienes y Servicios. Determinación de Bacterias Coliformes. Técnica del Número más Probable. Secretaria de Salud: Ciudad de México, México, 1994.
- NOM-113-SSA1-1994; Bienes y Servicios. Método para la Cuenta de Microorganismos Coliformes Totales en Placa. Secretaria de Salud: Ciudad de México, México, 1994.
- Budihardjo, M.A.; Syafrudin; Effendi, A.J. Waste valorization using solid-phase microbial fuel cells (SMFCs): Recent trends and status. J. Environ. Manag. 2021, 277, 111417. [Google Scholar] [CrossRef] [PubMed]
- Edwards, C.; Arancon, N.; Sherman, R. (Eds.) Vermiculture Technology Earthworms, Organic Wastes, and Environmental Management; CRC Press: London, UK, 2021. [Google Scholar] [CrossRef]
- Ruppert, E.; Barnes, R. Zoología de los Invertebrados; McGraw-Hill: Mexico City, México, 1996. [Google Scholar]
- López, R.; Antelo, J.; Silva, A. Factors that affect physicochemical and acid-base properties of compost and vermicompost and its potential use as a soil amendment. J. Environ. Manag. 2021, 300, 113702. [Google Scholar] [CrossRef] [PubMed]
MFC | ||||||
---|---|---|---|---|---|---|
Week | OVCmax/V | jmax/mAm−2 | Wmax/mWm−2 | OVCmax/V | jmax/mAm−2 | Wmax/mWm−2 |
Week 1 | 0.84 | 140 | 14 | 0.84 | 70 | 8 |
Week 2 | 0.81 | 140 | 28 | 0.94 | 480 | 134 |
Week 3 | 0.81 | 140 | 32 | 0.98 | 840 | 156 |
Week 4 | 0.82 | 560 | 96 | 1.08 | 840 | 192 |
σ | 0.014 | 210 | 36 | 0.099 | 367 | 80 |
MFC | ||||||
---|---|---|---|---|---|---|
Week | OVCmax/V | jmax/mAm−2 | Wmax/mWm−2 | OVCmax/V | jmax/mAm−2 | Wmax/mWm−2 |
Week 1 | 0.95 | 680 | 106 | 0.87 | 280 | 36 |
Week 2 | 0.95 | 510 | 156 | 0.95 | 200 | 36 |
Week 3 | 0.98 | 640 | 160 | 0.98 | 840 | 66 |
Week 4 | 1.05 | 900 | 192 | 1.05 | 290 | 52 |
0.047 | 162 | 36 | 0.075 | 58 | 14 |
Substrate | Electrodes | Power Density/mWm−2 | Reference |
---|---|---|---|
Vermicompost (watermelon peels) using Eudrilus eugeniae | Carbon fiber sheet electrodes; Separator: clay and cotton cloth | 0.056 | Budihardjo et al. (2021) [60] |
Vermicompost with 10–12 matured worms | Anode: aluminum mesh and carbon cloth; Cathode: carbon cloth Membrane: Nafion 117 | 4.0 | Nandy et al. (2015) [7] |
Vermicompost (banana peels) using Eudrilus eugeniae | Graphite electrodes; Membrane: Nafion 212 | 5.6 | Hajam et al. (2023) [55] |
Vermicompost using Megascolecidae specimens | Anode: Carbon felt; Cathode: Carbon felt; Membraneless | 7.2 | Edwards (2021) [61] |
Vermicompost | Anode: Carbon cloth; Cathode: Pt on Carbon cloth; Membrane: Nafion 117 | 52.3 | Yukimoto et al. (2017) [53] |
Shewanella spp. strains isolated from Odontesthes regia | Anode: Carbon felt impregnated with multi-walled carbon nanotubes; Cathode: Carbon felt; Membrane: CMI-7000 | 281 | Sandy L. Calderon et al. (2020) [56] |
Vermicompost (natural black earth, tree bark, leaves) using Eisenia foetida; | Anode: Stainless steel; Cathode: Copper; Membraneless | 192 | This Work |
Week | Fuel Cell | O.M./wt% | C/wt% | N/ wt% | pH |
---|---|---|---|---|---|
Week 1 | 45.01 | 26.11 | 1.90 | 8.0 | |
45.01 | 26.11 | 1.90 | 8.0 | ||
45.01 | 26.11 | 1.90 | 8.0 | ||
45.01 | 26.11 | 1.90 | 8.0 | ||
Week 2 | 44.87 | 26.02 | 2.00 | 8.0 | |
42.54 | 24.94 | 1.90 | 8.0 | ||
42.14 | 24.73 | 2.02 | 8.0 | ||
42.10 | 24.85 | 1.80 | 8.0 | ||
Week 3 | 44.70 | 25.93 | 1.90 | 8.0 | |
43.00 | 24.67 | 1.90 | 8.0 | ||
42.63 | 24.44 | 1.90 | 8.0 | ||
42.84 | 24.42 | 1.90 | 8.0 | ||
Week 4 | 22.40 | 13.00 | 2.00 | 7.5 | |
20.01 | 11.60 | 2.10 | 7.5 | ||
17.14 | 10.00 | 2.10 | 6.8 | ||
16.00 | 9.00 | 2.11 | 8.0 |
Analyzed Parameters | Aerobic Mesophilic/CFU cm−2 | Total Coliforms/CFU g−1 | Fecal Coliforms/MPN g−1 | Escherichia coli/MPNg−2 |
---|---|---|---|---|
Substrate | 200,630 | 164 | 77 | 110 |
Analyzed Parameters | ||||
---|---|---|---|---|
Aerobic mesophilic/CFU cm−2 | 8820 | 9950 | 9740 | 7310 |
Total coliforms/CFU cm−2 | 4 | 8 | 2 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solares Basurto, A.; Pérez Ruiz, M.; Luján Vega, M.A.; Olivares-Ramírez, J.M.; Vera-Estrada, I.L.; González-Duran, J.E.E.; Rodríguez Reséndiz, J. Bio-Power Generation in Microbial Fuel Cell with Vermicompost Using Eisenia foetida. Eng 2024, 5, 2560-2574. https://doi.org/10.3390/eng5040134
Solares Basurto A, Pérez Ruiz M, Luján Vega MA, Olivares-Ramírez JM, Vera-Estrada IL, González-Duran JEE, Rodríguez Reséndiz J. Bio-Power Generation in Microbial Fuel Cell with Vermicompost Using Eisenia foetida. Eng. 2024; 5(4):2560-2574. https://doi.org/10.3390/eng5040134
Chicago/Turabian StyleSolares Basurto, Adriana, Mateo Pérez Ruiz, María Angélica Luján Vega, Juan Manuel Olivares-Ramírez, Irma Lucía Vera-Estrada, José Eli Eduardo González-Duran, and Juvenal Rodríguez Reséndiz. 2024. "Bio-Power Generation in Microbial Fuel Cell with Vermicompost Using Eisenia foetida" Eng 5, no. 4: 2560-2574. https://doi.org/10.3390/eng5040134
APA StyleSolares Basurto, A., Pérez Ruiz, M., Luján Vega, M. A., Olivares-Ramírez, J. M., Vera-Estrada, I. L., González-Duran, J. E. E., & Rodríguez Reséndiz, J. (2024). Bio-Power Generation in Microbial Fuel Cell with Vermicompost Using Eisenia foetida. Eng, 5(4), 2560-2574. https://doi.org/10.3390/eng5040134