Non-Enzymatic Selective Detection of Histamine in Fishery Product Samples on Boron-Doped Diamond Electrodes
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation of BDD Electrodes
2.3. Electrochemical Measurements of BDD Electrodes
2.4. Preparation of Sample Solutions for Electrochemical Measurements
2.5. Inverse Estimation
3. Results and Discussion
3.1. Electrochemical Responses to Histamine and Histidine in PBS
3.2. pH Dependence of Electrochemical Responses to Histamine and Histidine
3.3. Preparation of Fish Meat Sample Extracts
3.4. Electrochemical Responses to Histamine and Histidine in Fish Meat Sample Extracts
3.5. Quantification of Histamine Concentrations in Different Samples
3.6. Limitations and Advantages of the Technique Developed in This Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Visciano, P.; Schirone, M.; Tofalo, R.; Suzzi, G. Biogenic amines in raw and processed seafood. Front. Microbiol. 2012, 3, 188. [Google Scholar] [CrossRef]
- FAO and WHO, Food and Agriculture Organization and World Health Organization. Public Health Risks of Histamine and other Biogenic Amines from fish and Fishery Products. In Joint FAO/WHO Expert Meeting Report; FAO: Roma, Italy; WHO: Geneva, Switzerland, 2013; Available online: https://www.fao.org/fileadmin/user_upload/agns/pdf/Histamine/Histamine_AdHocfinal.pdf (accessed on 20 June 2025).
- Chen, Z.X.; Xie, J.; Mei, J. A Review on Analytical Techniques for Quantitative Detection of Biogenic Amines in Aquatic Products. Chemosensors 2024, 12, 274. [Google Scholar] [CrossRef]
- FAO, Food and Agriculture Organization. Standard for fish sauce, CXS 302-2011. In CODEX Alimentarius, International Food Standards; FAO: Roma, Italy, 2018; Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https://workspace.fao.org/sites/codex/standards/cxs+302-2011/cxs_302e.pdf (accessed on 20 June 2025).
- FAO, Food and Agriculture Organization. Standard for canned finish, CXS 119-1981. In CODEX Alimentarius, International Food Standards; FAO: Roma, Italy, 2018; Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https://workspace.fao.org/sites/codex/standards/cxs+119-1981/cxs_119e.pdf (accessed on 20 June 2025).
- FAO, Food and Agriculture Organization. Standard for canned tuna and bonito, CXS 70-1981. In CODEX Alimentarius, International Food Standards; FAO: Roma, Italy, 2018; Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https://workspace.fao.org/sites/codex/standards/cxs+70-1981/cxs_070e.pdf (accessed on 20 June 2025).
- EU, Europe Union. EU Commission Regulation (EC) No. 2073/2005 on Microbiological Criteria for Foodstuffs. In Office Journal of the European Union; Europe Union: Brussels, Belgium, 2005; Volume 338, pp. 1–25. Available online: https://eur-lex.europa.eu/eli/reg/2005/2073/oj (accessed on 20 June 2025).
- EU, Europe Union. EU Commission Regulation, No. 1019/2013 of 23 October 2013, Amending Annex I to Regulation (EC) No 2073/2005 as Regards Histamine in Fishery Products. In Office Journal of the European Union; Europe Union: Brussels, Belgium, 2013; Available online: https://eur-lex.europa.eu/eli/reg/2013/1019/oj (accessed on 20 June 2025).
- Food and Drug Administration (FDA). Scombrotoxin (histamine) Formation. In Fish and Fishery Products Hazards and Controls Guidance; Department of Health and Human Services, Public Health Service, Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Seafood: Washington, DC, USA, 2022. Available online: https://www.fda.gov/media/80637/download (accessed on 20 June 2025).
- AOAC, Association of Official Analytical Chemists. AOAC Official Method 977.13, Histamine in Seafood: Fluorometric Method, 22nd ed.; AOAC International: Gaithersburg, MD, USA, 2012. [CrossRef]
- Ruiz-Capillas, C.; Herrero, A.M. Impact of Biogenic Amines on Food Quality and Safety. Foods 2019, 8, 62. [Google Scholar] [CrossRef]
- Koo, P.-L.; Lim, G.-K. A review on analytical techniques for quantitative detection of histamine in fish products. Microchem. J. 2023, 189, 108499. [Google Scholar] [CrossRef]
- Givanoudi, S.; Heyndrickx, M.; Depuydt, T.; Khorshid, M.; Robbens, J.; Wagner, P. A Review on Bio- and Chemosensors for the Detection of Biogenic Amines in Food Safety Applications: The Status in 2022. Sensors 2023, 23, 613. [Google Scholar] [CrossRef]
- Kashyap, S.; Tehri, N.; Verma, N.; Gahlaut, A.; Hooda, V. Recent advances in development of electrochemical biosensors for the detection of biogenic amines. 3 Biotech 2023, 13, 2. [Google Scholar] [CrossRef]
- Sato, T.; Horiuchi, T.; Nishimura, I. Simple and rapid determination of histamine in food using a new histamine dehydrogenase from Rhizobium sp. Anal. Biochem. 2005, 346, 320–326. [Google Scholar] [CrossRef]
- Rodríguez-Núñez, K.; Cortés-Monroy, A.; Serey, M.; Ensari, Y.; Davari, M.D.; Bernal, C.; Martinez, R. Modulating Substrate Specificity of Rhizobium sp. Histamine Dehydrogenase through Protein Engineering for Food Quality Applications. Molecules 2023, 28, 3748. [Google Scholar] [CrossRef] [PubMed]
- Goyal, P.; Deay, D., III; Seibold, S.; Candido, A.C.L.; Lovell, S.; Battaile, K.P.; Wilson, G.S.; Richter, M.L.; Petillo, P.A. Structure of Rhizobium sp. 4-9 histamine dehydrogenase and analysis of the electron transfer pathway to an abiological electron acceptor. Arch. Biochem. Biophys. 2023, 742, 109612. [Google Scholar] [CrossRef]
- Henao-Escobar, W.; Del Torno-de Román, L.; Domínguez-Renedo, O.; Alonso-Lomillo, M.A.; Arcos-Martínez, M.J. Dual enzymatic biosensor for simultaneous amperometric determination of histamine and putrescine. Food Chem. 2016, 190, 818–823. [Google Scholar] [CrossRef] [PubMed]
- Yamada, R.; Fujieda, N.; Tsutsumi, M.; Tsujimura, S.; Shirai, O.; Kano, K. Bioelectrochemical Determination at Histamine Dehydrogenase-based Electrodes. Electrochemistry 2008, 8, 600–602. [Google Scholar] [CrossRef]
- Tsutsumi, M.; Tsujimura, S.; Shirai, O.; Kano, K. Direct electrochemistry of histamine dehydrogenase from Nocardioides simplex. J. Electroanal. Chem. 2009, 625, 144–148. [Google Scholar] [CrossRef]
- Sarada, B.V.; Rao, T.N.; Tryk, D.A.; Fujishima, A. Electrochemical Oxidation of Histamine and Serotonin at Highly Boron-Doped Diamond Electrodes. Anal. Chem. 2000, 72, 1632–1638. [Google Scholar] [CrossRef]
- Yang, N.; Yu, S.; Macpherson, J.V.; Einaga, Y.; Zhao, H.; Zhao, G.; Swain, G.M.; Jiang, X. Conductive diamond: Synthesis, properties, and electrochemical applications. Chem. Soc. Rev. 2019, 48, 157–204. [Google Scholar] [CrossRef]
- Ivandini, T.A.; Einaga, Y. Electrochemical Sensing Applications Using Diamond Microelectrodes. Bull. Chem. Soc. Jpn. 2021, 94, 2838–2847. [Google Scholar] [CrossRef]
- Fera Science Ltd. Part 1—Common Principles. In Protocol for Proficiency Testing Schemes, 8th ed.; Fera Science Ltd.: York, UK, 2023; Available online: https://fapas.com/sites/default/files/2023-02/FeraPTSprotocol_pt1_common_v8_Jan2023_0.pdf (accessed on 20 June 2025).
- Fera Science Ltd. Part 2—Fapas Food Chemistry scheme. In Protocol for Proficiency Testing Schemes, 6th ed.; Fera Science Ltd.: York, UK, 2023; Available online: https://fapas.com/sites/default/files/2023-02/FeraPTSprotocol_pt2_foodChem_v6_January2023.pdf (accessed on 20 June 2025).
- Einaga, Y. Development of Electrochemical Applications of Boron-Doped Diamond Electrodes. Bull. Chem. Soc. Jpn. 2018, 91, 1752–1762. [Google Scholar] [CrossRef]
- Aoki, H.; Miyazaki, R.; Ohama, M.; Murata, M.; Asai, K.; Ogata, G.; Einaga, Y. Urine Protein Quantification in Human Urine on Boron-Doped Diamond Electrodes based on Electrochemical Reaction of Coomassie Brilliant Blue. Analyst 2023, 148, 4396–4405. [Google Scholar] [CrossRef]
- Rao, T.N.; Tryk, D.A.; Hashimoto, K.; Fujishima, A. Band-Edge Movements of Semiconducting Diamond in Aqueous Electrolyte Induced by Anodic Surface Treatment. J. Electrochem. Soc. 1999, 146, 680–684. [Google Scholar] [CrossRef]
- Miller, J.N. Basic Statistical Methods for Analytical Chemistry Part 2. Calibration and Regression Methods. A Review. Analyst 1991, 116, 3–14. [Google Scholar] [CrossRef]
- Butwong, N.; Khajonklin, J.; Thongbor, A.; Luong, J.H.T. Electrochemical sensing of histamine using a glassy carbon electrode modified with multiwalled carbon nanotubes decorated with Ag-Ag2O nanoparticles. Microchim. Acta 2019, 186, 714. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cao, Y. An electrochemical sensor based on an anti-fouling membrane for the determination of histamine in fish samples. Anal. Methods 2021, 13, 685–694. [Google Scholar] [CrossRef]
- Wang, H.L.; O’Malley, R.M.; Fernandez, J.E. Electrochemical and Chemical Polymerization of Imidazole and Some of Its Derivatives. Macromolecules 1994, 27, 893–901. [Google Scholar] [CrossRef]
- Puthongkham, P.; Lee, S.T.; Venton, B.J. Mechanism of Histamine Oxidation and Electropolymerization at Carbon Electrodes. Anal. Chem. 2019, 91, 8366–8373. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-C.; Chang, C.-C.; Chang, H.-C. Electrochemical oxidation of histidine at an anodic oxidized boron-doped diamond electrode in neutral solution. Electrochim. Acta 2008, 53, 2883–2889. [Google Scholar] [CrossRef]
- Paiva, T.B.; Tominaga, M.; Paiva, A.C. Ionization of Histamine, N-Acetylhistamine, and Their Iodinated Derivatives. J. Med. Chem. 1970, 13, 689–692. [Google Scholar] [CrossRef] [PubMed]
- Merck & Co., Inc. The Merck Index, an Encyclopedia of Chemicals, Drugs, and Biologicals, 14th ed.; Merck & Co., Inc.: Rahway, NJ, USA, 2006. [Google Scholar]
- Chiku, M.; Ivandini, T.A.; Kamiya, A.; Fujishima, A.; Einaga, Y. Direct electrochemical oxidation of proteins at conductive diamond electrodes. J. Electroanal. Chem. 2008, 612, 201–207. [Google Scholar] [CrossRef]
- Lee, M.Y.; Wu, C.C.; Sari, M.I.; Hsieh, Y.H. A disposable non-enzymatic histamine sensor based on the nafion-coated copper phosphate electrodes for estimation of fish freshness. Electrochim. Acta 2018, 283, 772–779. [Google Scholar] [CrossRef]
Sample | Histamine Derived from the BDD Responses [ppm] | Histamine Certified by the Manufacture [ppm] | Recovery Rate [%] | Relative Standard Deviation |
---|---|---|---|---|
a | 5.24 ± 9.79 | 2.73 ± 0.27 | (192) | (1.87) |
b | 15.28 ± 9.36 | 13.85 ± 0.27 | 110 | 0.61 |
c | 22.02 ± 9.10 | 24.97 ± 0.27 | 88.2 | 0.41 |
d | 34.03 ± 8.70 | 36.09 ± 0.27 | 94.3 | 0.26 |
e | 52.66 ± 8.29 | 58.31 ± 0.27 | 90.3 | 0.16 |
f | 113.71 ± 8.89 | 113.88 ± 0.27 | 99.9 | 0.078 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aoki, H.; Miyazaki, R.; Einaga, Y. Non-Enzymatic Selective Detection of Histamine in Fishery Product Samples on Boron-Doped Diamond Electrodes. Biosensors 2025, 15, 489. https://doi.org/10.3390/bios15080489
Aoki H, Miyazaki R, Einaga Y. Non-Enzymatic Selective Detection of Histamine in Fishery Product Samples on Boron-Doped Diamond Electrodes. Biosensors. 2025; 15(8):489. https://doi.org/10.3390/bios15080489
Chicago/Turabian StyleAoki, Hiroshi, Risa Miyazaki, and Yasuaki Einaga. 2025. "Non-Enzymatic Selective Detection of Histamine in Fishery Product Samples on Boron-Doped Diamond Electrodes" Biosensors 15, no. 8: 489. https://doi.org/10.3390/bios15080489
APA StyleAoki, H., Miyazaki, R., & Einaga, Y. (2025). Non-Enzymatic Selective Detection of Histamine in Fishery Product Samples on Boron-Doped Diamond Electrodes. Biosensors, 15(8), 489. https://doi.org/10.3390/bios15080489