Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,997)

Search Parameters:
Keywords = electrode-sensing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 1527 KiB  
Review
Biochar-Derived Electrochemical Sensors: A Green Route for Trace Heavy Metal Detection
by Sairaman Saikrithika and Young-Joon Kim
Chemosensors 2025, 13(8), 278; https://doi.org/10.3390/chemosensors13080278 (registering DOI) - 1 Aug 2025
Abstract
The increasing demand for rapid, sensitive, and eco-friendly methods for the detection of trace heavy metals in environmental samples, attributed to their serious threats to health and the environment, has spurred considerable interest in the development of sustainable sensor materials. Toxic metal ions, [...] Read more.
The increasing demand for rapid, sensitive, and eco-friendly methods for the detection of trace heavy metals in environmental samples, attributed to their serious threats to health and the environment, has spurred considerable interest in the development of sustainable sensor materials. Toxic metal ions, namely, lead (Pb2+), cadmium (Cd2+), mercury (Hg2+), arsenic (As3+), and chromium, are potential hazards due to their non-biodegradable nature with high toxicity, even at trace levels. Acute health complications, including neurological, renal, and developmental disorders, arise upon exposure to such metal ions. To monitor and mitigate these toxic exposures, sensitive detection techniques are essential. Pre-existing conventional detection methods, such as atomic absorption spectroscopy (AAS) and inductively coupled plasma-mass spectrometry (ICP-MS), involve expensive instrumentation, skilled operators, and complex sample preparation. Electrochemical sensing, which is simple, portable, and eco-friendly, is foreseen as a potential alternative to the above conventional methods. Carbon-based nanomaterials play a crucial role in electrochemical sensors due to their high conductivity, stability, and the presence of surface functional groups. Biochar (BC), a carbon-rich product, has emerged as a promising electrode material for electrochemical sensing due to its high surface area, sustainability, tunable porosity, surface rich in functional groups, eco-friendliness, and negligible environmental footprint. Nevertheless, broad-spectrum studies on the use of biochar in electrochemical sensors remain narrow. This review focuses on the recent advancements in the development of biochar-based electrochemical sensors for the detection of toxic heavy metals such as Pb2+, Cd2+, and Hg2+ and the simultaneous detection of multiple ions, with special emphasis on BC synthesis routes, surface modification methodologies, electrode fabrication techniques, and electroanalytical performance. Finally, current challenges and future perspectives for integrating BC into next-generation sensor platforms are outlined. Full article
(This article belongs to the Special Issue Green Electrochemical Sensors for Trace Heavy Metal Detection)
36 pages, 6545 KiB  
Review
MXene-Based Composites for Energy Harvesting and Energy Storage Devices
by Jorge Alexandre Alencar Fotius and Helinando Pequeno de Oliveira
Solids 2025, 6(3), 41; https://doi.org/10.3390/solids6030041 (registering DOI) - 1 Aug 2025
Abstract
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in [...] Read more.
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in MXene-based composites, focusing on their integration into electrode architectures for the development of supercapacitors, batteries, and multifunctional devices, including triboelectric nanogenerators. It serves as a comprehensive overview of the multifunctional capabilities of MXene-based composites and their role in advancing efficient, flexible, and sustainable energy and sensing technologies, outlining how MXene-based systems are poised to redefine multifunctional energy platforms. Electrochemical performance optimization strategies are discussed by considering surface functionalization, interlayer engineering, scalable synthesis techniques, and integration with advanced electrolytes, with particular attention paid to the development of hybrid supercapacitors, triboelectric nanogenerators (TENGs), and wearable sensors. These applications are favored due to improved charge storage capability, mechanical properties, and the multifunctionality of MXenes. Despite these aspects, challenges related to long-term stability, sustainable large-scale production, and environmental degradation must still be addressed. Emerging approaches such as three-dimensional self-assembly and artificial intelligence-assisted design are identified as key challenges for overcoming these issues. Full article
Show Figures

Figure 1

37 pages, 7777 KiB  
Review
Cement-Based Electrochemical Systems for Structural Energy Storage: Progress and Prospects
by Haifeng Huang, Shuhao Zhang, Yizhe Wang, Yipu Guo, Chao Zhang and Fulin Qu
Materials 2025, 18(15), 3601; https://doi.org/10.3390/ma18153601 (registering DOI) - 31 Jul 2025
Abstract
Cement-based batteries (CBBs) are an emerging category of multifunctional materials that combine structural load-bearing capacity with integrated electrochemical energy storage, enabling the development of self-powered infrastructure. Although previous reviews have explored selected aspects of CBB technology, a comprehensive synthesis encompassing system architectures, material [...] Read more.
Cement-based batteries (CBBs) are an emerging category of multifunctional materials that combine structural load-bearing capacity with integrated electrochemical energy storage, enabling the development of self-powered infrastructure. Although previous reviews have explored selected aspects of CBB technology, a comprehensive synthesis encompassing system architectures, material strategies, and performance metrics remains insufficient. In this review, CBB systems are categorized into two representative configurations: probe-type galvanic cells and layered monolithic structures. Their structural characteristics and electrochemical behaviors are critically compared. Strategies to enhance performance include improving ionic conductivity through alkaline pore solutions, facilitating electron transport using carbon-based conductive networks, and incorporating redox-active materials such as zinc–manganese dioxide and nickel–iron couples. Early CBB prototypes demonstrated limited energy densities due to high internal resistance and inefficient utilization of active components. Recent advancements in electrode architecture, including nickel-coated carbon fiber meshes and three-dimensional nickel foam scaffolds, have achieved stable rechargeability across multiple cycles with energy densities surpassing 11 Wh/m2. These findings demonstrate the practical potential of CBBs for both energy storage and additional functionalities, such as strain sensing enabled by conductive cement matrices. This review establishes a critical basis for future development of CBBs as multifunctional structural components in infrastructure applications. Full article
Show Figures

Figure 1

14 pages, 1284 KiB  
Article
Non-Enzymatic Selective Detection of Histamine in Fishery Product Samples on Boron-Doped Diamond Electrodes
by Hiroshi Aoki, Risa Miyazaki and Yasuaki Einaga
Biosensors 2025, 15(8), 489; https://doi.org/10.3390/bios15080489 - 29 Jul 2025
Viewed by 137
Abstract
Histamine sensing that uses enzymatic reactions is the most common form of testing due to its selectivity for histamine. However, enzymes are difficult to store for long periods of time, and the inactivation of enzymes decreases the reliability of the results. In this [...] Read more.
Histamine sensing that uses enzymatic reactions is the most common form of testing due to its selectivity for histamine. However, enzymes are difficult to store for long periods of time, and the inactivation of enzymes decreases the reliability of the results. In this study, we developed a novel, quick, and easily operated histamine sensing technique that takes advantage of the histamine redox reaction and does not require enzyme-based processes. Because the redox potential of histamine is relatively high, we used a boron-doped diamond (BDD) electrode that has a wide potential window. At pH 8.4, which is between the acidity constant of histamine and the isoelectric point of histidine, it was found that an oxygen-terminated BDD surface successfully detected histamine, both selectively and exclusively. Measurements of the sensor’s responses to extracts from fish meat samples that contained histamine at various concentrations revealed that the sensor responds linearly to the histamine concentration, thus allowing it to be used as a calibration curve. The sensor was used to measure histamine in another fish meat sample treated as an unknown sample, and the response was fitted to the calibration curve to perform an inverse estimation. When estimated in this way, the histamine concentration matched the certified value within the range of error. A more detailed examination showed that the sensor response was little affected by the histidine concentration in the sample. The detection limit was 20.9 ppm, and the linear response range was 0–150 ppm. This confirms that this sensing method can be used to measure standard histamine concentrations. Full article
(This article belongs to the Special Issue Advanced Biosensors for Food and Agriculture Safety)
Show Figures

Figure 1

26 pages, 4449 KiB  
Review
Recent Progress in Electrocatalysts for Hydroquinone Electrochemical Sensing Application
by Mohammad Aslam, Khursheed Ahmad, Saood Ali, Khaled Hamdy and Danishuddin
Biosensors 2025, 15(8), 488; https://doi.org/10.3390/bios15080488 - 28 Jul 2025
Viewed by 274
Abstract
This review article compiled previous reports in the fabrication of hydroquinone (HQ) electrochemical sensors using differently modified electrodes. The electrode materials, which are also called electrocatalysts, play a crucial role in electrochemical detection of biomolecules and toxic substances. Metal oxides, MXenes, carbon-based materials [...] Read more.
This review article compiled previous reports in the fabrication of hydroquinone (HQ) electrochemical sensors using differently modified electrodes. The electrode materials, which are also called electrocatalysts, play a crucial role in electrochemical detection of biomolecules and toxic substances. Metal oxides, MXenes, carbon-based materials such as reduced graphene oxide (rGO), carbon nanotubes (CNTs), layered double hydroxides (LDH), metal sulfides, and hybrid composites were extensively utilized in the fabrication of HQ sensors. The electrochemical performance, including limit of detection, linearity, sensitivity, selectivity, stability, reproducibility, repeatability, and recovery for real-time sensing of the HQ sensors have been discussed. The limitations, challenges, and future directions are also discussed in the conclusion section. It is believed that the present review article may benefit researchers who are involved in the development of HQ sensors and catalyst preparation for electrochemical sensing of other toxic substances. Full article
Show Figures

Figure 1

33 pages, 8681 KiB  
Review
AI-Empowered Electrochemical Sensors for Biomedical Applications: Technological Advances and Future Challenges
by Yafeng Liu, Xiaohui Liu, Xuemei Wang and Hui Jiang
Biosensors 2025, 15(8), 487; https://doi.org/10.3390/bios15080487 - 28 Jul 2025
Viewed by 125
Abstract
Biomarkers play a pivotal role in disease diagnosis, therapeutic efficacy evaluation, prognostic assessment, and drug screening. However, the trace concentrations of these markers in complex physiological environments pose significant challenges to efficient detection. It is necessary to avoid interference from non-specific signals, which [...] Read more.
Biomarkers play a pivotal role in disease diagnosis, therapeutic efficacy evaluation, prognostic assessment, and drug screening. However, the trace concentrations of these markers in complex physiological environments pose significant challenges to efficient detection. It is necessary to avoid interference from non-specific signals, which may lead to misjudgment of other substances as biomarkers and affect the accuracy of detection results. With the rapid advancements in electrochemical technologies and artificial intelligence (AI) algorithms, intelligent electrochemical biosensors have emerged as a promising approach for biomedical detection, offering speed, specificity, high sensitivity, and accuracy. This review focuses on elaborating the latest applications of AI-empowered electrochemical biosensors in the biomedical field, including disease diagnosis, treatment monitoring, drug development, and wearable devices. AI algorithms can further improve the accuracy, sensitivity, and repeatability of electrochemical sensors through the screening and performance prediction of sensor materials, as well as the feature extraction and noise reduction suppression of sensing signals. Even in complex physiological microenvironments, they can effectively address common issues such as electrode fouling, poor signal-to-noise ratio, chemical interference, and matrix effects. This work may provide novel insights for the development of next-generation intelligent biosensors for precision medicine. Full article
Show Figures

Figure 1

25 pages, 5536 KiB  
Review
Progress in Bi2WO6-Based Materials for Electrochemical Sensing and Supercapacitor Applications
by Khursheed Ahmad, Dhanabalan Karmegam and Tae Hwan Oh
Molecules 2025, 30(15), 3149; https://doi.org/10.3390/molecules30153149 - 28 Jul 2025
Viewed by 208
Abstract
Recently, the design and fabrication of novel electrode materials for electrochemical and electronic devices have received the widespread attention of the scientific community. In particular, electrochemical sensors and supercapacitors (SCs) involve the use of catalysts, which can enhance the electrochemical reactions at the [...] Read more.
Recently, the design and fabrication of novel electrode materials for electrochemical and electronic devices have received the widespread attention of the scientific community. In particular, electrochemical sensors and supercapacitors (SCs) involve the use of catalysts, which can enhance the electrochemical reactions at the surface of the electrode. Bismuth tungstate (Bi2WO6) is a cost-effective and efficient electrode material with decent optoelectronic properties and stability. The properties of Bi2WO6 can be improved by incorporating carbon-based materials, and the resulting composite may be a promising electrode material for electrochemical sensing and SCs. As per the available reports, Bi2WO6 has been combined with various nanostructured and conductive materials for electrochemical sensing and SC applications. This review discusses synthetic methods for the preparation of Bi2WO6. Progress in the construction of hybrid composites for electrochemical sensing and SC applications is reviewed. The Conclusion section discusses the role of electrode materials and their limitations with future perspectives for electrochemical sensing and SCs. It is believed that the present review may be useful for researchers working on Bi2WO6-based materials for electrochemical sensing and SC applications. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

9 pages, 12041 KiB  
Article
Facile Synthesis of Te and Ag2Te Microrods for Light-Activated Bending-Responsive Photodetectors
by Hsueh-Shih Chen, Kapil Patidar and Pen-Ru Chen
Nanomaterials 2025, 15(15), 1156; https://doi.org/10.3390/nano15151156 - 26 Jul 2025
Viewed by 226
Abstract
In this study, we report the synthesis of Te and Ag2Te micron-sized rods (MRs) via a controlled hot-injection-based quenching process, enabling the control of rod morphology and enhanced crystallinity. Structural analysis confirmed that the synthesized Te MRs exhibit a trigonal phase, [...] Read more.
In this study, we report the synthesis of Te and Ag2Te micron-sized rods (MRs) via a controlled hot-injection-based quenching process, enabling the control of rod morphology and enhanced crystallinity. Structural analysis confirmed that the synthesized Te MRs exhibit a trigonal phase, growing along the (110) direction, while Ag2Te MRs undergo a phase transformation into a monoclinic structure upon Ag doping. A simple and scalable photodetector (PD) was fabricated by drop-casting Te and Ag2Te MRs onto PET plastic films, followed by the application of Ag paste electrodes. The PD demonstrated room-light-induced photocurrent responses, which increased significantly upon mechanical bending due to the formation of additional conductive pathways between MRs. The Ag2Te-based bending sensor exhibited a fivefold enhancement in photocurrent compared to its Te counterpart and maintained high stability over 1000 bending cycles. These results highlight the potential of Te and Ag2Te MRs for use in flexible and wearable motion-sensing technologies, offering a simple yet effective approach for integrating 1D telluride nanostructures into scalable optoelectronic applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

24 pages, 4040 KiB  
Review
Progress in Electrode Materials for the Detection of Nitrofurazone and Nitrofurantoin
by Mohammad Aslam, Saood Ali, Khursheed Ahmad and Danishuddin
Biosensors 2025, 15(8), 482; https://doi.org/10.3390/bios15080482 - 24 Jul 2025
Viewed by 179
Abstract
Recently, it has been found that electrochemical sensing technology is one of the significant approaches for the monitoring of toxic and hazardous substances in food and the environment. Nitrofurazone (NFZ) and nitrofurantoin (NFT) possess a hazardous influence on the environment, aquatic life, and [...] Read more.
Recently, it has been found that electrochemical sensing technology is one of the significant approaches for the monitoring of toxic and hazardous substances in food and the environment. Nitrofurazone (NFZ) and nitrofurantoin (NFT) possess a hazardous influence on the environment, aquatic life, and human health. Thus, various advanced materials such as graphene, carbon nanotubes, metal oxides, MXenes, layered double hydroxides (LDHs), polymers, metal–organic frameworks (MOFs), metal-based composites, etc. are widely used for the development of nitrofurazone and nitrofurantoin sensors. This review article summarizes the progress in the fabrication of electrode materials for nitrofurazone and nitrofurantoin sensing applications. The performance of the various electrode materials for nitrofurazone and nitrofurantoin monitoring are discussed. Various electrochemical sensing techniques such as square wave voltammetry (SWV), differential pulse voltammetry (DPV), linear sweep voltammetry (LSV), amperometry (AMP), cyclic voltammetry (CV), and chronoamperometry (CA) are discussed for the determination of NFZ and NFT. It is observed that DPV, SWV, and AMP/CA are more sensitive techniques compared to LSV and CV. The challenges, future perspectives, and limitations of NFZ and NFT sensors are also discussed. It is believed that present article may be useful for electrochemists as well materials scientists who are working to design electrode materials for electrochemical sensing applications. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Electrochemical Biosensing Application)
Show Figures

Figure 1

20 pages, 1471 KiB  
Article
A New Approach for Interferent-Free Amperometric Biosensor Production Based on All-Electrochemically Assisted Procedures
by Rosanna Ciriello, Maria Assunta Acquavia, Giuliana Bianco, Angela Di Capua and Antonio Guerrieri
Biosensors 2025, 15(8), 470; https://doi.org/10.3390/bios15080470 - 22 Jul 2025
Viewed by 262
Abstract
A new approach in amperometric enzyme electrodes production based on all-electrochemically assisted procedures will be described. Enzyme (glucose oxidase) immobilization was performed by in situ co-crosslinking of enzyme molecules through electrophoretic protein deposition, assuring enzyme immobilization exclusively onto the transducer surface (Pt electrode). [...] Read more.
A new approach in amperometric enzyme electrodes production based on all-electrochemically assisted procedures will be described. Enzyme (glucose oxidase) immobilization was performed by in situ co-crosslinking of enzyme molecules through electrophoretic protein deposition, assuring enzyme immobilization exclusively onto the transducer surface (Pt electrode). Analogously, the poor selectivity of the transducer was dramatically improved by the electrosynthesis of non-conducting polymers with built-in permselectivity, permitting the formation of a thin permselective film onto the transducer surface, able to reject common interferents usually found in real samples. Since both approaches required a proper and distinct electrochemical perturbation (a pulsed current sequence for electrophoretic protein deposition and cyclic voltammetry for the electrosynthesis of non-conducting polymers), an appropriate coupling of the two all-electrochemical approaches was assured by a thorough study of the likely combinations of the electrosynthesis of permselective polymers with enzyme immobilization by electrophoretic protein deposition and by the use of several electrosynthesized polymers. For each investigated combination and for each polymer, the analytical performances and the rejection capabilities of the resulting biosensor were acquired so to gain information about their sensing abilities eventually in real sample analysis. This study shows that the proper coupling of the two all-electrochemical approaches and the appropriate choice of the electrosynthesized, permselective polymer permits the easy fabrication of novel glucose oxidase biosensors with good analytical performance and low bias in glucose measurement from typical interferent in serum. This novel approach, resembling classical electroplating procedures, is expected to allow all the advantages expected from such procedures like an easy preparation biosensor, a bi-dimensional control of enzyme immobilization and thickness, interferent- and fouling-free transduction of the electrodic sensor and, last but not the least, possibility of miniaturization of the biosensing device. Full article
(This article belongs to the Special Issue Novel Designs and Applications for Electrochemical Biosensors)
Show Figures

Figure 1

27 pages, 3686 KiB  
Review
Recent Advances on Biomass-Derived Carbon Materials-Based Electrochemical Sensors
by Dacheng Wang, Yan Deng, Xiaowei Liu, Baoli Wang and Feng Yang
Molecules 2025, 30(14), 3046; https://doi.org/10.3390/molecules30143046 - 21 Jul 2025
Viewed by 434
Abstract
Biomass-derived carbon materials (BDCMs) have garnered numerous research interests due to their conspicuous electrochemical merits, which makes them promising candidates for electrode modification materials in electrochemical sensors. This review focuses on the recent progress in BDCM-based electrochemical sensors. We summarize the main synthesis [...] Read more.
Biomass-derived carbon materials (BDCMs) have garnered numerous research interests due to their conspicuous electrochemical merits, which makes them promising candidates for electrode modification materials in electrochemical sensors. This review focuses on the recent progress in BDCM-based electrochemical sensors. We summarize the main synthesis methods and properties of BDCMs and their electrochemical sensing applications in the detection of environmental pollutants, drugs, and biomolecules. This review also emphasizes the advantages and disadvantages of each preparation method, as well as the limitations in detecting the target substance. Furthermore, this review discusses the current challenges and future prospects for advancing biomass-derived carbon materials-based electrochemical sensors. Full article
(This article belongs to the Special Issue Functional Materials for Chemical Sensing in Molecules)
Show Figures

Figure 1

19 pages, 4583 KiB  
Article
Glutathione and Magnetic Nanoparticle-Modified Nanochannels for the Detection of Cadmium (II) in Cereal Grains
by Wei Hu, Xinyue Xiang, Donglei Jiang, Na Zhang and Lifeng Wang
Magnetochemistry 2025, 11(7), 61; https://doi.org/10.3390/magnetochemistry11070061 - 21 Jul 2025
Viewed by 227
Abstract
We developed a novel and portable magnetic nanochannel electrochemical sensor for the sensitive detection of cadmium ions (Cd2+), which pose serious risks to food safety and human health. The sensor was fabricated by co-modifying an anodic aluminum oxide (AAO) nanochannel membrane [...] Read more.
We developed a novel and portable magnetic nanochannel electrochemical sensor for the sensitive detection of cadmium ions (Cd2+), which pose serious risks to food safety and human health. The sensor was fabricated by co-modifying an anodic aluminum oxide (AAO) nanochannel membrane with a composite of glutathione (GSH) and ferric oxide nanoparticles (Fe3O4), denoted as GSH@Fe3O4. This modified membrane was then integrated with a screen-printed carbon electrode (SPCE) to construct the GSH@Fe3O4/GSH@AAO/SPCE sensing platform. The performance of the sensor was evaluated using differential pulse voltammetry (DPV), which demonstrated a strong linear correlation between the peak current response and the concentration of Cd2+ in the range of 5–120 μg/L. The calibration equation was IDPV(μA) = −0.31 + 0.98·CCd2+(μg/L), with an excellent correlation coefficient (R2 = 0.999, n = 3). The calculated limit of detection (LOD) was as low as 0.1 μg/L, indicating the high sensitivity of the system. These results confirm the successful construction of the GSH@Fe3O4/GSH@AAO/SPCE portable nanochannel sensor. This innovative sensing platform provides a rapid, sensitive, and user-friendly approach for the on-site monitoring of heavy metal contamination in agricultural products, especially grains. Full article
Show Figures

Figure 1

16 pages, 3024 KiB  
Article
Rapid Microwave-Assisted Synthesis of CuSe Nanoparticles for High-Sensitivity Serotonin Biosensing in Serum
by Sankar Sekar, Ramalingam Manikandan, Shiva Kumar Arumugasamy, Saravanan Sekar, Youngmin Lee, Seung-Cheol Chang and Sejoon Lee
Chemosensors 2025, 13(7), 264; https://doi.org/10.3390/chemosensors13070264 - 21 Jul 2025
Viewed by 327
Abstract
In this study, a simple and effective approach was developed for the quantitative detection of serotonin. Hexagonal copper selenide nanostructures (CuSe) were employed to modify a disposable screen-printed carbon electrode (SPCE), and their ability to electrochemically detect serotonin in serum samples was investigated. [...] Read more.
In this study, a simple and effective approach was developed for the quantitative detection of serotonin. Hexagonal copper selenide nanostructures (CuSe) were employed to modify a disposable screen-printed carbon electrode (SPCE), and their ability to electrochemically detect serotonin in serum samples was investigated. The fabricated CuSe nanostructures exhibited an interconnected, cluster-like morphology composed of irregularly shaped particles with a distinct hexagonal crystal structure. The electrochemical results revealed that the CuSe/SPCE sensor showed better electrochemical activity and good analytical sensing performance towards serotonin detection. The sensor exhibited a linear response in the concentration range of 10 to 1000 nM, with an excellent correlation coefficient (R2 = 0.9998) and a low detection limit of 3 nM. Furthermore, the CuSe/SPCE showed better selectivity, impressive sensitivity (12.45 µM/µA cm−2), and good reproducibility toward serotonin detection, making it a promising electrochemical biosensor for serotonin detection in various real biological samples. Full article
(This article belongs to the Special Issue Electrochemical Sensing in Medical Diagnosis)
Show Figures

Figure 1

16 pages, 10306 KiB  
Article
Fabrication and Characterization of Flexible pH Sensors Based on Pulsed Laser-Ablated Graphene/MoS2 Interdigitated Electrodes
by Zhaochi Chen, Chengche Liu and Minh-Quang Tran
Nanomaterials 2025, 15(14), 1115; https://doi.org/10.3390/nano15141115 - 18 Jul 2025
Viewed by 371
Abstract
Point-of-care (POC) diagnostic technologies have become essential for the real-time monitoring and management of chronic wounds, where maintaining a moist environment and controlling pH levels are critical for effective healing. In this study, a flexible pH sensor based on a graphene/molybdenum disulfide (graphene/MoS [...] Read more.
Point-of-care (POC) diagnostic technologies have become essential for the real-time monitoring and management of chronic wounds, where maintaining a moist environment and controlling pH levels are critical for effective healing. In this study, a flexible pH sensor based on a graphene/molybdenum disulfide (graphene/MoS2) composite interdigitated electrode (IDE) structure was fabricated using pulsed laser ablation. The pH sensor, with an active area of 30 mm × 30 mm, exhibited good adhesion to the polyethylene terephthalate (PET) substrate and maintained structural integrity under repeated bending cycles. Precise ablation was achieved under optimized conditions of 4.35 J/cm2 laser fluence, a repetition rate of 300 kHz, and a scanning speed of 500 mm/s, enabling the formation of defect-free IDE arrays without substrate damage. The influence of laser processing parameters on the surface morphology, electrical conductivity, and wettability of the composite thin films was systematically characterized. The fabricated pH sensor exhibited high sensitivity (~4.7% change in current per pH unit) across the pH 2–10 range, rapid response within ~5.2 s, and excellent mechanical stability under 100 bending cycles with negligible performance degradation. Moreover, the sensor retained > 95% of its stable sensitivity after 7 days of ambient storage. Furthermore, the pH response behavior was evaluated for electrode structures with different pitches, demonstrating that structural design parameters critically impact sensing performance. These results offer valuable insights into the scalable fabrication of flexible, wearable pH sensors, with promising applications in wound monitoring and personalized healthcare systems. Full article
(This article belongs to the Special Issue Laser-Based Nano Fabrication and Nano Lithography: Second Edition)
Show Figures

Figure 1

13 pages, 1647 KiB  
Article
Electrochemical Sensing of Hg2+ Ions Using an SWNTs/Ag@ZnBDC Composite with Ultra-Low Detection Limit
by Gajanan A. Bodkhe, Bhavna Hedau, Mayuri S. More, Myunghee Kim and Mahendra D. Shirsat
Chemosensors 2025, 13(7), 259; https://doi.org/10.3390/chemosensors13070259 - 16 Jul 2025
Viewed by 325
Abstract
A novel single-walled carbon nanotube (SWNT), silver (Ag) nanoparticle, and zinc benzene carboxylate (ZnBDC) metal–organic framework (MOF) composite was synthesised and systematically characterised to develop an efficient platform for mercury ion (Hg2+) detection. X-ray diffraction confirmed the successful incorporation of Ag [...] Read more.
A novel single-walled carbon nanotube (SWNT), silver (Ag) nanoparticle, and zinc benzene carboxylate (ZnBDC) metal–organic framework (MOF) composite was synthesised and systematically characterised to develop an efficient platform for mercury ion (Hg2+) detection. X-ray diffraction confirmed the successful incorporation of Ag nanoparticles and SWNTs without disrupting the crystalline structure of ZnBDC. Meanwhile, field-emission scanning electron microscopy and energy-dispersive spectroscopy mapping revealed a uniform elemental distribution. Thermogravimetric analysis indicated enhanced thermal stability. Electrochemical measurements (cyclic voltammetry and electrochemical impedance spectroscopy) demonstrated improved charge transfer properties. Electrochemical sensing investigations using differential pulse voltammetry revealed that the SWNTs/Ag@ZnBDC-modified glassy carbon electrode exhibited high selectivity toward Hg2+ ions over other metal ions (Cd2+, Co2+, Cr3+, Fe3+, and Zn2+), with optimal performance at pH 4. The sensor displayed a linear response in the concentration range of 0.1–1.0 nM (R2 = 0.9908), with a calculated limit of detection of 0.102 nM, slightly close to the lowest tested point, confirming its high sensitivity for ultra-trace Hg2+ detection. The outstanding sensitivity, selectivity, and reproducibility underscore the potential of SWNTs/Ag@ZnBDC as a promising electrochemical platform for detecting trace levels of Hg2+ in environmental monitoring. Full article
(This article belongs to the Special Issue Green Electrochemical Sensors for Trace Heavy Metal Detection)
Show Figures

Figure 1

Back to TopTop