Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (258)

Search Parameters:
Keywords = electrochemical instrument

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 10149 KB  
Review
A Review of Machine Learning-Assisted Gas Sensor Arrays in Medical Diagnosis
by Yueting Yu, Xin Cao, Chenxi Li, Mingyue Zhou, Tianyu Liu, Jiang Liu and Lu Zhang
Biosensors 2025, 15(8), 548; https://doi.org/10.3390/bios15080548 - 20 Aug 2025
Viewed by 253
Abstract
Volatile organic compounds (VOCs) present in human exhaled breath have emerged as promising biomarkers for non-invasive disease diagnosis. However, traditional VOC detection technology that relies on large instruments is not widely used due to high costs and cumbersome testing processes. Machine learning-assisted gas [...] Read more.
Volatile organic compounds (VOCs) present in human exhaled breath have emerged as promising biomarkers for non-invasive disease diagnosis. However, traditional VOC detection technology that relies on large instruments is not widely used due to high costs and cumbersome testing processes. Machine learning-assisted gas sensor arrays offer a compelling alternative by enabling the accurate identification of complex VOC mixtures through collaborative multi-sensor detection and advanced algorithmic analysis. This work systematically reviews the advanced applications of machine learning-assisted gas sensor arrays in medical diagnosis. The types and principles of sensors commonly employed for disease diagnosis are summarized, such as electrochemical, optical, and semiconductor sensors. Machine learning methods that can be used to improve the recognition ability of sensor arrays are systematically listed, including support vector machines (SVM), random forests (RF), artificial neural networks (ANN), and principal component analysis (PCA). In addition, the research progress of sensor arrays combined with specific algorithms in the diagnosis of respiratory, metabolism and nutrition, hepatobiliary, gastrointestinal, and nervous system diseases is also discussed. Finally, we highlight current challenges associated with machine learning-assisted gas sensors and propose feasible directions for future improvement. Full article
(This article belongs to the Special Issue AI-Enabled Biosensor Technologies for Boosting Medical Applications)
Show Figures

Figure 1

33 pages, 2747 KB  
Review
Biochar-Derived Electrochemical Sensors: A Green Route for Trace Heavy Metal Detection
by Sairaman Saikrithika and Young-Joon Kim
Chemosensors 2025, 13(8), 278; https://doi.org/10.3390/chemosensors13080278 - 1 Aug 2025
Viewed by 417
Abstract
The increasing demand for rapid, sensitive, and eco-friendly methods for the detection of trace heavy metals in environmental samples, attributed to their serious threats to health and the environment, has spurred considerable interest in the development of sustainable sensor materials. Toxic metal ions, [...] Read more.
The increasing demand for rapid, sensitive, and eco-friendly methods for the detection of trace heavy metals in environmental samples, attributed to their serious threats to health and the environment, has spurred considerable interest in the development of sustainable sensor materials. Toxic metal ions, namely, lead (Pb2+), cadmium (Cd2+), mercury (Hg2+), arsenic (As3+), and chromium, are potential hazards due to their non-biodegradable nature with high toxicity, even at trace levels. Acute health complications, including neurological, renal, and developmental disorders, arise upon exposure to such metal ions. To monitor and mitigate these toxic exposures, sensitive detection techniques are essential. Pre-existing conventional detection methods, such as atomic absorption spectroscopy (AAS) and inductively coupled plasma-mass spectrometry (ICP-MS), involve expensive instrumentation, skilled operators, and complex sample preparation. Electrochemical sensing, which is simple, portable, and eco-friendly, is foreseen as a potential alternative to the above conventional methods. Carbon-based nanomaterials play a crucial role in electrochemical sensors due to their high conductivity, stability, and the presence of surface functional groups. Biochar (BC), a carbon-rich product, has emerged as a promising electrode material for electrochemical sensing due to its high surface area, sustainability, tunable porosity, surface rich in functional groups, eco-friendliness, and negligible environmental footprint. Nevertheless, broad-spectrum studies on the use of biochar in electrochemical sensors remain narrow. This review focuses on the recent advancements in the development of biochar-based electrochemical sensors for the detection of toxic heavy metals such as Pb2+, Cd2+, and Hg2+ and the simultaneous detection of multiple ions, with special emphasis on BC synthesis routes, surface modification methodologies, electrode fabrication techniques, and electroanalytical performance. Finally, current challenges and future perspectives for integrating BC into next-generation sensor platforms are outlined. Full article
(This article belongs to the Special Issue Green Electrochemical Sensors for Trace Heavy Metal Detection)
Show Figures

Graphical abstract

17 pages, 3477 KB  
Article
Development of Polydopamine–Chitosan-Modified Electrochemical Immunosensor for Sensitive Detection of 7,12-Dimethylbenzo[a]anthracene in Seawater
by Huili Hao, Chengjun Qiu, Wei Qu, Yuan Zhuang, Zizi Zhao, Haozheng Liu, Wenhao Wang, Jiahua Su and Wei Tao
Chemosensors 2025, 13(7), 263; https://doi.org/10.3390/chemosensors13070263 - 20 Jul 2025
Viewed by 419
Abstract
7,12-Dimethylbenzo[a]anthracene (DMBA-7,12), a highly toxic and environmentally persistent polycyclic aromatic hydrocarbon (PAH), poses significant threats to marine biodiversity and human health due to its bioaccumulation through the food chain. Conventional chromatographic methods, while achieving comparable detection limits, are hindered by the need for [...] Read more.
7,12-Dimethylbenzo[a]anthracene (DMBA-7,12), a highly toxic and environmentally persistent polycyclic aromatic hydrocarbon (PAH), poses significant threats to marine biodiversity and human health due to its bioaccumulation through the food chain. Conventional chromatographic methods, while achieving comparable detection limits, are hindered by the need for expensive instrumentation and prolonged analysis times, rendering them unsuitable for rapid on-site monitoring of DMBA-7,12 in marine environments. Therefore, the development of novel, efficient detection techniques is imperative. In this study, we have successfully developed an electrochemical immunosensor based on a polydopamine (PDA)–chitosan (CTs) composite interface to overcome existing technical limitations. PDA provides a robust scaffold for antibody immobilization due to its strong adhesive properties, while CTs enhances signal amplification and biocompatibility. The synergistic integration of these materials combines the high efficiency of electrochemical detection with the specificity of antigen–antibody recognition, enabling precise qualitative and quantitative analysis of the target analyte through monitoring changes in the electrochemical properties at the electrode surface. By systematically optimizing key experimental parameters, including buffer pH, probe concentration, and antibody loading, we have constructed the first electrochemical immunosensor for detecting DMBA-7,12 in seawater. The sensor achieved a detection limit as low as 0.42 ng/mL. In spiked seawater samples, the recovery rates ranged from 95.53% to 99.44%, with relative standard deviations (RSDs) ≤ 4.6%, demonstrating excellent accuracy and reliability. This innovative approach offers a cost-effective and efficient solution for the in situ rapid monitoring of trace carcinogens in marine environments, potentially advancing the field of marine pollutant detection technologies. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Graphical abstract

20 pages, 3506 KB  
Article
AuNP/Magnetic Bead-Enhanced Electrochemical Sensor Toward Dual Saliva Alzheimer’s Biomarkers Detection
by Pengcheng Zhao, Jieyu Wang, Hongju Mao, Lin Zhou, Zhenhua Wu, Yunxing Lu, Teng Sun, Jianan Hui and Guowu Ma
Sensors 2025, 25(13), 4088; https://doi.org/10.3390/s25134088 - 30 Jun 2025
Viewed by 3046
Abstract
Alzheimer’s disease (AD) early screening requires non-invasive, high-sensitivity detection of low-abundance biomarkers in complex biofluids like saliva. In this study, we present a miniaturized, silicon-based electrochemical sensor for sequential detection of two AD salivary biomarkers, lactoferrin (Lf) and amyloid β-protein 1-42 (Aβ1-42 [...] Read more.
Alzheimer’s disease (AD) early screening requires non-invasive, high-sensitivity detection of low-abundance biomarkers in complex biofluids like saliva. In this study, we present a miniaturized, silicon-based electrochemical sensor for sequential detection of two AD salivary biomarkers, lactoferrin (Lf) and amyloid β-protein 1-42 (Aβ1-42), on a single reusable electrode. The sensor features a three-electrode system fabricated by sputter-coating a quartz substrate with gold (Au) sensing electrodes, which are further modified with gold nanoparticles (AuNPs) to form 3D dendritic structures that enhance surface area and electron transfer. To improve specificity, immunomagnetic beads (MBs) are employed to selectively capture and isolate target biomarkers from saliva samples. These MB–biomarker complexes are introduced into a polydimethylsiloxane chamber aligned with Au sensing electrodes, where a detachable magnet localizes the complexes onto the electrode surface to amplify redox signals. The AuNPs/MBs sensor achieves detection limits of 2 μg/mL for Lf and 0.1 pg/mL for Aβ1-42, outperforming commercial ELISA kits (37.5 pg/mL for Aβ1-42) and covering physiological salivary concentrations. After the MBs capture the biomarkers, the sensor can output the result within one minute. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements confirm enhanced electron transfer kinetics on AuNP-decorated surfaces, while linear correlations (R2 > 0.95) validate quantitative accuracy across biomarker ranges. The compact and integrated design eliminates reliance on bulky instrumentation and enables user-friendly operation, establishing a promising platform for portable, cost-effective AD screening and monitoring. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

12 pages, 1611 KB  
Article
Influence of Deposition Time on Properties of Se-Doped CdTe Thin Films for Solar Cells
by Ibrahim M. Beker, Francis B. Dejene, Lehlohonolo F. Koao, Jacobus J. Terblans and Habtamu F. Etefa
Crystals 2025, 15(7), 589; https://doi.org/10.3390/cryst15070589 - 22 Jun 2025
Viewed by 372
Abstract
Se-doped CdTe thin films were grown employing a simple two-electrode electrochemical deposition method using glass/tin-doped indium oxide (glass/ITO). Cadmium acetate dihydrate [Cd (CH3CO2)2. 2H2O], selenium dioxide (SeO2), and tellurium dioxide (TeO2) [...] Read more.
Se-doped CdTe thin films were grown employing a simple two-electrode electrochemical deposition method using glass/tin-doped indium oxide (glass/ITO). Cadmium acetate dihydrate [Cd (CH3CO2)2. 2H2O], selenium dioxide (SeO2), and tellurium dioxide (TeO2) were used as precursors. Instruments including X-ray diffraction for structural investigation, UV-Vis spectrophotometry for optical properties, and scanning probe microscopy for morphological properties were employed to investigate the physico-chemical characteristics of the resulting Se-doped CdTe thin-film. The films are polycrystalline with a cubic phase, according to X-ray diffraction (XRD) data. More ions are deposited on the substrate, which makes the material more crystalline and intensifies the characteristic peaks that are seen. It is observed from the acquired optical characterization that the film’s bandgap is greatly influenced by the deposition time. The bandgap dropped from 1.92 to 1.62 as the deposition period increased from 25 to 45 min, making the film more transparent and absorbing less light at shorter deposition durations. Images from scanning electron microscopy (SEM) show that the surface morphology is homogenous with closely packed grains and that the grain forms become less noticeable as the deposition time increases. This work is novel in that it investigates the influence of the deposition time on the structural, optical, and morphological properties of Se-doped CdTe thin films deposited using a cost-effective, simplified two-electrode electrochemical method—a fabrication route that remains largely unexplored for this material system. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

15 pages, 4658 KB  
Article
Hydrothermal Preparation of Calcium Aluminum Corrosion-Resistant Coatings on AZ91D Magnesium Alloy
by Qingrong Tan, Ying Zhang, Min Jiang and Jiyuan Zhu
Coatings 2025, 15(6), 722; https://doi.org/10.3390/coatings15060722 - 17 Jun 2025
Viewed by 724
Abstract
Magnesium alloys are widely used in all kinds of fields because of their excellent mechanical properties, but their application has been prevented by poor corrosion resistance. In this paper, Mg(OH)2-Ca(OH)2/Al(OH)3/Al2O3 composite coatings with long-term [...] Read more.
Magnesium alloys are widely used in all kinds of fields because of their excellent mechanical properties, but their application has been prevented by poor corrosion resistance. In this paper, Mg(OH)2-Ca(OH)2/Al(OH)3/Al2O3 composite coatings with long-term corrosion resistance were fabricated on the surface of Mg alloys using the hydrothermal method. Among them, the calcium hydroxide/calcium nitrate–alumina coating successfully filled the cracks in the magnesium hydroxide coating. Meanwhile, we explored the influences of different heating times and temperatures on the coating and analyzed its composition. After immersing the coating in a 3.5% NaCl solution for 168 h, only a small portion of the surface dissolved. Electrochemical test results indicated that the corrosion potential and corrosion current density of the coating increased by three orders of magnitude, significantly improving corrosion resistance in comparison to bare samples. Adhesion tests showed that the coating exhibited good bonding performance to the substrate. This method features a simple, pollution-free preparation process and does not require complex instrumentation, thereby enhancing the longevity of the magnesium alloy. Full article
Show Figures

Graphical abstract

35 pages, 8296 KB  
Review
Bridging Additive Manufacturing and Electronics Printing in the Age of AI
by Jihua Chen, Yue Yuan, Qianshu Wang, Hanyu Wang and Rigoberto C. Advincula
Nanomaterials 2025, 15(11), 843; https://doi.org/10.3390/nano15110843 - 31 May 2025
Cited by 2 | Viewed by 1779
Abstract
Printing techniques have been instrumental in developing flexible and stretchable electronics, including organic light-emitting diode displays, organic thin film transistor arrays, electronic skins, organic electrochemical transistors for biosensors and neuromorphic computing, as well as flexible solar cells with low-cost processes such as inkjet [...] Read more.
Printing techniques have been instrumental in developing flexible and stretchable electronics, including organic light-emitting diode displays, organic thin film transistor arrays, electronic skins, organic electrochemical transistors for biosensors and neuromorphic computing, as well as flexible solar cells with low-cost processes such as inkjet printing, ultrasonic nozzle, roll-to-roll coating. The rise of additive manufacturing provides even more opportunities to print electronics in automated and customizable ways. In this work, we will review the current technologies of printing electronics (including printed batteries, supercapacitors, fuel cells, and sensors), especially with 3D printing. In this age of ongoing AI revolution, the application of AI algorithms is discussed in terms of combining them with 3D printing and electronics printing for a future with automated optimization, sustainable design, and customizable and scalable manufacturing. Full article
(This article belongs to the Special Issue The Future of Nanotechnology: Healthcare and Manufacturing)
Show Figures

Graphical abstract

14 pages, 4754 KB  
Article
A Low-Cost Multimodal Testbed for Array-Based Electrophysiological Microelectrodes
by Cat-Vu H. Bui, Neethu Maliakal, Hasan Ulusan, Andreas Hierlemann and Fernando Cardes
Sensors 2025, 25(9), 2874; https://doi.org/10.3390/s25092874 - 2 May 2025
Viewed by 1001
Abstract
Electrode designs and materials have become an increasingly important performance driver for microelectrode arrays, which are among the essential tools for cellular electrophysiology. Ongoing works have continuously innovated over a diverse range of electrode shapes, sizes, and materials. The large design and fabrication [...] Read more.
Electrode designs and materials have become an increasingly important performance driver for microelectrode arrays, which are among the essential tools for cellular electrophysiology. Ongoing works have continuously innovated over a diverse range of electrode shapes, sizes, and materials. The large design and fabrication parameter space represents rich opportunities for optimizing performance and functionalities as well as a challenge for electrode developers due to a lack of predictive simulation software to aid design works. Electrode prototypes often need to be fabricated, empirically evaluated, and iteratively optimized at significant cost. Efficient hardware testing solutions to aid the development of new electrodes, especially at an early stage when the number of candidate designs is still high, are therefore increasingly important. Here, we propose and implement a cost-effective testbed platform, which is aimed at obtaining first-order characteristics from electrode prototypes to inform early-stage screening and refinement. Upon testing with microfabricated electrodes, the platform was shown to achieve an impedance measurement accuracy comparable to commercial equipment and effectively recorded extracellular action potentials of in vitro rat cortical neurons. By providing relevant electrode testing at a significantly lower cost, in a more compact form, and with greater ease of assembly, compared to existing hardware solutions, the presented testbed can meaningfully lower entry barriers for the development of new array-based electrophysiological microelectrodes. Full article
(This article belongs to the Special Issue Sensing Technologies in Neuroscience and Brain Research)
Show Figures

Figure 1

23 pages, 527 KB  
Review
New Trends in the Methodologies of Determination of Benzodiazepine Residues in Biological Samples
by Israel S. Ibarra, Isaí Vázquez-Garrido, Gabriela Islas and Juan F. Flores-Aguilar
Separations 2025, 12(4), 95; https://doi.org/10.3390/separations12040095 - 11 Apr 2025
Viewed by 1146
Abstract
The benzodiazepines are essential drugs used in medicine for anxiolytic, sedative, and hypnotic effects. According to the World Health Organization, the benzodiazepines are the most prescribed hypnotic drugs in the last decade (2010 at time), and their inappropriate use can damage the environment [...] Read more.
The benzodiazepines are essential drugs used in medicine for anxiolytic, sedative, and hypnotic effects. According to the World Health Organization, the benzodiazepines are the most prescribed hypnotic drugs in the last decade (2010 at time), and their inappropriate use can damage the environment and human health. The availability of efficient analytical methods is crucial for the determination of these drugs in a complex matrix such as biological samples in clinical settings. In the last decade, several methods have been developed and have been applied to the detection and determination of benzodiazepines or their derivates. The present manuscript reviews selective and sensitive methodologies based on chromatographic, electrophoretic, and electrochemical systems for the determination of benzodiazepines in biological samples, covering the time of the last years and providing detailed information on sample pretreatment and instrumental conditions. Full article
(This article belongs to the Section Bioanalysis/Clinical Analysis)
Show Figures

Graphical abstract

31 pages, 382 KB  
Review
Emerging Biomarkers and Electrochemical Biosensors for Early Detection of Premature Coronary Artery Disease
by Nanthini Mageswaran, Sarah Husnaini Zainal, Nurul Izzaty Hassan, Nurul Huda Abd Karim and Noor Akmal Shareela Ismail
Diagnostics 2025, 15(7), 940; https://doi.org/10.3390/diagnostics15070940 - 7 Apr 2025
Cited by 1 | Viewed by 1211
Abstract
Coronary artery disease (CAD) is one of the primary causes of morbidity and death worldwide. Premature CAD (pCAD) is the term used to describe the 3–10% of CAD occurrences that occur in people under 45 worldwide. Diagnostic difficulties arise from the different risk [...] Read more.
Coronary artery disease (CAD) is one of the primary causes of morbidity and death worldwide. Premature CAD (pCAD) is the term used to describe the 3–10% of CAD occurrences that occur in people under 45 worldwide. Diagnostic difficulties arise from the different risk factor profiles of pCAD and late-onset CAD. Better cardiovascular risk prediction in younger populations has been made possible by the development of biomarker detection tools. This can be applied to a diagnostic tool, including electrochemical biosensors, which have been predicted to be instrumental because of their adaptability for point-of-care applications for quicker diagnoses. These biosensors provide efficient, scalable, and reasonably priced solutions for the quick identification and tracking of CAD. Multiplex biomarker detection has been adopted as a viable approach for early diagnosis and risk assessment due to the constraints of using a single biomarker for pCAD diagnosis. Thus, this study looks at current developments in biosensing technology and discusses established and new cardiac biomarker panels for pCAD identification. Full article
(This article belongs to the Collection Diagnostic Sensors)
27 pages, 2399 KB  
Review
Carbon Materials in Voltammetry: An Overview of Versatile Platforms for Antidepressant Drug Detection
by Joanna Smajdor, Katarzyna Fendrych and Anna Górska-Ratusznik
Micromachines 2025, 16(4), 423; https://doi.org/10.3390/mi16040423 - 31 Mar 2025
Viewed by 973
Abstract
This review concentrates on the application of carbon-based materials in the development and fabrication of voltammetric sensors of antidepressant drugs used in the treatment of moderate to severe depression, anxiety disorders, personality disorders, and various phobias. Voltammetric techniques offer outstanding sensitivity and selectivity, [...] Read more.
This review concentrates on the application of carbon-based materials in the development and fabrication of voltammetric sensors of antidepressant drugs used in the treatment of moderate to severe depression, anxiety disorders, personality disorders, and various phobias. Voltammetric techniques offer outstanding sensitivity and selectivity, accuracy, low detection limit, high reproducibility, instrumental simplicity, cost-effectiveness, and short time of direct determination of antidepressant drugs in pharmaceutical and clinical samples. Moreover, the combination of voltammetric approaches with the unique characteristics of carbon and its derivatives has led to the development of powerful electrochemical sensing tools for detecting antidepressant drugs, which are highly desirable in healthcare, environmental monitoring, and the pharmaceutical industry. In this review, carbon-based materials, such as glassy carbon and boron-doped diamond, and a wide spectrum of carbon nanoparticles, including graphene, graphene oxides, reduced graphene oxides, single-walled carbon nanotubes, and multi-walled carbon nanotubes were described in terms of the sensing performance of agomelatine, alprazolam, amitriptyline, aripiprazole, carbamazepine, citalopram, clomipramine, clozapine, clonazepam, desipramine, desvenlafaxine, doxepin, duloxetine, flunitrazepam, fluoxetine, fluvoxamine, imipramine, nifedipine, olanzapine, opipramol, paroxetine, quetiapine, serotonin, sertraline, sulpiride, thioridazine, trazodone, venlafaxine, and vortioxetine. Full article
Show Figures

Figure 1

17 pages, 10934 KB  
Article
Chemical, Diagnostic, and Instrumental Analysis of an Ancient Roman Cippus funebris from the First Century AD
by Mauro Castrucci, Mauro Tomassetti, Emanuele Dell’Aglio, Giovanni Visco, Maria Pia Sammartino and Marco Castracane
Analytica 2025, 6(1), 11; https://doi.org/10.3390/analytica6010011 - 13 Mar 2025
Viewed by 1294
Abstract
A diagnostic chemical analysis has been performed on a Roman Cippus funebris in precious white marble located close to an ancient Roman road. The Cippus was in good condition but almost completely covered by a black patina, requiring a conservative cleaning intervention. The [...] Read more.
A diagnostic chemical analysis has been performed on a Roman Cippus funebris in precious white marble located close to an ancient Roman road. The Cippus was in good condition but almost completely covered by a black patina, requiring a conservative cleaning intervention. The restorer in charge of the restoration asked us to make a preliminary diagnosis, on the basis of which we could suggest the most appropriate intervention. The Cippus was dedicated to the young Quintus Cornelius Proclianus, who died at the age of 15, by his mother Valeria Calpurnia Scopele. It perfectly fits into the Roman funerary liturgy and also shows an Etruscan-type iconography that seems to confirm the Etruscan Gens of the family and its dating to the 1st century AD. Ion chromatography (IC) analyses were performed to determine anions and cations on solutions obtained from the extraction of salts from the four samples of the Cippus. pH, conductivity, and red-ox potential measures, as well as UV-visible spectra were carried out on the same solutions. A small fragment, spontaneously fallen from the Cippus’ surface, was also observed by optical microscopy (OM) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). From the analyses, the dark patina that covered the surface before cleaning turned out to be made of black crusts, that is, smog particles adsorbed on sulfates, but above all, by a layer of microflora. The results allowed us to suggest some conservative interventions. Full article
(This article belongs to the Special Issue Feature Papers in Analytica)
Show Figures

Graphical abstract

10 pages, 9955 KB  
Article
Preparation and Hydrogen Resistance Property of CrCN Coating by Magnetron Sputtering Method Under Different C-Target Powers
by Ke Cai, Bailing Jiang and Xiaolei Su
Coatings 2025, 15(3), 280; https://doi.org/10.3390/coatings15030280 - 27 Feb 2025
Viewed by 801
Abstract
CrCN coatings on an X80 substrate were prepared by the magnetron sputtering method under different C-target powers. The prepared coatings were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and XPS (X-ray Photoelectron Spectroscopy), respectively. The electrochemical corrosion behavior and [...] Read more.
CrCN coatings on an X80 substrate were prepared by the magnetron sputtering method under different C-target powers. The prepared coatings were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and XPS (X-ray Photoelectron Spectroscopy), respectively. The electrochemical corrosion behavior and contact angle of the prepared coatings were tested by an electrochemical workstation and a wetness angle measuring instrument, respectively. Results showed that when the C-target power was 0 W, the prepared coating was a pure CrN phase, and when the C-target power was above 0 W, the prepared coating was an amorphous phase. The corrosion potential of the prepared coating increased with increasing C-target power. The contact angle increased with increasing C-target power. XPS results showed that there were Cr-N, C-N, C-Cr, sp2 C-C/C-N, and sp3 C-C/C-N bonds in the CrCN crystal. The C-doped CrCN coating indicated better hydrogen resistance than the pure CrN coating. When the C-target power was 140 W, the hydrogen barrier performance of the CrCN coating was about twice that of pure CrN. Full article
(This article belongs to the Special Issue Sputtering Deposition for Advanced Materials and Interfaces)
Show Figures

Figure 1

40 pages, 4519 KB  
Review
Advances in Monitoring Crop and Soil Nutrient Status: Proximal and Remote Sensing Techniques
by Pedro Tomas Bulacio Fischer, Alessandro Carella, Roberto Massenti, Raudhatul Fadhilah and Riccardo Lo Bianco
Horticulturae 2025, 11(2), 182; https://doi.org/10.3390/horticulturae11020182 - 8 Feb 2025
Cited by 1 | Viewed by 1864
Abstract
Soil and water pollution caused by excessive use of fertilizers and resource scarcity are critical issues in modern horticulture. Although laboratory tests are reliable, they take time and use chemical reagents that must be disposed of and complex protocols. Monitoring plant nutrient status [...] Read more.
Soil and water pollution caused by excessive use of fertilizers and resource scarcity are critical issues in modern horticulture. Although laboratory tests are reliable, they take time and use chemical reagents that must be disposed of and complex protocols. Monitoring plant nutrient status through technologies that allow continuous and rapid assessment is crucial for precise resource management. Several proximal and remote sensors that use different physico-chemical principles to monitor plant nutrient status are available nowadays. However, these technologies still have important operative and structural limitations that must be overcome. The aim of this review is to summarize the current status and latest developments in proximal and remote sensors capable of monitoring plant and soil nutrients, focusing on sensor types, principles, applications, and their strengths and weaknesses. Electrochemical proximal sensors allow continuous monitoring of nutrients in the plant sap or in the soil solution but work on a single spot basis. Instruments based on optical sensors allow immediate measurements and quick analysis, but do not work on a continuous basis. On the other hand, remote sensors, such as drone-mounted cameras and satellite systems, are based on large-area imaging and can be used to estimate crop nutrient status by processing images at different wavelengths. Finally, combining proximal and remote techniques may be needed to achieve very accurate monitoring of plant and nutrient status. Full article
(This article belongs to the Special Issue Irrigation and Fertilization Management in Horticultural Production)
Show Figures

Figure 1

12 pages, 2307 KB  
Article
Role of Electrochemical Precipitation Parameters in Developing Mixed-Phase Battery-Grade Nickel Hydroxide
by Chinmaya Kumar Sarangi, G. Lilishree Achary, Tondepu Subbaiah, Raja Kishore Paramguru and Sanat Kumar Roy
Electrochem 2025, 6(1), 2; https://doi.org/10.3390/electrochem6010002 - 16 Jan 2025
Viewed by 1686
Abstract
There is a high demand for nickel hydroxide as an engineering material used in the positive electrode of nickel metal hydride (Ni-MH) rechargeable batteries. These batteries are extensively used in various small instruments, disposable batteries, and electric vehicles. The structure of nickel hydroxide [...] Read more.
There is a high demand for nickel hydroxide as an engineering material used in the positive electrode of nickel metal hydride (Ni-MH) rechargeable batteries. These batteries are extensively used in various small instruments, disposable batteries, and electric vehicles. The structure of nickel hydroxide significantly influences the discharge capacity and energy density, key properties of Ni-MH batteries, and this structure is primarily determined by the synthesis method used. In this study, nickel hydroxide was synthesized using an electrochemical precipitation method, with current density acting as a parameter to control the desired phase of the product, whether α-nickel hydroxide, β-nickel hydroxide, or a combination of both. At a current density of 50 A/m2, the synthesized nickel hydroxide demonstrated a smaller particle size and a superior discharge electrochemical property in comparison to that generated at 500 A/m2. The effect of agitation in catholyte was also investigated to examine the change in discharge property of the precipitated material. The product synthesized at 500 A/m2 from an agitated catholyte exhibited a tap density of 1.24 g/cc and an improved discharge capacity of 254 mAh per gram of Ni(OH)2. Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
Show Figures

Figure 1

Back to TopTop