Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (185)

Search Parameters:
Keywords = electrochemical potential window

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 15664 KB  
Article
Defect Engineering in Laser-Induced Graphene (LIG) Through Temperature Control: A Reactive Molecular Dynamics Study
by Sergey V. Pavlov
Molecules 2025, 30(22), 4344; https://doi.org/10.3390/molecules30224344 - 10 Nov 2025
Viewed by 258
Abstract
Scalable and low-cost graphene synthesis remains a critical challenge for applications in energy storage, sensing, and beyond. Laser-induced graphene (LIG), produced by the rapid local carbonization of polymers like polyimide using laser irradiation, offers a promising route for the one-step, scalable fabrication of [...] Read more.
Scalable and low-cost graphene synthesis remains a critical challenge for applications in energy storage, sensing, and beyond. Laser-induced graphene (LIG), produced by the rapid local carbonization of polymers like polyimide using laser irradiation, offers a promising route for the one-step, scalable fabrication of porous graphene materials. This work employs reactive molecular dynamics simulations with the ReaxFF force field to investigate the temperature dependence of polyimide carbonization into LIG. We analyze the resulting structures with a focus on the formation of functional groups. Our simulations identify an optimal carbonization temperature window near 3000 K for maximizing graphene yield. Temperatures exceeding 3500 K cause a drastic reduction in six-membered carbon rings, indicative of structural degradation. Conversely, lower temperatures (2500–2750 K) decrease graphene yield but increase the concentration of carbonyl, pyrrolic, pyridinic, and nitrile functional groups. These oxygen- and nitrogen-containing groups are potentially valuable for tailoring functionalized graphene in electrochemical and sensing applications. Furthermore, the graphitization process was found to require extended simulation times (up to ∼5 ns) to reach equilibrium, underscoring the importance of timescale in modeling such processes. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

28 pages, 2561 KB  
Systematic Review
Electrodeposition of Metallic Magnesium in Ionic Liquids: A Systematic Review
by Agustín Arancibia-Zúñiga and Carlos Carlesi
Minerals 2025, 15(10), 1021; https://doi.org/10.3390/min15101021 - 26 Sep 2025
Viewed by 929
Abstract
Metallic magnesium is a strategic material with applications in mobility, energy and medicine, due to its low density, biocompatibility and use as an anode in rechargeable batteries. However, industrial production methods—such as the thermal reduction of dolomite or the electrolysis of anhydrous MgCl [...] Read more.
Metallic magnesium is a strategic material with applications in mobility, energy and medicine, due to its low density, biocompatibility and use as an anode in rechargeable batteries. However, industrial production methods—such as the thermal reduction of dolomite or the electrolysis of anhydrous MgCl2—face environmental and operational challenges, including high temperatures, emissions, and dehydration of precursors like bischofite. In response, ionic liquids (ILs) have emerged as alternative electrolytes, offering low volatility, thermal stability and wide electrochemical windows that enable electrodeposition in water-free media. This study presents a systematic review of 32 peer-reviewed articles, applying the PRISMA 2020 methodology. The analysis is structured across three dimensions: (1) types of ILs employed, (2) operational parameters and (3) magnesium source materials. In addition to electrolyte composition, key factors such as temperature, viscosity control, precursor purity and cell architecture were identified as critical for achieving efficient and reproducible magnesium deposition. Furthermore, the use of elevated temperatures and co-solvent strategies has been shown to effectively mitigate viscosity-related transport limitations, enabling more uniform ion mobility and enhancing interfacial behavior. The use of alloy co-deposition strategies and multicomponent electrolyte systems also expands the technological potential of IL-based processes, especially for corrosion-resistant coatings or composite electrode materials. This review contributes by critically synthesizing current techniques, identifying knowledge gaps and proposing strategies for scalable, sustainable magnesium production. The findings position IL-based electrodeposition as a potential alternative for environmentally responsible metal recovery. Full article
Show Figures

Graphical abstract

15 pages, 1842 KB  
Article
PtBiCoAgSn Multi-Component Alloy Electrocatalysts Enhancing the Oxidation of Ethylene Glycol to Value-Added C2 Products
by Si-Tong Chen, Lin Wang, Hai-En Hou, Kang-Shuo Wang, Zhou Lan, Yao-Yue Yang and Wen-Bin Cai
Molecules 2025, 30(19), 3872; https://doi.org/10.3390/molecules30193872 - 24 Sep 2025
Viewed by 680
Abstract
Ethylene glycol oxidation (EGOR) transforms waste plastic-derived chemicals into high-value products, representing an upcycling strategy that enhances resource efficiency. Pt-based electrocatalysts have shown promise for oxidizing ethylene glycol (EG) to high-value glycolic acid (GA), but they still suffer from high Pt usage, limited [...] Read more.
Ethylene glycol oxidation (EGOR) transforms waste plastic-derived chemicals into high-value products, representing an upcycling strategy that enhances resource efficiency. Pt-based electrocatalysts have shown promise for oxidizing ethylene glycol (EG) to high-value glycolic acid (GA), but they still suffer from high Pt usage, limited activity and stability, and poor low-potential selectivity. In this work, we report a highly dispersed PtBiCoAgSn multi-component alloy (MCA) electrocatalyst (denoted as MCA-PtBiCoAgSn) with outstanding catalytic activity and deactivation resistance, demonstrating a remarkable EGOR mass activity of 16.65 A mgPt1 at 0.76 V vs. RHE, which is 8-fold higher than that of commercial Pt/C (2.03 A mgPt1). Also, it can maintain an EGOR current density of 4.89 A mgPt1 after an extended long-term stability test. Additionally, it shows superior Faradaic efficiency (FE) for C2 products compared to Pt/C across the potential window of 0.5~0.9 V vs. RHE, with the FE of GA being up to 91% at a very low potential of 0.5 V vs. RHE. Moreover, in situ electrochemical infrared spectroscopy in a thin-layer configuration confirmed that EGOR proceeds via the C2 pathway on MCA-PtBiCoAgSn surfaces. This work may provide new insights into the design of high-efficiency and low-cost EGOR catalysts. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Graphical abstract

14 pages, 6680 KB  
Article
In Situ Engineered Plastic–Crystal Interlayers Enable Li-Rich Cathodes in PVDF-HFP-Based All-Solid-State Polymer Batteries
by Fei Zhou, Jinwei Tan, Feixiang Wang and Meiling Sun
Batteries 2025, 11(9), 334; https://doi.org/10.3390/batteries11090334 - 6 Sep 2025
Viewed by 1820
Abstract
All-solid-state lithium batteries (ASSLBs) employing Li-rich layered oxide (LLO) cathodes are regarded as promising next-generation energy storage systems owing to their outstanding energy density and intrinsic safety. Polymer-in-salt solid electrolytes (PISSEs) offer advantages such as high room-temperature ionic conductivity, enhanced Li anode interfacial [...] Read more.
All-solid-state lithium batteries (ASSLBs) employing Li-rich layered oxide (LLO) cathodes are regarded as promising next-generation energy storage systems owing to their outstanding energy density and intrinsic safety. Polymer-in-salt solid electrolytes (PISSEs) offer advantages such as high room-temperature ionic conductivity, enhanced Li anode interfacial compatibility, and low processing costs; however, their practical deployment is hindered by poor oxidative stability especially under high-voltage conditions. In this study, we report the rational design of a bilayer electrolyte architecture featuring an in situ solidified LiClO4-doped succinonitrile (LiClO4–SN) plastic–crystal interlayer between a Li1.2Mn0.6Ni0.2O2 (LMNO) cathode and a poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-based PISSE. This PISSE/SN–LiClO4 configuration exhibits a wide electrochemical stability window up to 4.7 V vs. Li+/Li and delivers a high ionic conductivity of 5.68 × 10−4 S cm−1 at 25 °C. The solidified LiClO4-SN layer serves as an effective physical barrier, shielding the PVDF-HFP matrix from direct interfacial contact with LMNO and thereby suppressing its oxidative decomposition at elevated potentials. As a result, the bilayer polymer-based cells with the LMNO cathode demonstrate an initial discharge capacity of ∼206 mAh g−1 at 0.05 C and exhibit good cycling stability with 85.7% capacity retention after 100 cycles at 0.5 C under a high cut-off voltage of 4.6 V. This work not only provides a promising strategy to enhance the compatibility of PVDF-HFP-based electrolytes with high-voltage cathodes through the facile in situ solidification of plastic interlayers but also promotes the application of LMNO cathode material in high-energy ASSLBs. Full article
Show Figures

Graphical abstract

12 pages, 2381 KB  
Article
Interface Stabilization of Aqueous Aluminum Batteries via Non-Flammable Co-Solvent
by Keun-il Kim
Batteries 2025, 11(9), 324; https://doi.org/10.3390/batteries11090324 - 29 Aug 2025
Viewed by 1013
Abstract
Aqueous aluminum-ion batteries (AAIBs) face significant challenges due to interfacial instability and parasitic side reactions during the reversible deposition of aluminum. Here, we introduce a hybrid electrolyte incorporating triethyl phosphate (TEP), a non-flammable co-solvent that reconstructs the Al3+ solvation environment by suppressing [...] Read more.
Aqueous aluminum-ion batteries (AAIBs) face significant challenges due to interfacial instability and parasitic side reactions during the reversible deposition of aluminum. Here, we introduce a hybrid electrolyte incorporating triethyl phosphate (TEP), a non-flammable co-solvent that reconstructs the Al3+ solvation environment by suppressing water activity. This design extends the electrochemical stability window and enables uniform Al–Zn alloy formation at the anode interface. As a result, symmetric Al–Zn cells achieve over 4000 h of stable cycling. In full-cell configurations with V2O5/C cathodes, the system demonstrates high capacity retention (~96% over 450 cycles at 2 A g−1) and coulombic efficiency. This work underscores the potential of solvation structure engineering via functional, flame-retarding co-solvent to advance the development of safe and durable aqueous electrolytes. Full article
(This article belongs to the Special Issue Research on Aqueous Rechargeable Batteries—2nd Edition)
Show Figures

Figure 1

28 pages, 10014 KB  
Article
Nanomaterial Functionalized Carbon Fiber-Reinforced Composites with Energy Storage Capabilities
by Venkatesh Gangipamula, Karamat Subhani, Peter J. Mahon and Nisa Salim
Nanomaterials 2025, 15(17), 1325; https://doi.org/10.3390/nano15171325 - 28 Aug 2025
Viewed by 1117
Abstract
We have demonstrated the fabrication of laminate composites with functional features to demonstrate energy storage capabilities. The present study investigates the surface modification of carbon fibers by coating dual materials of reduced graphene oxide (rGO) and cellulose-based activated carbon to enhance their energy [...] Read more.
We have demonstrated the fabrication of laminate composites with functional features to demonstrate energy storage capabilities. The present study investigates the surface modification of carbon fibers by coating dual materials of reduced graphene oxide (rGO) and cellulose-based activated carbon to enhance their energy storage capacitance for the development of structural supercapacitors. The dual coating on carbon fibers enabled a near 210-fold improvement in surface area, surpassing that of pristine carbon fibers. This formed a highly porous graphene network with activated carbon, resulting in a well-connected fiber–graphene-activated carbon network on carbon fibers. The electrochemical supercapacitor, fabricated from surface-functionalized carbon fibers, provides the best performance, with a specific capacitance of 172 F g−1 in an aqueous electrolyte. Furthermore, the symmetrical structural supercapacitor (SSSC) device delivered a specific capacitance of 227 mF g−1 across a wide potential window of 6 V. The electrochemical stability of the SSSC device was validated by a high capacitance retention of 97.3% over 10,000 cycles. Additionally, the study showcased the practical application of this technology by successfully illuminating an LED using the proof-of-concept SSSC device with G-aC/CF electrodes. Overall, the findings of this study highlight the potential of carbon fiber composites as a promising hybrid material, offering both structural integrity and a functional performance suitable for aerospace and automobile applications. Full article
(This article belongs to the Special Issue Fabrication and Applications of Polymer Nanocomposite Materials)
Show Figures

Graphical abstract

26 pages, 3149 KB  
Review
Research Progress and Future Perspectives on Photonic and Optoelectronic Devices Based on p-Type Boron-Doped Diamond/n-Type Titanium Dioxide Heterojunctions: A Mini Review
by Shunhao Ge, Dandan Sang, Changxing Li, Yarong Shi, Qinglin Wang and Dao Xiao
Nanomaterials 2025, 15(13), 1003; https://doi.org/10.3390/nano15131003 - 29 Jun 2025
Cited by 2 | Viewed by 1001
Abstract
Titanium dioxide (TiO2) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. [...] Read more.
Titanium dioxide (TiO2) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. For instance, TiO2 is widely used as a photocatalyst for hydrogen production via water splitting and for degrading organic pollutants, thanks to its efficient photo-generated electron–hole separation. Additionally, TiO2 exhibits remarkable performance in dye-sensitized solar cells and photodetectors, providing critical support for advancements in green energy and photoelectric conversion technologies. Boron-doped diamond (BDD) is renowned for its exceptional electrical conductivity, high hardness, wide electrochemical window, and outstanding chemical inertness. These unique characteristics enable its extensive use in fields such as electrochemical analysis, electrocatalysis, sensors, and biomedicine. For example, BDD electrodes exhibit high sensitivity and stability in detecting trace chemicals and pollutants, while also demonstrating excellent performance in electrocatalytic water splitting and industrial wastewater treatment. Its chemical stability and biocompatibility make it an ideal material for biosensors and implantable devices. Research indicates that the combination of TiO2 nanostructures and BDD into heterostructures can exhibit unexpected optical and electrical performance and transport behavior, opening up new possibilities for photoluminescence and rectifier diode devices. However, applications based on this heterostructure still face challenges, particularly in terms of photodetector, photoelectric emitter, optical modulator, and optical fiber devices under high-temperature conditions. This article explores the potential and prospects of their combined heterostructures in the field of optoelectronic devices such as photodetector, light emitting diode (LED), memory, field effect transistor (FET) and sensing. TiO2/BDD heterojunction can enhance photoresponsivity and extend the spectral detection range which enables stability in high-temperature and harsh environments due to BDD’s thermal conductivity. This article proposes future research directions and prospects to facilitate the development of TiO2 nanostructured materials and BDD-based heterostructures, providing a foundation for enhancing photoresponsivity and extending the spectral detection range enables stability in high-temperature and high-frequency optoelectronic devices field. Further research and exploration of optoelectronic devices based on TiO2-BDD heterostructures hold significant importance, offering new breakthroughs and innovations for the future development of optoelectronic technology. Full article
(This article belongs to the Special Issue Nanoscale Photonics and Optoelectronics)
Show Figures

Graphical abstract

14 pages, 2457 KB  
Article
The Growth Mechanism of Boron-Doped Diamond in Relation to the Carbon-to-Hydrogen Ratio Using the Hot-Filament Chemical Vapor Deposition Method
by Taekyeong Lee, Miyoung You, Seohan Kim and Pungkeun Song
Micromachines 2025, 16(7), 742; https://doi.org/10.3390/mi16070742 - 25 Jun 2025
Viewed by 1518
Abstract
This study synthesized boron-doped diamond (BDD) thin films using hot-filament chemical vapor deposition at different carbon-to-hydrogen (C/H) ratios in the range of 0.3–0.9%. The C/H ratio influence, a key parameter controlling the balance between diamond growth and hydrogen-assisted etching, was systematically investigated while [...] Read more.
This study synthesized boron-doped diamond (BDD) thin films using hot-filament chemical vapor deposition at different carbon-to-hydrogen (C/H) ratios in the range of 0.3–0.9%. The C/H ratio influence, a key parameter controlling the balance between diamond growth and hydrogen-assisted etching, was systematically investigated while maintaining other deposition parameters constant. Microstructural and electrochemical analysis revealed that increasing the C/H ratio from 0.3% to 0.7% led to a reduction in sp2-bonded carbon and enhanced the crystallinity of the diamond films. The improved conductivity under these conditions can be attributed to effective substitutional boron doping. Notably, the film deposited at a C/H ratio of 0.7% exhibited the highest electrical conductivity and the widest electrochemical potential window (2.88 V), thereby indicating excellent electrochemical stability. By contrast, at a C/H ratio of 0.9%, the excessively supplied carbon degraded the film quality and electrical and electrochemical performance, which was owing to the increased formation of sp2 carbon. In addition, this led to an elevated background current and a narrowed potential window. These results reveal that precise control of the C/H ratio is critical for optimizing the BDD electrode performance. Therefore, a C/H ratio of 0.7% provides the most favorable conditions for applications in advanced oxidation processes. Full article
(This article belongs to the Collection Women in Micromachines)
Show Figures

Graphical abstract

48 pages, 6397 KB  
Review
Advancements in Electrochromic Technology for Multifunctional Flexible Devices
by Alice Marciel, Joel Borges, Luiz Pereira, Rui F. Silva and Manuel Graça
Materials 2025, 18(13), 2964; https://doi.org/10.3390/ma18132964 - 23 Jun 2025
Cited by 2 | Viewed by 2299
Abstract
The design and investigation of electrochromic devices have advanced significantly, including distinct applications such as self-charged smart windows, aerospace interactive windows, low power flexible and ecofriendly displays, automatic dimming rearview, wearable smart textiles, military and civilian camouflage systems, electrochromic sensors, among others. Although [...] Read more.
The design and investigation of electrochromic devices have advanced significantly, including distinct applications such as self-charged smart windows, aerospace interactive windows, low power flexible and ecofriendly displays, automatic dimming rearview, wearable smart textiles, military and civilian camouflage systems, electrochromic sensors, among others. Although significant progress has been made in related fields, achieving the full potential of electrochromic devices to meet the standards of maturity and practical applications remains a persistent challenge. Electrochromic devices are typically multilayered structures that can be designed as either rigid or flexible systems, depending on the type of substrate employed. Conventional electrochromic devices comprise layered structures that include transparent electrodes, electrochromic materials, ionic conductors, and ion storage materials. On the other hand, multifunctional systems integrate bifunctional materials or distinct functional layers to simultaneously achieve optical modulation and additional capabilities such as energy storage. The development of advanced materials, comprehensive electrochemical kinetic analysis, the optimization and advancement of process techniques and deposition methods, and innovative device designs are active areas of extensive global research. This review focuses on the recent advances in multifunctional electrochromic materials and devices with particular emphasis on the integration of electrochromic technology with other functional technologies. It further identifies current challenges, proposes potential solutions, and outlines future research directions focused on advancing this technology in both niche and scalable applications. Full article
Show Figures

Figure 1

21 pages, 4033 KB  
Article
Nature-Inspired Redox Active Organic Molecules: Design, Synthesis, and Characterization of Pyridine Derivatives
by Gloria M. Acosta-Tejada, Martha M. Flores-Leonar, Jazmín García-Ramírez, Víctor M. Ugalde-Saldívar and Alfredo Vázquez
Chemistry 2025, 7(3), 100; https://doi.org/10.3390/chemistry7030100 - 18 Jun 2025
Cited by 1 | Viewed by 1904
Abstract
In this article, we present experimental and theoretical studies of pyridine derivatives (pyDs) inspired by natural systems to investigate the electron transfer processes occurring in aqueous media and elaborate a theoretical model that adequately predicts the behavior of new derivatives. Our results might [...] Read more.
In this article, we present experimental and theoretical studies of pyridine derivatives (pyDs) inspired by natural systems to investigate the electron transfer processes occurring in aqueous media and elaborate a theoretical model that adequately predicts the behavior of new derivatives. Our results might be relevant to scientific and technological applications, including energy storage, redox-active scaffolds for organic synthesis, photoredox catalysis, and new materials. The synthesis of eight pyDs is reported. To improve water solubility, six new compounds are hexafluorophosphate alkylammonium salts. The pyDs exhibit irreversible redox processes, with electron-donating substituents decreasing the cathodic peak potential while electron-withdrawing groups increase it; when both substituents are present, the latter effect prevails. A computational study was performed to investigate the electrochemical behavior of the synthesized compounds and design new electroactive pyDs. DFT calculations provided the predominant species’ redox potentials and acidity constants to elaborate Pourbaix diagrams for each compound. The synthesized molecules exhibit a two-electron-one-proton dismutation process in the water pH window. Beyond this range, stabilized radical species undergo one-electron exchange processes. We correlated experimental and calculated parameters, screening 22 additional derivatives to evaluate their electrochemical behavior, identifying potential candidates capable of performing a one-electron transfer process in the pH window of water, revealing new applications for pyDs. Full article
(This article belongs to the Section Molecular Organics)
Show Figures

Graphical abstract

14 pages, 2913 KB  
Article
Sensitive Gold Nanostar-Based Adsorption Sensor for the Determination of Dexamethasone
by Riccarda Thelma MacDonald, Keagan Pokpas, Emmanuel Iwuoha and Candice Cupido
Chemosensors 2025, 13(6), 208; https://doi.org/10.3390/chemosensors13060208 - 7 Jun 2025
Viewed by 1349
Abstract
Herein, a novel, highly efficient electrochemical adsorption method is introduced for detection of the potent anti-inflammatory synthetic corticosteroid, dexamethasone (DEX). Unlike conventional electrochemical techniques that rely on high reduction potentials, the proposed sensor offers an alternative adsorption-based mechanism with a gold nanostar-modified glassy [...] Read more.
Herein, a novel, highly efficient electrochemical adsorption method is introduced for detection of the potent anti-inflammatory synthetic corticosteroid, dexamethasone (DEX). Unlike conventional electrochemical techniques that rely on high reduction potentials, the proposed sensor offers an alternative adsorption-based mechanism with a gold nanostar-modified glassy carbon electrode (AuNS|GCE). This enables DEX detection at a less negative or moderate reduction potential of +200 mV, circumventing potential window limitations of a GCE and providing a suitable microenvironment for detection in biological media. DEX is known to effectively prevent or suppress symptoms of inflammation due to its small applied dosage; however, an overdose thereof in the human body could lead to adverse drug effects such as gastrointestinal perforation, seizures, and heart attacks. Therefore, a sensitive method is essential to monitor DEX concentration in biofluids such as urine. NMGA-capped AuNSs were leveraged to enhance the active surface area of the sensing platform and allow adsorption of DEX onto the gold surfaces through its highly electronegative fluorine atom. Under optimized experimental conditions, the developed AuNS|GCE sensor showed excellent analytical performance with a remarkably low limit of detection (LOD) of 1.11 nM, a good sensitivity of 0.187 µA.nM−1, and a high percentage recovery of 92.5% over the dynamic linear range of 20–120 nM (linear regression of 0.995). The favourable electrochemical performance of this sensor allowed for successful application in the sensitive determination of DEX in synthetic urine (20% v/v in PBS, pH 7). Full article
Show Figures

Graphical abstract

13 pages, 1817 KB  
Article
Modified Polyethylene Oxide Solid-State Electrolytes with Poly(vinylidene fluoride-hexafluoropropylene)
by Jinwei Yan, Wen Huang, Tangqi Hu, Hai Huang, Chengwei Zhu, Zhijie Chen, Xiaohong Fan, Qihui Wu and Yi Li
Molecules 2025, 30(11), 2422; https://doi.org/10.3390/molecules30112422 - 31 May 2025
Cited by 2 | Viewed by 1027
Abstract
Lithium-ion batteries are restricted in development due to safety issues such as poor chemical stability and flammability of organic liquid electrolytes. Replacing liquid electrolytes with solid ones is crucial for improving battery safety and performance. This study aims to enhance the performance of [...] Read more.
Lithium-ion batteries are restricted in development due to safety issues such as poor chemical stability and flammability of organic liquid electrolytes. Replacing liquid electrolytes with solid ones is crucial for improving battery safety and performance. This study aims to enhance the performance of polyethylene oxide (PEO)-based polymer via blending with poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)). The experimental results showed that the addition of P(VDF-HFP) disrupted the crystalline regions of PEO by increasing the amorphous domains, thus improving lithium-ion migration capability. The electrolyte membrane with 30 wt% P(VDF-HFP) and 70 wt% PEO exhibited the highest ionic conductivity, widest electrochemical window, and enhanced thermal stability, as well as a high lithium-ion transference number (0.45). The cells assembled with this membrane electrolyte demonstrated an excellent rate of performance and cycling stability, retaining specific capacities of 122.39 mAh g−1 after 200 cycles at 0.5C, and 112.77 mAh g−1 after 200 cycles at 1C and 25 °C. The full cell assembled with LiFePO4 as the positive electrode exhibits excellent rate performance and good cycling stability, indicating that prepared solid electrolytes have great potential applications in lithium batteries. Full article
Show Figures

Figure 1

12 pages, 2023 KB  
Article
Oligonuclear Manganese Complexes with Multiple Redox Properties for High-Contrast Electrochromism
by Yi-Ting Wu, Hao-Tian Deng, Li-Yi Zhang, Meng-Die Li, Feng-Rong Dai and Zhong-Ning Chen
Molecules 2025, 30(9), 2054; https://doi.org/10.3390/molecules30092054 - 5 May 2025
Cited by 2 | Viewed by 736
Abstract
This study is dedicated to the design of multiple redox-active oligonuclear manganese complexes supported with a bis(tetradentate) ligand (TPDP = 1,3-bis(bis(2-pyridinylmethyl)amino)-2-propanol) for high-contrast electrochromism based on the reversible redox process between Mn(II) (colorless) and Mn(III) (dark brown). Pentanuclear Mn5 complex 1 (colorless) [...] Read more.
This study is dedicated to the design of multiple redox-active oligonuclear manganese complexes supported with a bis(tetradentate) ligand (TPDP = 1,3-bis(bis(2-pyridinylmethyl)amino)-2-propanol) for high-contrast electrochromism based on the reversible redox process between Mn(II) (colorless) and Mn(III) (dark brown). Pentanuclear Mn5 complex 1 (colorless) was synthesized via a one-pot reaction of Mn2+ and TPDP, while tetranuclear Mn4 complex 2 (brown) was obtained through aerial oxidation of complex 1. Mn5 complex 1 features a central MnCl6 unit connected to two Mn2(μ-TPDP) fragments through μ3-Cl and μ-Cl, whereas Mn4 complex 2 adopts a symmetric tetranuclear structure with two mixed-valence Mn2II,III(μ-TPDP)(μ-Cl) fragments that are further linked by μ-oxo. Electrochemical studies revealed multi-step reversible redox properties for both complexes, attributed to MnII/MnIII processes with significant electronic coupling (ΔE1/2 = 0.27–0.37 V) between Mn centers. Spectroelectrochemical analysis revealed dynamic optical modulation through the tunable d-d transition and ligand-to-metal charge transfer (LMCT) state through reversible multiple redox processes based on Mn(II) ⇆ Mn(III) interconversion. The fabricated electrochromic device (ECD) exhibited reversible and high optical contrast between the colored state (dark brown) and the bleaching state (colorless). The results highlight the potential of polynuclear manganese complexes as high-contrast electrochromic materials for next-generation smart windows and adaptive optical technologies. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Inorganic Chemistry, 3rd Edition)
Show Figures

Figure 1

36 pages, 10690 KB  
Article
Novel Amperometric Sensor Based on Glassy Graphene for Flow Injection Analysis
by Ramtin Eghbal Shabgahi, Alexander Minkow, Michael Wild, Dietmar Kissinger and Alberto Pasquarelli
Sensors 2025, 25(8), 2454; https://doi.org/10.3390/s25082454 - 13 Apr 2025
Cited by 2 | Viewed by 1211
Abstract
Flow injection analysis (FIA) is widely used in drug screening, neurotransmitter detection, and water analysis. In this study, we investigated the electrochemical sensing performance of glassy graphene electrodes derived from pyrolyzed positive photoresist films (PPFs) via rapid thermal annealing (RTA) on SiO2 [...] Read more.
Flow injection analysis (FIA) is widely used in drug screening, neurotransmitter detection, and water analysis. In this study, we investigated the electrochemical sensing performance of glassy graphene electrodes derived from pyrolyzed positive photoresist films (PPFs) via rapid thermal annealing (RTA) on SiO2/Si and polycrystalline diamond (PCD). Glassy graphene films fabricated at 800, 900, and 950 °C were characterized using Raman spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM) to assess their structural and morphological properties. Electrochemical characterization in phosphate-buffered saline (PBS, pH 7.4) revealed that annealing temperature and substrate type influence the potential window and double-layer capacitance. The voltammetric response of glassy graphene electrodes was further evaluated using the surface-insensitive [Ru(NH3)6]3+/2+ redox marker, the surface-sensitive [Fe(CN)6]3−/4− redox couple, and adrenaline, demonstrating that electron transfer efficiency is governed by annealing temperature and substrate-induced microstructural changes. FIA with amperometric detection showed a linear electrochemical response to adrenaline in the 3–300 µM range, achieving a low detection limit of 1.05 µM and a high sensitivity of 1.02 µA cm−2/µM. These findings highlight the potential of glassy graphene as a cost-effective alternative for advanced electrochemical sensors, particularly in biomolecule detection and analytical applications. Full article
Show Figures

Figure 1

20 pages, 4620 KB  
Article
Assessing the Efficacy of Seawater Batteries Using NASICON Solid Electrolyte
by Mihaela Iordache, Anișoara Oubraham, Mihaela Bazga, Gheorghe Eugen Ungureanu, Simona Elena Borta and Adriana Marinoiu
Appl. Sci. 2025, 15(7), 3469; https://doi.org/10.3390/app15073469 - 21 Mar 2025
Cited by 1 | Viewed by 2299
Abstract
The need to reduce greenhouse gas emissions and guarantee a stable and reliable energy supply has resulted in an increase in the demand for sustainable energy storage solutions over the last decade. Rechargeable batteries with solid-state electrolytes (SSE) have become a focus area [...] Read more.
The need to reduce greenhouse gas emissions and guarantee a stable and reliable energy supply has resulted in an increase in the demand for sustainable energy storage solutions over the last decade. Rechargeable batteries with solid-state electrolytes (SSE) have become a focus area due to their potential for increased energy density, longer cycle life, and safety over conventional liquid electrolytic batteries. The superionic sodium conductor (NASICON) Na3Zr2Si2PO12 has gained a lot of attention among ESS because of its exceptional electrochemical properties, which make it a promising candidate for solid-state sodium-ion batteries. NASICON’s open frame structure makes it possible to transport sodium ions efficiently even at room temperature, while its wide electrochemical window enables high-voltage operation and reduces side reactions, resulting in safer battery performance. Furthermore, NASICON is more compatible with sodium ion systems, can help with electrode interface issues, and is simple to process. The characteristics of NASICON make it a highly desirable and vital material for solid-state sodium-ion batteries. The aim of this study is to prepare and characterize ceramic membranes that contain Na3.06Zr2Si2PO12 and Na3.18Zr2Si2PO12, and measure their stability in seawater batteries that serve as solid electrolytes. The surface analysis revealed that the Na3.06Zr2Si2PO12 powder has a specific surface area of 7.17 m2 g−1, which is more than the Na3.18Zr2Si2PO12 powder’s 6.61 m2 g−1. During measurement, the NASICON samples showed ionic conductivities of 8.5 × 10−5 and 6.19 × 10−4 S cm−1. Using platinum/carbon (Pt/C) as a catalyst and seawater as a source of cathodes with sodium ions (Na+), batteries were charged and discharged using different current values (50 and 100 µA) for testing. In an electrochemical cell, a battery with a NASICON membrane and Pt/C catalysts with 0.00033 g platinum content was used to assess reproducibility at a constant current of 2 h. After 100 h of operation, charging and discharging voltage efficiency was 71% (50/100 µA) and 83.5% (100 µA). The electric power level is observed to increase with the number of operating cycles. Full article
(This article belongs to the Special Issue Novel Ceramic Materials: Processes, Properties and Applications)
Show Figures

Figure 1

Back to TopTop