Assessing the Efficacy of Seawater Batteries Using NASICON Solid Electrolyte
Abstract
:1. Introduction
2. Materials and Methods
2.1. Making the Na3.06Zr2Si2PO12 (NAS-2%) and Na3.18Zr2Si2PO12 (NAS-6%) Membranes
2.2. Methods and Equipment for Characterization of Membranes
2.3. Getting Batteries with a Ceramic Membrane as Their Solid Electrolyte
2.4. The Process of Preparing Both the Catalytic Mixture and the Cathode
3. Results
3.1. Analyzing the Structure of NASICON Membranes (2% and 6% Excess Na)
3.2. Investigating the Electrical Conductivity of the NASICON Ceramic Membrane
4. Discussion
4.1. The NASICON Principles Used in Seawater Electrolytic Processes
4.2. Testing the Performance of Seawater Batteries Containing the NASICON Membrane
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Randhawa, K.S. Advanced ceramics in energy storage applications: Batteries to hydrogen energy. J. Energy Storage 2024, 98, 113122. [Google Scholar] [CrossRef]
- Pandit, B.; Johansen, M.; Andersen, B.P.; Martínez-Cisneros, C.S.; Levenfeld, B.; Ravnsbæk, D.B.; Varez, A. All-solid-state sodium-ion batteries operating at room temperature based on NASICON-type NaTi2(PO4)3 cathode and ceramic NASICON solid electrolyte: A complete in situ synchrotron X-ray study. Chem. Eng. J. 2023, 472, 144509. [Google Scholar] [CrossRef]
- Cai, X.; Yue, Y.; Yi, Z.; Liu, J.; Sheng, Y.; Lu, Y. Challenges and industrial perspectives on the development of sodium ion batteries. Nano Energy 2024, 129, 110052. [Google Scholar] [CrossRef]
- Rostami, H.; Valio, J.; Suominen, P.; Tynjälä, P.; Lassi, U. Advancements in cathode technology, recycling strategies, and market dynamics: A comprehensive review of sodium ion batteries. Chem. Eng. J. 2024, 495, 153471. [Google Scholar] [CrossRef]
- Cheng, E.J.; Yang, T.; Liu, Y.; Chai, L.; Garcia-Mendez, R.; Kazyak, E.; Fu, Z.; Luo, G.; Chen, F.; Inada, R.; et al. Correlation between mechanical properties and ionic conductivity of polycrystalline sodium superionic conductors: A relative density-dominant relationship. Mater. Today Energy 2024, 44, 101644. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, S.; Zhang, J.; Zhang, J.; Wang, X.; Wen, L.; Tang, G.; Hu, M.; Wang, E.; Chen, W. Critical review on cathode electrolyte interphase towards stabilization for sodium-ion batteries. Nano Energy 2024, 128, 109814. [Google Scholar]
- Wang, C.; Wang, C.; Li, M.; Zhang, S.; Zhang, C.; Chou, S.; Mao, J.; Guo, Z. Design of thin solid-state electrolyte films for safe and energy-dense batteries. Mater. Today 2023, 72, 235–254. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, G.; Lin, J.; Zhu, J.; Pan, J.; Fang, G.; Liang, S.; Cao, X. A Multicationic-Substituted Configurational Entropy-Enabled NASICON Cathode for High-Power Sodium-Ion Batteries. Nano Energy 2024, 128, 109812. [Google Scholar] [CrossRef]
- Tiwari, R.; Kumar, D.; Verma, D.K.; Parwati, K.; Ranjan, P.; Rai, R.; Krishnamoorthi, S.; Khan, R. Fundamental chemical and physical properties of electrolytes in energy storage devices: A review. J. Energy Storage 2024, 81, 110361. [Google Scholar] [CrossRef]
- Cai, S.; Meng, W.; Tian, H.; Luo, T.; Wang, L.; Li, M.; Luo, J.; Liu, S. Artificial porous heterogeneous interface for all-solid-state sodium ion battery. J. Colloid Interface Sci. 2022, 632, 179–185. [Google Scholar] [CrossRef]
- Ruan, Y.; Huang, X.; Lei, H.; Liu, Y.; Wang, J.; Sun, W.; Song, S. A flexible and free-standing composite solid electrolyte with a pomegranate-like structure for solid-state sodium-ion batteries. Solid State Ion. 2023, 403, 116406. [Google Scholar] [CrossRef]
- Liu, X.; Liu, X.-Y.; Zhang, N.; Wang, P.-F.; Liu, Z.-L.; Zhang, J.-H.; Shu, J.; Sun, Y.; Li, C.-S.; Yi, T.-F. A high-entropy strategy for stable structure of sodium ion batteries: From fundamentals to applications. Chem. Eng. J. 2024, 496, 153743. [Google Scholar] [CrossRef]
- Bai, H.; Zhu, X.; Ao, H.; He, G.; Xiao, H.; Chen, Y. Advances in sodium-ion batteries at low-temperature: Challenges and strategies. J. Energy Chem. 2023, 90, 518–539. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, B.; Ren, D.; Yu, X.; Gao, Y.; Wu, Y.; Yang, Y.; Chen, Z.; Zhou, Z. Advancing solid-state sodium batteries: Status quo of sulfide-based solid electrolytes. Mater. Today 2024, 80, 429–449. [Google Scholar] [CrossRef]
- Kim, D. Development of Rechargeable Seawater Battery Module: Design of Cathode Current Collector to reduce Resistance Imbalance for Long Cycle Life. Ph.D. Dissertation, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea, 2023. [Google Scholar]
- Arnold, S.; Wang, L.; Presser, V. Dual-use of seawater batteries for energy storage and water desalination. Small 2022, 18, e2107913. [Google Scholar] [CrossRef] [PubMed]
- Iordache, M.; Oubraham, A.; Petreanu, I.; Sisu, C.; Borta, S.; Capris, C.; Soare, A.; Marinoiu, A. NASICON Membrane with High Ionic Conductivity Synthesized by High-Temperature Solid-State Reaction. Materials 2024, 17, 823. [Google Scholar] [CrossRef]
- Niazmand, M.; Khakpour, Z.; Mortazavi, A. Electrochemical properties of nanostructure NASICON synthesized by chemical routes: A comparison between coprecipitation and sol-gel. J. Alloys Compd. 2019, 798, 311–319. [Google Scholar] [CrossRef]
- Miao, X.; Di, H.; Ge, X.; Zhao, D.; Wang, P.; Wang, R.; Wang, C.; Yin, L. AlF3-modified anode-electrolyte interface for effective Na dendrites restriction in NASICON-based solid-state electrolyte. Energy Storage Mater. 2020, 30, 170–178. [Google Scholar] [CrossRef]
- Suntharam, N.M.; Bashir, S.; Vengadaesvaran, B.; Abd Rahim, N.; Reasmyraj, S.; Ramesh, S.; Ramesh, K.; Prasankumar, T. Fundamentals and key components of sodium-ion batteries: Challenges and future perspectives. Mater. Today Chem. 2024, 42, 102350. [Google Scholar] [CrossRef]
- Fuentes, R.; Figueiredo, F.; Marques, F.; Franco, J. Influence of microstructure on the electrical properties of NASICON materials. Solid State Ion. 2001, 140, 173–179. [Google Scholar] [CrossRef]
- Jolley, A.G.; Cohn, G.; Hitz, G.T.; Wachsman, E.D. Improving the ionic conductivity of NASICON through aliovalent cation substitution of Na3Zr2Si2PO12. Ionics 2015, 21, 3031–3038. [Google Scholar] [CrossRef]
- Guin, M.; Tietz, F.; Guillon, O. New promising NASICON material as solid electrolyte for sodium-ion batteries: Correlation between composition, crystal structure and ionic conductivity of Na3+xSc2SixP3−xO12. Solid State Ion. 2016, 293, 18–26. [Google Scholar] [CrossRef]
- Park, H.; Jung, K.; Nezafati, M.; Kim, C.S.; Kang, B. Sodium ion diffusion in Nasicon (Na3Zr2Si2PO12) solid electro-lytes: Effects of excess sodium. ACS Appl. Mater. Interfaces 2016, 8, 27814–27824. [Google Scholar]
- Naqash, S.; Ma, Q.; Tietz, F.; Guillon, O. Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid state reaction. Solid State Ion. 2017, 302, 83–91. [Google Scholar] [CrossRef]
- Jalalian-Khakshour, A.; Phillips, C.O.; Jackson, L.; Dunlop, T.O.; Margadonna, S.; Deganello, D. Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity. J. Mater. Sci. 2019, 55, 2291–2302. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Sun, Z.; Ni, Q.; Jin, H.; Zhao, Y. Recent advance on NASICON electrolyte in solid-state sodium metal batteries. Energy Storage Mater. 2023, 56, 582–599. [Google Scholar] [CrossRef]
- Oueldna, N.; Sabi, N.; Ben Youcef, H. Correlation between physical properties and the electrochemical behavior in inorganic solid-state electrolytes for lithium and sodium batteries: A comprehensive review. J. Energy Storage 2024, 86, 111254. [Google Scholar] [CrossRef]
- Liu, G.; Yang, J.; Wu, J.; Peng, Z.; Yao, X. Inorganic Sodium Solid Electrolytes: Structure Design, Interface Engineering and Application. Adv. Mater. 2024, 36, e2311475. [Google Scholar] [CrossRef]
- Wang, D.; Moreno, S.; Gao, M.; Guo, J.; Xu, B.; Voigt, D.; Voit, B.; Appelhans, D. Protocells Capable of Generating a Cytoskeleton-Like Structure from Intracellular Membrane-Active Artificial Organelles. Adv. Funct. Mater. 2023, 33, 2306904. [Google Scholar] [CrossRef]
- Yang, J.; Liu, G.; Avdeev, M.; Wan, H.; Han, F.; Shen, L.; Zou, Z.; Shi, S.; Hu, Y.-S.; Wang, C.; et al. Ultrastable All-Solid-State Sodium Rechargeable Batteries. ACS Energy Lett. 2020, 5, 2835–2841. [Google Scholar] [CrossRef]
- Li, D.; Wang, X.; Guo, Q.; Yu, X.; Cen, S.; Ma, H.; Chen, J.; Wang, D.; Mao, Z.; Dong, C. Atomically bonding Na anodes with metallized ceramic electrolytes by ultrasound welding for high-energy/power solid-state sodium metal batteries. Carbon Energy 2022, 5, e299. [Google Scholar] [CrossRef]
- Iordache, M.; Oubraham, A.; Borta, S.; Marinoiu, A. The Chemical Stability of NASICON Solid Electrolyte for Seawater Batteries. In Proceedings of the 2024 16th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Iasi, Romania, 27–28 June 2024; pp. 1–6. [Google Scholar]
- Iordache, M.; Oubraham, A.; Borta, S.; Ungureanu, G.; Marinoiu, A. Testing the Stability of NASICON Solid Elec-trolyte in Seawater Batteries. Energies 2024, 17, 5241. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Liu, S.; Chen, Z.; Yang, J.; Chen, Z.; Li, A.; Wen, Q.; Wang, L.; Qiu, S.; et al. Application of solid electrolytes in electrochemical reduction of CO2 or O2. Chem. Eng. J. 2024, 481, 148452. [Google Scholar] [CrossRef]
Sample | D10 [nm] | D50 [nm] | D90 [nm] | Dm [nm] |
---|---|---|---|---|
NAS Ref. | 705.8 | 876.8 | 1109.9 | 861.2 |
2% excess Na | ||||
NAS-2% 1100 (powder) | 523.8 | 656.9 | 812.1 | 646.6 |
NAS-2% 1150 | 1056.8 | 1323.9 | 1688.1 | 1299.6 |
NAS-2% 1175 | 1161.7 | 1465.6 | 1880.1 | 1438.0 |
NAS-2% 1200 | 1010.8 | 1263.2 | 1607.5 | 1240.3 |
6% excess Na | ||||
NAS-6% 1100 (powder) | 680.5 | 853.7 | 1070.2 | 839.3 |
NAS-6% 1150 | 1517.0 | 1906.7 | 2438.0 | 1871.3 |
NAS-6% 1175 | 679.5 | 1197.1 | 2005.9 | 1035.4 |
NAS-6% 1200 | 833.6 | 1036.7 | 1313.8 | 1018.3 |
Current Discharge/Charging (mA) | Time (h) | Potential (V) | Power (mW) | Energy (mWh) | Capacity (mAh) | ||||
---|---|---|---|---|---|---|---|---|---|
Discharge/Charging | Discharge | Charging | Discharge | Charging | Discharge | Charging | Discharge | Charging | |
0.05/0.1 | 100 | 2.18 | 3.06 | 0.153 | 0.2177 | 22.98 | 32.2 | 0.10 | 0.19 |
0.1/0.1 | 2.73 | 3.27 | 0.273 | 0.327 | 37.82 | 45.98 | 0.033 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iordache, M.; Oubraham, A.; Bazga, M.; Ungureanu, G.E.; Borta, S.E.; Marinoiu, A. Assessing the Efficacy of Seawater Batteries Using NASICON Solid Electrolyte. Appl. Sci. 2025, 15, 3469. https://doi.org/10.3390/app15073469
Iordache M, Oubraham A, Bazga M, Ungureanu GE, Borta SE, Marinoiu A. Assessing the Efficacy of Seawater Batteries Using NASICON Solid Electrolyte. Applied Sciences. 2025; 15(7):3469. https://doi.org/10.3390/app15073469
Chicago/Turabian StyleIordache, Mihaela, Anișoara Oubraham, Mihaela Bazga, Gheorghe Eugen Ungureanu, Simona Elena Borta, and Adriana Marinoiu. 2025. "Assessing the Efficacy of Seawater Batteries Using NASICON Solid Electrolyte" Applied Sciences 15, no. 7: 3469. https://doi.org/10.3390/app15073469
APA StyleIordache, M., Oubraham, A., Bazga, M., Ungureanu, G. E., Borta, S. E., & Marinoiu, A. (2025). Assessing the Efficacy of Seawater Batteries Using NASICON Solid Electrolyte. Applied Sciences, 15(7), 3469. https://doi.org/10.3390/app15073469