PtBiCoAgSn Multi-Component Alloy Electrocatalysts Enhancing the Oxidation of Ethylene Glycol to Value-Added C2 Products
Abstract
1. Introduction
2. Results and Discussion
2.1. Structure Characterization
2.2. EGOR Performance
Catalysts | Mass Activity | Stability | FEGA | Ref. |
---|---|---|---|---|
MCA-PtBiCoAgSn | 16.65 A | 65% (1 h) | 91% | This work |
(PtIr) (FeMoBi) | 5.2 A | 66.7% (1 h) | 95% | [43] |
PdPtMoCrCoNi | 10.12 A | 50% (5000 s) | / | [28] |
PtBiNiCoSn/C | 1.406 A | 46.5% (3000 s) | / | [44] |
PtPdAuNiCo/C | 0.482 A | 18% (3000 s) | / | [48] |
Ir-PdPtAuNiCu | 2.41 A | 89% (20 h) | 88.8% | [49] |
PtRh | 4.677 A | 12% (1 h) | / | [50] |
Pt/γ-NiOOH | 2.532 A | / | 85% | [51] |
2.3. Product Distribution of EGOR
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Synthesis of Catalysts
3.3. Materials Characterization
3.4. Electrochemical Measurements
3.5. CO Stripping
3.6. Products Analysis
3.7. In Situ Electrochemical Infrared Absorption Spectral (IRAS) Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stubbins, A.; Law, K.L.; Muñoz, S.E.; Bianchi, T.S.; Zhu, L. Plastics in the Earth System. Science 2021, 373, 51–55. [Google Scholar] [CrossRef]
- Tournier, V.; Topham, C.M.; Gilles, A.; David, B.; Folgoas, C.; Moya-Leclair, E.; Kamionka, E.; Desrousseaux, M.L.; Texier, H.; Gavalda, S.; et al. An engineered PET Depolymerase to Break Down and Recycle Plastic Bottles. Nature 2020, 580, 216–219. [Google Scholar] [CrossRef]
- Jehanno, C.; Alty, J.W.; Roosen, M.; De Meester, S.; Dove, A.P.; Chen, E.Y.X.; Leibfarth, F.A.; Sardon, H. Critical Advances and Future Opportunities in Upcycling Commodity Polymers. Nature 2022, 603, 803–814. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, M.; Arp, H.P.H.; Tekman, M.B.; Jahnke, A. The Global Threat from Plastic Pollution. Science 2021, 373, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Liu, K.-S.; Liu, F.; Yang, X.; Hou, C.-C.; Chen, Y. Electrocatalytic Reforming of Waste Plastics into High Value-Added Chemicals and Hydrogen Fuel. Chem. Commun. 2021, 57, 12595–12598. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, Y.; Ren, H.; Sun, Y.; Chen, J.; Wu, M.; Li, Z. Inspiration of Bimetallic Peroxide for Controllable Electrooxidizing Ethylene Glycol Through Modulating Surficial Intermediates. Adv. Funct. Mater. 2024, 34, 2404594. [Google Scholar] [CrossRef]
- Yue, H.; Zhao, Y.; Ma, X.; Gong, J. Ethylene Glycol: Properties, Synthesis, and Applications. Chem. Soc. Rev. 2012, 41, 4218–4244. [Google Scholar] [CrossRef]
- Jie, L.-H.; Xu, H.-C. Electrocatalytic Cyclopropanation of Active Methylene Compounds. J. Electrochem. 2024, 30, 2313001. [Google Scholar]
- Lan, L.-Y.; Jiang, Y.-Y.; Little, R.D.; Zenf, C.C. Electrochemical Syntheses of Aryl-Substituted Benzothiophenes and Phenanthrenes Using Benzenediazonium Salts as the Aryl Radical Precursors. J. Electrochem. 2024, 30, 2313002. [Google Scholar]
- Li, P.-F.; Kou, G.-S.; Qi, L.-P.; Qiu, Y.-A. Recent Advance in Electrochemical Dehalogenative Deuteration. J. Electrochem. 2024, 30, 2313005. [Google Scholar] [CrossRef]
- Hao, L.; Ren, Q.; Yang, J.; Luo, L.; Ren, Y.; Guo, X.; Zhou, H.; Xu, M.; Kong, X.; Li, Z.; et al. Promoting Electrocatalytic Hydrogenation of Oxalic Acid to Glycolic Acid via an Al3+ Ion Adsorption Strategy Coupled with Ethylene Glycol Oxidation. ACS Appl. Mater. Interfaces 2023, 15, 13176–13185. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Wei, Z. Recent Advances in the Preparation of Glycolic Acid by Selective Electrocatalytic Oxidation of Ethylene Glycol. Chin. J. Catal. 2025, 73, 79–98. [Google Scholar] [CrossRef]
- Li, Y.; Liao, Q.; Ji, P.; Jie, S.; Wu, C.; Tong, K.; Zhu, M.; Zhang, C.; Li, H. Accelerated Selective Electrooxidation of Ethylene Glycol and Inhibition of C–C Dissociation Facilitated by Surficial Oxidation on Hollowed PtAg Nanostructures via In Situ Dynamic Evolution. JACS Au 2025, 5, 714–726. [Google Scholar] [CrossRef]
- Oberhauser, W.; Evangelisti, C.; Nguyen, X.T.; Filippi, J.; Poggini, L.; Capozzoli, L.; Manca, G.; Kitching, E.A.; Slater, T.J.A.; Danaie, M. Effect of Pt Nanoparticle Morphology on the Aerobic Oxidation of Ethylene Glycol to Glycolic Acid in Water. Inorg. Chem. 2024, 63, 22912–22922. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Wu, F.; Liu, Q.; Gao, W.; Guo, C.; Wei, H.; Hussain, A.; Zhang, Y.; Xu, G.; Niu, W. Steering the Selective Production of Glycolic Acid by Electrocatalytic Oxidation of Ethylene Glycol with Nanoengineered PdBi-Based Heterodimers. Small 2024, 20, 2400939. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, Y.; Zhang, H.; Yu, H.; Xu, Y.; Deng, K.; Wang, H.; Wang, L. Coproduction of Glycolic Acid and Hydrogen by Electroreforming Ethylene Glycol Using Palladium-Copper Hydride Hyperbranched Nanocrystals. ACS Appl. Nano Mater. 2024, 7, 15841–15847. [Google Scholar] [CrossRef]
- Hong, W.; Shang, C.; Wang, J.; Wang, E. Bimetallic PdPt Nanowire Networks with Enhanced Electrocatalytic Activity for Ethylene Glycol and Glycerol Oxidation. Energy Environ. Sci. 2015, 8, 2910–2915. [Google Scholar] [CrossRef]
- Liu, F.; Zhou, J.; Gao, X.; Shi, R.; Guo, Z.; Tse, E.C.M.; Chen, Y. Modulating Adsorption Behavior by Single-site Pt on RuO2 for Efficient Electrosynthesis of Glycolic Acid from Plastic Wastes. Angew. Chem. Int. Ed. 2025, 64, e202422183. [Google Scholar]
- Liu, Y.; Wang, L.; Zhang, Y.; Xie, J.; Li, J.; Wei, J.; Zhang, M.; Yang, Y. From Ethylene Glycol to Glycolic Acid: Electrocatalytic Conversion on Pt-Group Metal Surfaces. Inorg. Chem. 2024, 63, 14794–14803. [Google Scholar] [CrossRef]
- Li, M.; Zhao, Z.; Zhang, W.; Luo, M.; Tao, L.; Sun, Y.; Xia, Z.; Chao, Y.; Yin, K.; Zhang, Q.; et al. Sub-Monolayer YOx/MoOx on Ultrathin Pt Nanowires Boosts Alcohol Oxidation Electrocatalysis. Adv. Mater. 2021, 33, 2103762. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, M.; Zhao, T.; Wang, W.; Huang, H.; Cui, K.; Liu, Z.; Li, S.; Li, Z.; Zhang, G. Cu-incorporated PtBi Intermetallic Nanofiber Bundles Enhance Alcohol Oxidation Electrocatalysis with High CO Tolerance. J. Mater. Chem. A 2021, 9, 20676–20684. [Google Scholar] [CrossRef]
- Dong, K.; Yuan, Q. High-Index Facet-Rich Quaternary PtCuFeCo Octopods as Anti-CO Poisoning Bifunctional Electrocatalysts for Direct Methanol/Ethylene Glycol Fuel Cells. Chem. Sci. 2025, 16, 9854–9862. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, W.; Chen, X.; Liao, X.; Lyu, Z.; Liua, K.; Xie, S. Structure-Intensified PtCoRh Spiral Nanowires as Highly Active and Durable Electrocatalysts for Methanol Oxidation. Nanoscale 2021, 13, 2632–2638. [Google Scholar] [CrossRef]
- Liu, H.; Syama, L.; Zhang, L.; Lee, C.; Liu, C.; Dai, Z.; Yan, Q. High-Entropy Alloys and Compounds for Electrocatalytic Energy Conversion Applications. SusMat 2021, 1, 482–505. [Google Scholar] [CrossRef]
- Raja Mohan, G.K.; Singh, M.K.; Rai, D.K.; Samal, S. Electrocatalytic Behaviour of Co-Fe-Ni-Cr-V-Zr Eutectic High Entropy Alloy. Bull. Mater. Sci. 2024, 48, 12. [Google Scholar] [CrossRef]
- Chen, W.; Luo, S.; Sun, M.; Wu, X.; Zhou, Y.; Liao, Y.; Tang, M.; Fan, X.; Huang, B.; Quan, Z. High-Entropy Intermetallic PtRhBiSnSb Nanoplates for Highly Efficient Alcohol Oxidation Electrocatalysis. Adv. Mater. 2022, 34, 2206276. [Google Scholar]
- Yeh, J.-W.; Chen, S.-K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Ao, Y.; Ling, X.; Zheng, J.; Han, M.; Xu, D. Effective PdPtMoCrCoNi Alloy Nanosheets Boost Electrocatalytic Activity and Stability for Ethylene Glycol Oxidation. Surf. Interfaces 2024, 45, 103928. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Z.; Li, C.; Jin, S.; Zhu, K.; Fan, S.; Li, J.; Liu, K. High-Entropy Alloyed Single-Atom Pt for Methanol Oxidation Electrocatalysis. Nat. Commun. 2025, 16, 6359. [Google Scholar] [CrossRef]
- Li, H.; Han, Y.; Zhao, H.; Qi, W.; Zhang, D.; Yu, Y.; Cai, W.; Li, S.; Lai, J.; Huang, B.; et al. Fast Site-to-Site Electron Transfer of High-Entropy Alloy Nanocatalyst Driving Redox Electrocatalysis. Nat. Commun. 2020, 11, 5437. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, N.; Liu, H.; Ma, W.; Hippalgaonkar, K.; Liu, Z.; Huang, Y. Ordering-Dependent Hydrogen Evolution and Oxygen Reduction Electrocatalysis of High-Entropy Intermetallic Pt4FeCoCuNi. Adv. Mater. 2023, 35, 2302067. [Google Scholar] [CrossRef]
- Lei, H.; Ma, N.; Li, K.; Wang, Y.; Yuan, Q.; Fan, J.; Shui, J.; Huang, Y. Low Pt Loading with Lattice Strain for Direct Ethylene Glycol Fuel Cells. Energy Environ. Sci. 2024, 17, 7792–7802. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, T.; Yuan, M.; Li, Z.; Wang, W.; Bai, Y.; Liu, Z.; Li, S.; Zhang, G. Trimetallic Synergy in Dendritic Intermetallic PtSnBi Nanoalloys for Promoting Electrocatalytic Alcohol Oxidation. J. Colloid Interface Sci. 2021, 602, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Ning, F.; Song, J.; Shang, H.; Zhang, K.; Ding, Z.; Gao, P.; Chu, W.; Xia, D. Sub-2 nm Ultrasmall High-Entropy Alloy Nanoparticles for Extremely Superior Electrocatalytic Hydrogen Evolution. J. Am. Chem. Soc. 2021, 143, 17117–17127. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Yang, H.; He, S.; Wan, D.; Kong, Y.; Li, D.; Jiang, X.; Zhang, X.; Hu, Q.; He, C. Size-Adjustable High-Entropy Alloy Nanoparticles as an Efficient Platform for Electrocatalysis. Angew. Chem. Int. Ed. 2025, 64, e202423765. [Google Scholar] [CrossRef] [PubMed]
- Lan, B.; Wang, Q.-L.; Ma, Z.-X.; Wu, Y.-J.; Jiang, X.-L.; Jia, W.-S.; Zhou, C.-X.; Yang, Y.-Y. Efficient Electrochemical Ethanol-to-CO2 Conversion at Rhodium and Bismuth Hydroxide Interfaces. Appl. Catal. B Environ. 2022, 300, 120728. [Google Scholar] [CrossRef]
- Wei, R.; Liu, Y.; Ma, H.; Ma, X.; Yang, Y. Effective Ethanol-to-CO2 Electrocatalysis at Iridium-Bismuth Oxide Featuring the Impressive Negative Shifting of the Working Potential. J. Energy Chem. 2023, 86, 23–31. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Ma, X.-Y.; Chang, L.-Y.; Zhong, Q.; Pan, Q.; Wang, Z.; Yuan, X.; Cao, M.; Lyu, F.; et al. The Role of Bismuth in Suppressing the CO Poisoning in Alkaline Methanol Electrooxidation: Switching the Reaction from the CO to Formate Pathway. Nano Lett. 2023, 23, 685–693. [Google Scholar] [CrossRef]
- Mei, Y.; Chen, J.; Wang, Q.; Guo, Y.; Liu, H.; Shi, W.; Lin, C.; Yuan, Y.; Wang, Y.; Xia, B.Y.; et al. MoZn-Based High Entropy Alloy Catalysts Enabled Dual Activation and Stabilization in Alkaline Oxygen Evolution. Sci. Adv. 2024, 10, eadq6758. [Google Scholar] [CrossRef]
- Chen, W.; Luo, S.; Sun, M.; Tang, M.; Fan, X.; Cheng, Y.; Wu, X.; Liao, Y.; Huang, B.; Quan, Z. Hexagonal PtBi Intermetallic Inlaid with Sub-Monolayer Pb Oxyhydroxide Boosts Methanol Oxidation. Small 2022, 18, 2107803. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, F.; Kuang, M.; Wang, L.; Wang, H.; Li, W.; Yang, J. Unveiling Synergy of Strain and Ligand Effects in Metallic Aerogel for Electrocatalytic Polyethylene Terephthalate Upcycling. Proc. Natl. Acad. Sci. USA 2024, 121, e2318853121. [Google Scholar] [CrossRef]
- Botz, A.J.R.; Nebel, M.; Rincón, R.A.; Ventosa, E.; Schuhmann, W. Onset Potential Determination at Gas-Evolving Catalysts by Means of Constant-Distance Mode Positioning of Nanoelectrodes. Electrochim. Acta 2015, 179, 38–44. [Google Scholar] [CrossRef]
- Hao, J.; Wang, T.; Cai, J.; Gao, G.; Zhuang, Z.; Yu, R.; Wu, J.; Wu, G.; Lu, S.; Wang, X.; et al. Suppression of Structural Heterogeneity in High-Entropy Intermetallics for Electrocatalytic Upgrading of Waste Plastics. Angew. Chem. Int. Ed. 2024, 64, e202419369. [Google Scholar]
- Miao, L.; Cheng, Y.; Liu, Y.; Li, X.; Zhang, L.; Wang, W. Developing High-Effective Pt-Based High-Entropy-Alloy Electrocatalyst for Direct Ethylene Glycol Fuel Cells. J. Alloys Compd. 2024, 984, 173951. [Google Scholar] [CrossRef]
- Lüsi, M.; Erikson, H.; Piirsoo, H.-M.; Aruväli, J.; Kikas, A.; Kisand, V.; Tamm, A.; Tammeveski, K. Oxygen Reduction Reaction on AgPd Nanocatalysts Prepared by Galvanic Exchange. Appl. Surf. Sci. 2023, 636, 157859. [Google Scholar] [CrossRef]
- Medany, S.S.; Hefnawy, M.A.; Kamal, S.M. High-performance Spinel NiMn2O4 Supported Carbon Felt for Effective Electrochemical Conversion of Ethylene Glycol and Hydrogen Evolution Applications. Sci. Rep. 2024, 14, 471. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, Z.; Liu, B.; Duan, Y.; Zheng, Z.; Li, L.; Zhou, Q.; Matveeva, V.G.; Hu, Z.; Yu, J.; et al. Anchoring Hydroxyl Intermediate on NiCo(OOH)x Nanosheets to Enable Highly Efficient Electrooxidation of Benzyl Alcohols. AIChE J. 2023, 69, e18077. [Google Scholar] [CrossRef]
- Cheng, Y.; Sun, Y.; Deng, X.; Zhang, M.; Zhang, L.; Wang, W. High-Performance High-Entropy Quinary-Alloys as Anode Catalysts for Direct Ethylene Glycol Fuel Cells. Int. J. Hydrogen Energy 2023, 48, 8156–8164. [Google Scholar] [CrossRef]
- Zheng, Q.; Huang, L.; Yang, S.; Liang, Q.; Yang, Y.; Gu, L.; Cheng, R.; Shen, Y.; Yan, Z.; Cao, X. Synergy Between Multi-Components and Ir Dopant in Ir-Doped High-Entropy Alloy Nanoparticles for Efficient and Robust Ethylene Glycol Electro-Oxidation at an Industrial-Level Current. Nanoscale 2025, 17, 12989–12999. [Google Scholar] [CrossRef]
- Zhao, Y.; Yuan, Z.-H.; Huang, J.-T.; Wang, M.-Y.; He, B.; Ding, Y.; Jin, P.-J.; Chen, Y. Rhodium Metallene-Supported Platinum Nanocrystals for Ethylene Glycol Oxidation Reaction. Nanoscale 2023, 15, 1947–1952. [Google Scholar] [CrossRef]
- Du, M.; Zhang, Y.; Kang, S.; Xu, C.; Ma, Y.; Cai, L.; Zhu, Y.; Chai, Y.; Qiu, B. Electrochemical Production of Glycolate Fuelled By Polyethylene Terephthalate Plastics with Improved Techno-Economics. Small 2023, 19, 2303693. [Google Scholar] [CrossRef] [PubMed]
- Lan, B.; Huang, M.; Wei, R.L.; Wang, C.N.; Wang, Q.L.; Yang, Y.Y. Ethanol Electrooxidation on Rhodium-Lead Catalysts in Alkaline Media: High Mass Activity, Long-Term Durability, and Considerable CO2 Selectivity. Small 2020, 16, 2004380. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-Y.; Ren, J.; Zhang, H.-X.; Zhou, Z.-Y.; Sun, S.-G.; Cai, W.-B. Infrared Spectroelectrochemical Study of Dissociation and Oxidation of Methanol at a Palladium Electrode in Alkaline Solution. Langmuir 2013, 29, 1709–1716. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.-L.; Liu, Y.; Yang, Y.-Y. Electrocatalytic Ethanol-to-CO2 Selectivity on the Ir Electrode: A Quasi-Quantitative Electrochemical Infrared Absorption Spectroscopic Investigation. Appl. Catal. B Environ. 2024, 344, 123638. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, B.; Zhao, T.-T.; Jiang, K.; Yang, Y.-Y.; Zhang, J.; Xie, Z.; Cai, W.-B. Electrocatalysis of Ethylene Glycol Oxidation on Bare and Bi-Modified Pd Concave Nanocubes in Alkaline Solution: An Interfacial Infrared Spectroscopic Investigation. ACS Catal. 2017, 7, 2033–2041. [Google Scholar] [CrossRef]
- Ma, H.-Z.; He, S.-H.; Zhang, Y.; Wang, L.; Yi, Y.-N.; Yang, Y.-Y. Selective Electrocatalytic Oxidation of Ethylene Glycol into Glycolic Acid at Coin-Group Electrodes: An Investigation on Catalytic Activity and Selectivity. ACS Sustain. Chem. Eng. 2024, 12, 12249–12259. [Google Scholar] [CrossRef]
- Ma, X.-Y.; Ma, H.-Z.; He, S.-H.; Zhang, Y.; Yi, Y.-N.; Yang, Y.-Y. The Electrocatalytic Activity and Selectivity of Ethylene Glycol Oxidation into Value-Added Chemicals at Iron-Group Electrodes in Alkaline Media. Mat. Today Phys. 2023, 37, 101191. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, G.; Jiang, S.; Zhang, R.; Deng, H.; Stach, E.A.; Bao, S.; Zeng, Z.; Kang, Y. Engineering the High-Entropy Phase of Pt-Au-Cu Nanowire for Electrocatalytic Hydrogen Evolution. Nano Res. 2023, 16, 10742–10747. [Google Scholar] [CrossRef]
- Wang, J.; Liao, K.; Wei, Y.; Wang, G.; Wan, Z.; Liu, B.; Liu, Z.; Deng, X.; Zhao, X.; Zhang, H. Ru-B Modulated Electronic Structure Promotes Electrocatalytic Nitrate Reduction to Ammonia and Zinc-Nitrate Battery. Adv. Funct. Mater. 2025, 35, e16068. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-T.; Wang, L.; Hou, H.-E.; Wang, K.-S.; Lan, Z.; Yang, Y.-Y.; Cai, W.-B. PtBiCoAgSn Multi-Component Alloy Electrocatalysts Enhancing the Oxidation of Ethylene Glycol to Value-Added C2 Products. Molecules 2025, 30, 3872. https://doi.org/10.3390/molecules30193872
Chen S-T, Wang L, Hou H-E, Wang K-S, Lan Z, Yang Y-Y, Cai W-B. PtBiCoAgSn Multi-Component Alloy Electrocatalysts Enhancing the Oxidation of Ethylene Glycol to Value-Added C2 Products. Molecules. 2025; 30(19):3872. https://doi.org/10.3390/molecules30193872
Chicago/Turabian StyleChen, Si-Tong, Lin Wang, Hai-En Hou, Kang-Shuo Wang, Zhou Lan, Yao-Yue Yang, and Wen-Bin Cai. 2025. "PtBiCoAgSn Multi-Component Alloy Electrocatalysts Enhancing the Oxidation of Ethylene Glycol to Value-Added C2 Products" Molecules 30, no. 19: 3872. https://doi.org/10.3390/molecules30193872
APA StyleChen, S.-T., Wang, L., Hou, H.-E., Wang, K.-S., Lan, Z., Yang, Y.-Y., & Cai, W.-B. (2025). PtBiCoAgSn Multi-Component Alloy Electrocatalysts Enhancing the Oxidation of Ethylene Glycol to Value-Added C2 Products. Molecules, 30(19), 3872. https://doi.org/10.3390/molecules30193872