Nature-Inspired Redox Active Organic Molecules: Design, Synthesis, and Characterization of Pyridine Derivatives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. Electrochemistry
2.3. Computational Details
Redox Potential and pKa Calculations
3. Results and Discussion
3.1. Chemical Synthesis
3.2. Electrochemical Characterization
3.3. Computational Studies
3.3.1. Proton-Coupled Electron Transfer Reactions
3.3.2. Pourbaix Diagrams
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wellmann, P.J. The Search for New Materials and the Role of Novel Processing Routes. Discover Mater. 2021, 1, 14. [Google Scholar] [CrossRef] [PubMed]
- Ebenezer, O.; Jordaan, M.A.; Carena, G.; Bono, T.; Shapi, M.; Tuszynski, J.A. An Overview of the Biological Evaluation of Selected Nitrogen-Containing Heterocycle Medicinal Chemistry Compounds. Int. J. Mol. Sci. 2022, 23, 8117. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.T. Nature Loves Nitrogen Heterocycles. Tetrahedron Lett. 2015, 56, 3075–3081. [Google Scholar] [CrossRef]
- Hohmann−Marriott, M.F.; Blankenship, R.E. Evolution of Photosynthesis. Annu. Rev. Plant Biol. 2011, 62, 515–548. [Google Scholar] [CrossRef]
- Fessel, J.P.; Oldham, W.M. Pyridine Dinucleotides from Molecules to Man. Antioxid. Redox Signal. 2018, 28, 180–212. [Google Scholar] [CrossRef]
- De, S.; Ashok, K.S.K.; Shah, S.K.; Kazi, S.; Sarkar, N.; Banerjee, S.; Dey, S. Pyridine: The Scaffolds with Significant Clinical Diversity. RSC Adv. 2022, 12, 15385–15406. [Google Scholar] [CrossRef]
- Fessel, J.P.; Oldham, W.M. Nicotine Adenine Dinucleotides: The Redox Currency of the Cell. Antioxid. Redox Signal. 2018, 28, 165–166. [Google Scholar] [CrossRef]
- Lecante, A.; Robert, F.; Blandinières, P.A.; Roos, C. Anti-corrosive Properties of S. tinctoria and G. ouregou Alkaloid Extracts on Low Carbon Steel. Curr. Appl Phys. 2011, 11, 714–724. [Google Scholar] [CrossRef]
- Ansari, K.R.; Quraishi, M.A.; Singh, A. Pyridine Derivatives as Corrosion Inhibitors for N80 Steel in 15% HCl: Electrochemical, Surface and Quantum Chemical Studies. Measurement 2015, 76, 136–147. [Google Scholar] [CrossRef]
- Lucio, A.J.; Shaw, S.K. Pyridine and Pyridinium Electrochemistry on Polycrystalline Gold Electrodes and Implications for CO2 Reduction. J. Phys. Chem. C 2015, 119, 12523–12530. [Google Scholar] [CrossRef]
- Seshadri, G.; Lin, C.; Bocarsly, A.B. A New Homogeneous Electrocatalyst for the Reduction of Carbon Dioxide to Methanol at Low Overpotential. J. Electroanal. Chem. 1994, 372, 145–150. [Google Scholar] [CrossRef]
- Gao, W.; Li, Y.; Xiao, D.; Ma, D. Advances in Photothermal Conversion of Carbon Dioxide to Solar Fuels. J. Energy Chem. 2023, 83, 62–78. [Google Scholar] [CrossRef]
- Costentin, C.; Canales, J.C.; Haddou, B.; Savéant, J.M. Electrochemistry of Acids on Platinum. Application to the Reduction of Carbon Dioxide in the Presence of Pyridinium Ion in Water. J. Am. Chem. Soc. 2013, 135, 17671–17674. [Google Scholar] [CrossRef] [PubMed]
- Velena, A.; Zarkovic, N.; Gall Troselj, K.; Bisenieks, E.; Krauze, A.; Poikans, J.; Duburs, G. 1,4-Dihydropyridine Derivatives: Dihydronicotinamide Analogues–Model Compounds Targeting Oxidative Stress. Oxid. Med. Cell. Longev. 2016, 2, 1892412. [Google Scholar] [CrossRef]
- Van Bergen, T.J.; Kellogg, R.M. Photochemistry of 3,5-dicarboalkoxypyridines. Reduction and Rearrangement. J. Am. Chem. Soc. 1972, 94, 8451–8471. [Google Scholar] [CrossRef]
- Khan, E. Pyridine Derivatives as Biologically Active Precursors; Organics and Selected Coordination Complexes. ChemistrySelect 2021, 6, 3041–3064. [Google Scholar] [CrossRef]
- Leduc, P.; Thévenot, D. Electrochemical Properties of Nicotinamide Derivatives in Aqueous Solution: Part IV. Oxidation of N1-alkyl-1,4-dihydronicotinamides. J. Electroanal. Chem. Interfacial Electrochem. 1973, 47, 543–546. [Google Scholar] [CrossRef]
- López-Alarcón, C.; Núñez-Vergara, L.J.; Squella, J.A. Voltammetric Oxidation of Hantzsch 1,4-dihydropyridines in Protic and Aprotic Media: Relevance of the Substitution on N Position. Electrochim. Acta 2003, 48, 2505–2516. [Google Scholar] [CrossRef]
- Zhu, D.-L.; Wu, Q.; Li, H.-Y.; Li, H.-X.; Lang, J.-P. Hantzsch Ester as a VisibleLight Photoredox Catalyst for Transition-Metal-Free Coupling of Arylhalides and Arylsulfinates. Chem. Eur. J. 2020, 26, 3484–3488. [Google Scholar] [CrossRef]
- Wang, P.-Z.; Chen, J.-R.; Xiao, W.-J. Hantzsch Esters: An Emerging Versatile Class of Reagents in Photoredox Catalyzed Organic Synthesis. Org. Biomol. Chem. 2019, 17, 6936–6951. [Google Scholar] [CrossRef]
- Yang, G.; Liu, X.; Xue, Z.; Li, X.; Zhuang, Q.; Han, Z. Electrochemic and Photophysics Properties of Pyridine-Based Electron Transmission Material. J. Macromol. Sci. Part B Phys. 2013, 52, 826–840. [Google Scholar] [CrossRef]
- Calbo, J.; Weston, C.E.; White, A.J.P.; Rzepa, H.S.; Contreras-García, J.; Fuchter, M.J. Tuning Azoheteroarene Photoswitch Performance through Heteroaryl Design. J. Am. Chem. Soc. 2017, 139, 1261–1274. [Google Scholar] [CrossRef] [PubMed]
- Burešová, Z.; Klikar, M.; Mazúr, P.; Mikešová, M.; Kvíčala, J.; Bystron, T.; Bureš, F. Redox Property Tuning in Bipyridinium Salts. Front. Chem. 2021, 8, 631477. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, M.; Murakami, K. Electrochemical Behavior of Nitrogen Heterocycles in N,N-dimethylformamide-water and Aqueous Buffer Solution. J. Electroanal. Chem. Interfacial Electrochem. 1979, 102, 221–235. [Google Scholar] [CrossRef]
- Ballardini, R.; Credi, A.; Gandolfi, M.T.; Giansante, C.; Marconi, G.; Silvi, S.; Venturi, M. Photophysical, Photochemical and Electrochemical Properties of a Series of Aromatic Electron Acceptors Based on N-heterocycles. Inorg. Chim. Acta 2007, 360, 1072–1082. [Google Scholar] [CrossRef]
- Assary, R.S.; Brushett, F.R.; Curtiss, L.A. Reduction Potential Predictions of Some Aromatic Nitrogen-Containing Molecules. RSC Adv. 2014, 4, 57442–57451. [Google Scholar] [CrossRef]
- Sumita, M.; Yang, X.; Ishihara, S.; Tamura, R.; Tsuda, K. Hunting for Organic Molecules with Artificial Intelligence: Molecules Optimized for Desired Excitation Energies. ACS Cent. Sci. 2018, 4, 1126–1133. [Google Scholar] [CrossRef]
- Fischer, P.; Mazúr, P.; Krakowiak, J. Family Tree for Aqueous Organic Redox Couples for Redox Flow Battery Electrolytes: A Conceptual Review. Molecules 2022, 27, 560. [Google Scholar] [CrossRef]
- Kumar, A.; Maurya, R.A. Efficient Synthesis of Hantzsch Esters and Polyhydroquinoline Derivatives in Aqueous Micelles. Synlett 2008, 6, 883–885. [Google Scholar] [CrossRef]
- Zhang, D.; Sha, M. Facile Aromatisation of Hantzsch 1,4-Dihydropyridines by Autoxidation in the Presence of P-toluenesulfonic Acid in Acetic Acid. J. Chem. Res. 2018, 42, 141–144. [Google Scholar] [CrossRef]
- Gray, A.P.; Archer, W.L.; Schlieper, D.C.; Spinner, E.E.; Cavallito, C.J. Bis-ammonium Salts. Unsymmetrical Derivatives of Some Isoquinolines and Related Heterocyclic Bases. J. Am. Chem. Soc. 1955, 77, 3536–3541. [Google Scholar] [CrossRef]
- Craig, H.H.; Huang, P.C.; Gordon Scott, T.; Leonard, N.J. Synthetic Spectroscopic Models Related to Coenzymes and Base Pairs. Quaternized Bisnicotinamides. J. Am. Chem. Soc. 1972, 94, 5872–5879. [Google Scholar] [CrossRef] [PubMed]
- Blank, B.; DiTullio, N.W.; Owings, F.F.; Deviney, L.; Miao, C.K.; Saunders, H.L. Mercapto Heterocyclic Acids, Analogues of 3-Mercaptopicolinic Acid. J. Med. Chem. 1977, 20, 572–576. [Google Scholar] [CrossRef]
- Gelbard, G.; Lin, J.; Roques, N. Reductions with NADH Models. 3. The High Reactivity of Hantzsch Amides. J. Org. Chem. 1992, 57, 1789–1793. [Google Scholar] [CrossRef]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An Open Chemical Toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef]
- Halgren, T.A. Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization, and Performance of MMFF94. J. Comput. Chem. 1996, 17, 490–519. [Google Scholar] [CrossRef]
- Halgren, T.A. Merck molecular force field. II. MMFF94 Van der Waals and Electrostatic Parameters for Intermolecular Interactions. J. Comput. Chem. 1996, 17, 520–552. [Google Scholar] [CrossRef]
- Halgren, T.A. Merck Molecular Force Field. III. Molecular Geometries and Vibrational Frequencies for MMFF94. J. Comput. Chem. 1996, 17, 553–586. [Google Scholar] [CrossRef]
- Halgren, T.A.; Nachbar, R.B. Merck Molecular Force Field. IV. Conformational Energies and Geometries for MMFF94. J. Comput. Chem. 1996, 17, 587–615. [Google Scholar] [CrossRef]
- Halgren, T.A. Merck molecular force field. V. Extension of MMFF94 using Experimental Data, Additional Computational Data, and Empirical Rules. J. Comput. Chem. 1996, 17, 616–641. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision A.03; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. Density-Functional Thermochemistry. III. The role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; People, J.A. Self-Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- McLean, A.D.; Chandler, G.S. Contracted Gaussian Basis Sets for Molecular Calculations. I. Second Row Atoms, Z = 11–18. J. Chem. Phys. 1980, 72, 5639–5648. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Flores-Leonar, M.M.; Moreno-Esparza, R.; Ugalde-Saldívar, V.M.; Amador-Bedolla, C. Further Insights in DFT Calculations of Redox Potential for Iron Complexes: The Ferrocenium/Ferrocene System. Comput. Theor. Chem. 2017, 1099, 167–173. [Google Scholar] [CrossRef]
- Namazian, M.; Zakery, M.; Noorbala, M.R.; Coote, M.L. Accurate Calculation of the pKa of Trifluoroacetic Acid using High-Level AB Initio Calculations. Chem. Phys. Lett. 2008, 451, 163–168. [Google Scholar] [CrossRef]
- Pérez-González, A.; Castañeda-Arriaga, R.; Verastegui, B.; Carreón-González, M.; Alvarez-Idaboy, J.R.; Galano, A. Estimation of Empirically Fitted Parameters for Calculating pKa Values of Thiols in a Fast and Reliable Way. Theor. Chem. Acc. 2018, 137, 5. [Google Scholar] [CrossRef]
- Trasatti, S. The Absolute Electrode Potential: An Explanatory Note (Recommendations 1986). Pure Appl. Chem. 1986, 58, 955–966. [Google Scholar] [CrossRef]
- Donald, W.A.; Leib, R.D.; O’Brien, J.T.; Williams, E.R. Directly Relating Gas-Phase Cluster Measurements to Solution-Phase Hydrolysis, the Absolute Standard Hydrogen Electrode Potential, and the Absolute Proton Solvation Energy. Chem. Eur. J. 2009, 15, 5926–5934. [Google Scholar] [CrossRef]
- Nakai, H.; Ishikawa, A. Quantum Chemical Approach for Condensed-Phase Thermochemistry: Proposal of a Harmonic Solvation Model. J. Chem. Phys. 2014, 141, 174106. [Google Scholar] [CrossRef]
- Webb, J.D.; Laberge, V.S.; Geier, S.J.; Stephan, D.W.; Crudden, C.M. Borohydrides from Organic Hydrides: Reactions of Hantzsch’s Esters with B(C6F5)3. Chem. Eur. J. 2010, 16, 4895–4902. [Google Scholar] [CrossRef] [PubMed]
- Reyes, R.L.; Tanaka, K. The NAD+/NADH Redox Couple-Insights from the Perspective of Electrochemical Energy Transformation and Biomimetic Chemistry. Kimika 2017, 28, 32–43. [Google Scholar] [CrossRef]
- Kim, J.; Ko, S.; Noh, C.; Kim, H.; Lee, S.; Kim, D.; Park, H.; Kwon, G.; Son, G.; Ko, J.W.; et al. Biological Nicotinamide Cofactor as a Redox-Active Motif for Reversible Electrochemical Energy Storage. Angew. Chem. Int. Ed. 2019, 58, 16764. [Google Scholar] [CrossRef]
- Ali, I.; Gill, A.; Omanovic, S. Direct Electrochemical Regeneration of the Enzymatic Cofactor 1,4-NADH Employing Nano-Patterned Glassy Carbon/Pt and Glassy Carbon/Ni Electrodes. Chem. Eng. J. 2012, 188, 173–180. [Google Scholar] [CrossRef]
- Wang, X.; Saba, T.; Yiu, H.H.P.; Howe, R.F.; Anderson, J.A.; Shi, J. Cofactor NAD(P)H Regeneration Inspired by Heterogeneous Pathways. Chem 2017, 2, 621–654. [Google Scholar] [CrossRef]
- Lebègue, E.; Agullo, J.; Morin, M.; Bélanger, D. The Role of Surface Hydrogen Atoms in the Electrochemical Reduction of Pyridine and CO2 in Aqueous Electrolyte. ChemElectroChem 2014, 1, 1013–1017. [Google Scholar] [CrossRef]
- Lebègue, E.; Agullo, J.; Bélanger, D. Electrochemical Behavior of Pyridinium and N-Methyl Pyridinium Cations in Aqueous Electrolytes for CO2 Reduction. ChemSusChem 2018, 11, 219–228. [Google Scholar] [CrossRef]
- Marcus, Y. The Effectivity of Solvents as Electron Pair Donors. J. Solut. Chem. 1984, 13, 599–624. [Google Scholar] [CrossRef]
pyDs | 1 | 2 | 3 | 4 | 5 | 6′ | 6 | 7′ |
---|---|---|---|---|---|---|---|---|
Ecp | −1.23 | −1.13 | −0.98 | −1.27 | −1.17 | −1.18 | −1.08 | −1.26 |
Eap | −0.03 | 0.13 | 0.15 | −0.02 | 0.08 | 0.65 | 0.58 | 0.68 |
ΔEp | 1.20 | 1.26 | 1.13 | 1.25 | 1.25 | 1.83 | 1.66 | 1.94 |
E1/2 | −0.63 | −0.50 | −0.42 | −0.65 | −0.55 | −0.27 | −0.25 | −0.29 |
pyDs | 1 | 2 | 3 | 4 | 5 | 6′ | 6 | 7′ |
---|---|---|---|---|---|---|---|---|
Ecp | −0.81 | −0.74 | −0.63 | −0.96 | −0.86 | −1.71 | −1.54 | −2.14 |
Eap | 0.41 | 0.44 | 0.46 | 0.20 | 0.31 | 0.27 | 0.48 | −0.23 |
ΔEp | 1.22 | 1.18 | 1.09 | 1.16 | 1.17 | 1.98 | 2.02 | 1.91 |
E1/2 | −0.63 | −0.50 | −0.42 | −0.65 | −0.55 | −0.27 | −0.25 | −0.29 |
Derivative | |||||||
---|---|---|---|---|---|---|---|
1 | 3.35 | 49.23 | −1.42 | −1.22 | −2.57 | 0.35 | 0.15 |
2 | 0.12 | 47.02 | −1.15 | −1.14 | −2.30 | 0.48 | 0.48 |
3 | −0.53 | 46.24 | −1.14 | −1.17 | −2.23 | 0.50 | 0.53 |
4 | 4.69 | 49.45 | −1.47 | −1.19 | −2.58 | 0.35 | 0.07 |
5 | 3.73 | 45.69 | −1.43 | −1.21 | −2.40 | 0.30 | 0.08 |
6′ | −0.24 | 46.09 | −1.25 | −1.26 | −2.31 | 0.42 | 0.43 |
6 | −0.49 | 41.49 | −1.23 | −1.26 | −2.00 | 0.46 | 0.49 |
7′ | 0.90 | 46.36 | −1.30 | −1.25 | −2.36 | 0.38 | 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acosta-Tejada, G.M.; Flores-Leonar, M.M.; García-Ramírez, J.; Ugalde-Saldívar, V.M.; Vázquez, A. Nature-Inspired Redox Active Organic Molecules: Design, Synthesis, and Characterization of Pyridine Derivatives. Chemistry 2025, 7, 100. https://doi.org/10.3390/chemistry7030100
Acosta-Tejada GM, Flores-Leonar MM, García-Ramírez J, Ugalde-Saldívar VM, Vázquez A. Nature-Inspired Redox Active Organic Molecules: Design, Synthesis, and Characterization of Pyridine Derivatives. Chemistry. 2025; 7(3):100. https://doi.org/10.3390/chemistry7030100
Chicago/Turabian StyleAcosta-Tejada, Gloria M., Martha M. Flores-Leonar, Jazmín García-Ramírez, Víctor M. Ugalde-Saldívar, and Alfredo Vázquez. 2025. "Nature-Inspired Redox Active Organic Molecules: Design, Synthesis, and Characterization of Pyridine Derivatives" Chemistry 7, no. 3: 100. https://doi.org/10.3390/chemistry7030100
APA StyleAcosta-Tejada, G. M., Flores-Leonar, M. M., García-Ramírez, J., Ugalde-Saldívar, V. M., & Vázquez, A. (2025). Nature-Inspired Redox Active Organic Molecules: Design, Synthesis, and Characterization of Pyridine Derivatives. Chemistry, 7(3), 100. https://doi.org/10.3390/chemistry7030100