Advances in Monitoring Crop and Soil Nutrient Status: Proximal and Remote Sensing Techniques
Abstract
:1. Introduction
2. Proximal Sensing
2.1. Electrochemical Sensors
Electrochemical Systems | Analyte | Transducers | Electrical Properties Monitoring | Units | Equation | References |
---|---|---|---|---|---|---|
Potentiometric | Ions (N, P, K) | Ion-selective electrodes (e.g., solid-contact ion-selective electrodes) | Voltage (potential difference) | Volts (V) | Nernst equation: | [53,81,86] |
Amperometric | Electroactive species (e.g., O2, glucose, metabolites) | Working electrode (Pt, Au or C) | Current | Amperes (A) |
Faraday’s Law: | [81,83,86] |
Voltametric | Electroactive species (e.g., O2, glucose) | Working electrode (Pt, Au or C) | Current as a function of applied voltage | Amperes (A) or Volts (V) |
Randles–Sevcik equation for reversible reactions:
| [83,86] |
Conductometric | Ions (e.g., N, P, K) | Conductivity cells | Conductance (or resistance) | Siemens (S) or ohms (Ω) | where G is conductance and R is resistance | [81,83,88] |
Coulometric | Ions (e.g., N, P, K) | Working electrode (Pt, Au or C) | Total charge | Coulombs (C) | [81] | |
Impedimetric | Ions (e.g., N, P, K), cells, biomolecules (e.g., carbohydrate, protein, DNA, hormone) | Electrodes with immobilized biomolecules | Impedance | ohms (Ω) | , where R is resistance and Z is reactance | [81,86] |
Capacitive | Ions (e.g., N, P, K) | Capacitive plates or electrodes | Capacitance | Farads (F) | [81] |
2.2. NPK Probes
2.3. Biosensors
2.4. Optical Sensors
2.4.1. Light Absorbance
2.4.2. Spectral Reflectance
2.4.3. Chlorophyll Fluorescence
- Fv/Fm: Indicates the maximum potential for photosynthesis. A high Fv/Fm value suggests good plant health and high photosynthesis efficiency [210].
- Yield: Indicates the fraction of energy used for photosynthesis. This value helps understand how effectively the plant is converting solar energy into chemical energy [211].
- qP (quenching coefficient): Measures the efficiency of light capture. High qP values indicate a healthy plant that is using available light for photosynthesis [212].
3. Remote Sensing
3.1. Multispectral
3.2. Hyperspectral Remote Sensing
4. Combination of Proximal and Remote Sensing
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fageria, N.K.; Moreira, A. The Role of Mineral Nutrition on Root Growth of Crop Plants. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2011; Volume 110, pp. 251–331. [Google Scholar]
- Pandey, R. Mineral Nutrition of Plants. In Plant Biology and Biotechnology: Volume I: Plant Diversity, Organization, Function and Improvement; Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K.V., Eds.; Springer: New Delhi, India, 2015; pp. 499–538. ISBN 978-81-322-2286-6. [Google Scholar]
- Tripathi, D.K.; Singh, V.P.; Chauhan, D.K.; Prasad, S.M.; Dubey, N.K. Role of Macronutrients in Plant Growth and Acclimation: Recent Advances and Future Prospective. In Improvement of Crops in the Era of Climatic Changes: Volume 2; Ahmad, P., Wani, M.R., Azooz, M.M., Phan Tran, L.-S., Eds.; Springer: New York, NY, USA, 2014; pp. 197–216. ISBN 978-1-4614-8824-8. [Google Scholar]
- Maathuis, F.J.M. Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol. 2009, 12, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Aslam, M.A.; Hayat, R.; Nasim, W.; Akmal, M.; Mubeen, M.; Ahmad, S. Nutrient Dynamics and the Role of Modeling. In Building Climate Resilience in Agriculture; Springer: Cham, Switzerland, 2022; pp. 297–316. [Google Scholar]
- Jungk, A.O. Dynamics of Nutrient Movement at the Soil-Root Interface. In Plant Roots; CRC Press: Boca Raton, FL, USA, 2002; pp. 919–1016. ISBN 978-0-429-22185-9. [Google Scholar]
- Binkley, D.; Vitousek, P. Soil Nutrient Availability. In Plant Physiological Ecology: Field Methods and Instrumentation; Pearcy, R.W., Ehleringer, J.R., Mooney, H.A., Rundel, P.W., Eds.; Springer: Dordrecht, The Netherlands, 1989; pp. 75–96. ISBN 978-94-009-2221-1. [Google Scholar]
- Murray, H.H. Chapter 2 Structure and Composition of the Clay Minerals and Their Physical and Chemical Properties. In Developments in Clay Science; Murray, H.H., Ed.; Applied Clay Mineralogy; Elsevier: Amsterdam, The Netherlands, 2006; Volume 2, pp. 7–31. [Google Scholar]
- Goldberg, S. Interaction of Aluminum and Iron Oxides and Clay Minerals and Their Effect on Soil Physical Properties: A Review. Commun. Soil Sci. Plant Anal. 1989, 20, 1181–1207. [Google Scholar] [CrossRef]
- Gao, X.; Li, S.; Liu, X.; Hu, F.; Tian, R.; Li, H. The Effects of NO3− and Cl− on Negatively Charged Clay Aggregation. Soil Tillage Res. 2019, 186, 242–248. [Google Scholar] [CrossRef]
- Hafsteinsdóttir, E.G.; Camenzuli, D.; Rocavert, A.L.; Walworth, J.; Gore, D.B. Chemical Immobilization of Metals and Metalloids by Phosphates. Appl. Geochem. 2015, 59, 47–62. [Google Scholar] [CrossRef]
- Bouabid, R.; Badraoui, M.; Bloom, P.R. Potassium Fixation and Charge Characteristics of Soil Clays. Soil Sci. Soc. Am. J. 1991, 55, 1493–1498. [Google Scholar] [CrossRef]
- Sparks, D.L.; Huang, P.M. Physical Chemistry of Soil Potassium. In Potassium in Agriculture; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1985; pp. 201–276. ISBN 978-0-89118-247-4. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C. Nutrient Availability. Encycl. Soils Environ. 2005, 3, 63–71. [Google Scholar]
- Cakmak, I.; Brown, P.; Colmenero-Flores, J.M.; Husted, S.; Kutman, B.Y.; Nikolic, M.; Rengel, Z.; Schmidt, S.B.; Zhao, F.-J. Micronutrients. In Marschner’s Mineral Nutrition of Plants; Elsevier: Amsterdam, The Netherlands, 2023; pp. 283–385. [Google Scholar]
- Sinha, D.; Tandon, P.K. An Overview of Nitrogen, Phosphorus and Potassium: Key Players of Nutrition Process in Plants. In Sustainable Solutions for Elemental Deficiency and Excess in Crop Plants; Springer: Singapore, 2020; pp. 85–117. [Google Scholar]
- Amtmann, A.; Hammond, J.P.; Armengaud, P.; White, P.J. Nutrient sensing and signalling in plants: Potassium and phosphorus. Adv. Bot. Res. 2005, 43, 209–257. [Google Scholar] [CrossRef]
- Duan, Y.; Yang, H.; Yang, H.; Wei, Z.; Che, J.; Wu, W.; Lyu, L.; Li, W. Physiological and Morphological Responses of Blackberry Seedlings to Different Nitrogen Forms. Plants 2023, 12, 1480. [Google Scholar] [CrossRef] [PubMed]
- Krapp, A. Plant nitrogen assimilation and its regulation: A complex puzzle with missing pieces. Curr. Opin. Plant Biol. 2015, 25, 115–122. [Google Scholar] [CrossRef]
- Yoneyama, T.; Ito, O.; Engelaar, W.M.H.G. Uptake, metabolism, and distribution of nitrogen in crop plants traced by enriched and natural 15N: Progress over the last 30 years. Phytochem. Rev. 2003, 2, 121–132. [Google Scholar] [CrossRef]
- Raven, J.A.; Smith, F.A. Nitrogen Assimilation and Transport in Vascular Land Plants in Relation to Intracellular pH Regulation. New Phytol. 1976, 76, 415–431. [Google Scholar] [CrossRef]
- Ohyama, T. Nitrogen as a Major Essential Element of Plants. Nitr. Assim. Plants 2010, 37, 2–17. [Google Scholar]
- Wang, Q.; Li, S.; Li, J.; Huang, D. The Utilization and Roles of Nitrogen in Plants. Forests 2024, 15, 1191. [Google Scholar] [CrossRef]
- Havé, M.; Marmagne, A.; Chardon, F.; Masclaux-Daubresse, C. Nitrogen Remobilization during Leaf Senescence: Lessons from Arabidopsis to Crops. J. Exp. Bot. 2017, 68, 2513–2529. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, Y.-F.; Wu, W.-H. Potassium and Phosphorus Transport and Signaling in Plants. J. Integr. Plant Biol. 2021, 63, 34–52. [Google Scholar] [CrossRef] [PubMed]
- Rychter, A.M.; Rao, I.M. Role of phosphorus in photosynthetic carbon metabolism. In Handbook of Photosynthesis; Pessarakli, M., Ed.; Taylor and Francis Group, LLC: Tucson, AZ, USA, 2005; pp. 123–148. ISBN 978-131-537-213-6. [Google Scholar]
- Raven, J.A. RNA function and phosphorus use by photosynthetic organisms. Front. Plant Sci. 2013, 4, 61258. [Google Scholar] [CrossRef]
- Smith, S.E.; Jakobsen, I.; Grønlund, M.; Smith, F.A. Roles of Arbuscular Mycorrhizas in Plant Phosphorus Nutrition: Interactions between Pathways of Phosphorus Uptake in Arbuscular Mycorrhizal Roots Have Important Implications for Understanding and Manipulating Plant Phosphorus Acquisition. Plant Physiol. 2011, 156, 1050–1057. [Google Scholar] [CrossRef]
- Pandey, G.K.; Mahiwal, S. Role of Potassium in Plants; SpringerBriefs in Plant Science; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-45952-9. [Google Scholar]
- Sardans, J.; Peñuelas, J. Potassium control of plant functions: Ecological and agricultural implications. Plants 2021, 10, 419. [Google Scholar] [CrossRef]
- Rawat, J.; Pandey, N.; Saxena, J. Role of Potassium in Plant Photosynthesis, Transport, Growth and Yield. In Role of Potassium in Abiotic Stress; Iqbal, N., Umar, S., Eds.; Springer Nature: Singapore, 2022; pp. 1–14. ISBN 978-981-164461-0. [Google Scholar] [CrossRef]
- Zörb, C.; Senbayram, M.; Peiter, E. Potassium in Agriculture—Status and Perspectives. J. Plant Physiol. 2014, 171, 656–669. [Google Scholar] [CrossRef]
- Wallace, A.; Mueller, R.T. Calcium uptake and distribution in plants. J. Plant Nut. 1980, 2, 247–256. [Google Scholar] [CrossRef]
- Hanger, B.C. Movement of calcium in plants. Commun. Soil Sci. Plant Anal. 1979, 10, 171–193. [Google Scholar] [CrossRef]
- Jones, R.G.W.; Lunt, O.R. The function of calcium in plants. Bot. Rev. 1967, 33, 407–426. [Google Scholar] [CrossRef]
- Gransee, A.; Führs, H. Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant Soil 2013, 368, 5–21. [Google Scholar] [CrossRef]
- Hermans, C.; Conn, S.J.; Chen, J.; Xiao, Q.; Verbruggen, N. Update on Magnesium Homeostasis Mechanisms in Plants. Metallomics 2013, 5, 1170–1183. [Google Scholar] [CrossRef] [PubMed]
- Gerendás, J.; Führs, H. The Significance of Magnesium for Crop Quality. Plants Soil 2013, 368, 101–128. [Google Scholar] [CrossRef]
- Li, Q.; Gao, Y.; Yang, A. Sulfur Homeostasis in Plants. Int. J. Mol. Sci. 2020, 21, 8926. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.F.; Smith, I.K.; Madison, J.T. Sulfur Metabolism in Plants. In Sulfur in Agriculture; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1986; pp. 57–121. ISBN 978-0-89118-220-7. [Google Scholar]
- Govindasamy, P.; Muthusamy, S.K.; Bagavathiannan, M.; Mowrer, J.; Jagannadham, P.T.K.; Maity, A.; Halli, H.M.; K., S.G.; Vadivel, R.; K., D.T.; et al. Nitrogen Use Efficiency—A Key to Enhance Crop Productivity under a Changing Climate. Front. Plant Sci. 2023, 14, 1121073. [Google Scholar] [CrossRef]
- Yu, X.; Keitel, C.; Zhang, Y.; Wangeci, A.N.; Dijkstra, F.A. Global Meta-Analysis of Nitrogen Fertilizer Use Efficiency in Rice, Wheat and Maize. Agric. Ecosyst. Environ. 2022, 338, 108089. [Google Scholar] [CrossRef]
- Coskun, D.; Britto, D.T.; Shi, W.; Kronzucker, H.J. Nitrogen Transformations in Modern Agriculture and the Role of Biological Nitrification Inhibition. Nat. Plants 2017, 3, 17074. [Google Scholar] [CrossRef] [PubMed]
- de Vries, W. Impacts of Nitrogen Emissions on Ecosystems and Human Health: A Mini Review. Curr. Opin. Environ. Sci. Health 2021, 21, 100249. [Google Scholar] [CrossRef]
- Liu, L.; Zheng, X.; Wei, X.; Kai, Z.; Xu, Y. Excessive Application of Chemical Fertilizer and Organophosphorus Pesticides Induced Total Phosphorus Loss from Planting Causing Surface Water Eutrophication. Sci. Rep. 2021, 11, 23015. [Google Scholar] [CrossRef]
- Khan, M.N.; Mohammad, F. Eutrophication: Challenges and Solutions. In Eutrophication: Causes, Consequences and Control: Volume 2; Ansari, A.A., Gill, S.S., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 1–15. ISBN 978-94-007-7814-6. [Google Scholar] [CrossRef]
- Ahmed, M.; Rauf, M.; Mukhtar, Z.; Saeed, N.A. Excessive Use of Nitrogenous Fertilizers: An Unawareness Causing Serious Threats to Environment and Human Health. Environ. Sci. Pollut. Res. 2017, 24, 26983–26987. [Google Scholar] [CrossRef] [PubMed]
- Zahir, S.A.D.M.; Jamlos, M.F.; Omar, A.F.; Jamlos, M.A.; Mamat, R.; Muncan, J.; Tsenkova, R. Review—Plant Nutritional Status Analysis Employing the Visible and Near-Infrared Spectroscopy Spectral Sensor. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 304, 123273. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.R.; Gomes Neto, J.A.; Nóbrega, J.A.; Jones, B.T. Determination of Macro- and Micronutrients in Plant Leaves by High-Resolution Continuum Source Flame Atomic Absorption Spectrometry Combining Instrumental and Sample Preparation Strategies. Spectrochim. Acta B At. Spectrosc. 2010, 65, 316–320. [Google Scholar] [CrossRef]
- Manickam, S.; Rajagopalan, V.R.; Kambale, R.; Rajasekaran, R.; Kanagarajan, S.; Muthurajan, R. Plant Metabolomics: Current Initiatives and Future Prospects. Curr. Issues Mol. Biol. 2023, 45, 8894–8906. [Google Scholar] [CrossRef] [PubMed]
- Lilay, G.H.; Persson, D.P.; Castro, P.H.; Liao, F.; Alexander, R.D.; Aarts, M.G.M.; Assunção, A.G.L. Arabidopsis bZIP19 and bZIP23 Act as Zinc Sensors to Control Plant Zinc Status. Nat. Plants 2021, 7, 137–143. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Bąba, W.; Gediga, K.; Goltsev, V.; Samborska, I.A.; Cetner, M.D.; Dimitrova, S.; Piszcz, U.; Bielecki, K.; Karmowska, K.; et al. Chlorophyll Fluorescence as a Tool for Nutrient Status Identification in Rapeseed Plants. Photosynth. Res. 2018, 136, 329–343. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, Z.; Zhu, Y.; Castellano, M.J.; Dong, L. Miniature Multi-Ion Sensor Integrated with Artificial Neural Network. IEEE Sens. J. 2021, 21, 25606–25615. [Google Scholar] [CrossRef]
- Kim, M.-Y.; Lee, K.H. Electrochemical Sensors for Sustainable Precision Agriculture—A Review. Front. Chem. 2022, 10, 848320. [Google Scholar] [CrossRef]
- Vizzari, M.; Santaga, F.; Benincasa, P. Sentinel 2-Based Nitrogen VRT Fertilization in Wheat: Comparison between Traditional and Simple Precision Practices. Agronomy 2019, 9, 278. [Google Scholar] [CrossRef]
- Radočaj, D.; Jurišić, M.; Gašparović, M. The Role of Remote Sensing Data and Methods in a Modern Approach to Fertilization in Precision Agriculture. Remote Sens. 2022, 14, 778. [Google Scholar] [CrossRef]
- Dong, W.; Wu, T.; Luo, J.; Sun, Y.; Xia, L. Land Parcel-Based Digital Soil Mapping of Soil Nutrient Properties in an Alluvial-Diluvial Plain Agricultural Area in China. Geoderma 2019, 340, 234–248. [Google Scholar] [CrossRef]
- Jurišić, M.; Radočaj, D.; Plaščak, I.; Rapčan, I. A Comparison of Precise Fertilization Prescription Rates to a Conventional Approach Based on the Open Source GIS Software. Poljoprivreda 2021, 27, 52–59. [Google Scholar] [CrossRef]
- Roma, E.; Laudicina, V.A.; Vallone, M.; Catania, P. Application of Precision Agriculture for the Sustainable Management of Fertilization in Olive Groves. Agronomy 2023, 13, 324. [Google Scholar] [CrossRef]
- Tomkiewicz, D.; Piskier, T. A Plant-Based Sensing Method for Nutrition Stress Monitoring. Precis. Agric. 2012, 13, 370–383. [Google Scholar] [CrossRef]
- Lin, J.; Wang, M.; Zhang, M.; Zhang, Y.; Chen, L. Electrochemical Sensors for Soil Nutrient Detection: Opportunity and Challenge. In Computer and Computing Technologies in Agriculture, Volume II; Li, D., Ed.; Springer: Boston, MA, USA, 2008; pp. 1349–1353. [Google Scholar] [CrossRef]
- Wang, M.; Yang, Y.; Min, J.; Song, Y.; Tu, J.; Mukasa, D.; Ye, C.; Xu, C.; Heflin, N.; McCune, J.S.; et al. A Wearable Electrochemical Biosensor for the Monitoring of Metabolites and Nutrients. Nat. Biomed. Eng. 2022, 6, 1225–1235. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-Y.; Lee, J.-W.; Park, D.J.; Lee, J.-Y.; Myung, N.V.; Kwon, S.H.; Lee, K.H. Highly Stable Potentiometric Sensor with Reduced Graphene Oxide Aerogel as a Solid Contact for Detection of Nitrate and Calcium Ions. J. Electroanal. Chem. 2021, 897, 115553. [Google Scholar] [CrossRef]
- Terentev, A.; Dolzhenko, V. Can Metabolomic Approaches Become a Tool for Improving Early Plant Disease Detection and Diagnosis with Modern Remote Sensing Methods? A Review. Sensors 2023, 23, 5366. [Google Scholar] [CrossRef]
- Feng, D.; Xu, W.; He, Z.; Zhao, W.; Yang, M. Advances in Plant Nutrition Diagnosis Based on Remote Sensing and Computer Application. Neural Comput. Appl. 2020, 32, 16833–16842. [Google Scholar] [CrossRef]
- Sadoine, M.; De Michele, R.; Župunski, M.; Grossmann, G.; Castro-Rodríguez, V. Monitoring Nutrients in Plants with Genetically Encoded Sensors: Achievements and Perspectives. Plant Physiol. 2023, 193, 195–216. [Google Scholar] [CrossRef] [PubMed]
- Garg, S.; Rumjit, N.P.; Roy, S. Smart Agriculture and Nanotechnology: Technology, Challenges, and New Perspective. Adv. Agrochem. 2023, 3, 115–125. [Google Scholar] [CrossRef]
- Dhanaraju, M.; Chenniappan, P.; Ramalingam, K.; Pazhanivelan, S.; Kaliaperumal, R. Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture. Agriculture 2022, 12, 1745. [Google Scholar] [CrossRef]
- Karunathilake, E.M.B.M.; Le, A.T.; Heo, S.; Chung, Y.S.; Mansoor, S. The Path to Smart Farming: Innovations and Opportunities in Precision Agriculture. Agriculture 2023, 13, 1593. [Google Scholar] [CrossRef]
- Soussi, A.; Zero, E.; Sacile, R.; Trinchero, D.; Fossa, M. Smart Sensors and Smart Data for Precision Agriculture: A Review. Sensors 2024, 24, 2647. [Google Scholar] [CrossRef]
- Yin, H.; Cao, Y.; Marelli, B.; Zeng, X.; Mason, A.J.; Cao, C. Soil Sensors and Plant Wearables for Smart and Precision Agriculture. Adv. Mater. 2021, 33, 2007764. [Google Scholar] [CrossRef] [PubMed]
- Sanaeifar, A.; Yang, C.; Min, A.; Jones, C.R.; Michaels, T.E.; Krueger, Q.J.; Barnes, R.; Velte, T.J. Noninvasive Early Detection of Nutrient Deficiencies in Greenhouse-Grown Industrial Hemp Using Hyperspectral Imaging. Remote Sens. 2024, 16, 187. [Google Scholar] [CrossRef]
- Roma, E.; Catania, P. Precision Oliviculture: Research Topics, Challenges, and Opportunities—A Review. Remote Sens. 2022, 14, 1668. [Google Scholar] [CrossRef]
- Carella, A.; Bulacio Fischer, P.T.; Massenti, R.; Lo Bianco, R. Continuous Plant-Based and Remote Sensing for Determination of Fruit Tree Water Status. Horticulturae 2024, 10, 516. [Google Scholar] [CrossRef]
- Ghanimi, H.M.; Suguna, R.; Jeyaraj, J.P.G.; Sreekanth, K.; Rangasamy, R.; Sengan, S. Smart Fertilizing Using IoT Multi-Sensor and Variable Rate Sprayer Integrated UAV. Scalable Comput. Pract. Exp. 2024, 25, 3766–3777. [Google Scholar] [CrossRef]
- Salam, U.; Ullah, S.; Tang, Z.-H.; Elateeq, A.A.; Khan, Y.; Khan, J.; Khan, A.; Ali, S. Plant Metabolomics: An Overview of the Role of Primary and Secondary Metabolites against Different Environmental Stress Factors. Life 2023, 13, 706. [Google Scholar] [CrossRef]
- Djaman, K.; Irmak, S.; Martin, D.L.; Ferguson, R.B.; Bernards, M.L. Plant Nutrient Uptake and Soil Nutrient Dynamics under Full and Limited Irrigation and Rainfed Maize Production. Agron. J. 2013, 105, 527–538. [Google Scholar] [CrossRef]
- El-Ramady, H.R.; Alshaal, T.A.; Amer, M.; Domokos-Szabolcsy, É.; Elhawat, N.; Prokisch, J.; Fári, M. Soil Quality and Plant Nutrition. In Sustainable Agriculture Reviews 14: Agroecology and Global Change; Ozier-Lafontaine, H., Lesueur-Jannoyer, M., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 345–447. ISBN 978-3-319-06016-3. [Google Scholar] [CrossRef]
- Kashyap, B.; Kumar, R. Sensing Methodologies in Agriculture for Soil Moisture and Nutrient Monitoring. IEEE Access 2021, 9, 14095–14121. [Google Scholar] [CrossRef]
- Ahmad, M.S.; Chen, C.-L.; Shih, Y.-J. Electrochemical Sensors. In Handbook of Nanosensors: Materials and Technological Applications; Ali, G.A.M., Chong, K.F., Makhlouf, A.S.H., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 1–33. ISBN 978-3-031-16338-8. [Google Scholar] [CrossRef]
- Simoes, F.R.; Xavier, M.G. 6—Electrochemical Sensors. In Micro and Nano Technologies, Nanoscience and Its Applications; da Roz, A.L., Ferreira, M., de Lima Leite, F., Oliveira, O.N., Eds.; William Andrew Publishing: Norwich, NY, USA, 2017; pp. 155–178. [Google Scholar]
- Brinda, K.N.; Yhobu, Z.; Nagaraju, D.H.; Budagumpi, S. Working Principle and Sensing Mechanism of Electrochemical Sensors. In 2D Materials-Based Electrochemical Sensors; Rout, C.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 9–44. ISBN 978-0-443-15293-1. [Google Scholar] [CrossRef]
- Baranwal, J.; Barse, B.; Gatto, G.; Broncova, G.; Kumar, A. Electrochemical Sensors and Their Applications: A Review. Chemosensors 2022, 10, 363. [Google Scholar] [CrossRef]
- Ota, K.I.; Kreysa, G.; Savinell, R.F. (Eds.) Encyclopedia of Applied Electrochemistry, 1st ed.; Springer: New York, NY, USA, 2013; ISBN 978-1-4419-6997-2. [Google Scholar] [CrossRef]
- Papavinasam, S. 3-Electrochemical Polarization Techniques for Corrosion Monitoring. In Techniques for Corrosion Monitoring, 2nd ed.; Yang, L., Ed.; Woodhead Publishing: Sawston, UK, 2021; pp. 45–77. ISBN 9780081030035. [Google Scholar] [CrossRef]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors—Sensor Principles and Architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef]
- Banakar, M.; Hamidi, M.; Khurshid, Z.; Zafar, M.S.; Sapkota, J.; Azizian, R.; Rokaya, D. Electrochemical Biosensors for Pathogen Detection: An Updated Review. Biosensors 2022, 12, 927. [Google Scholar] [CrossRef]
- Barhoum, A.; Hamimed, S.; Slimi, H.; Othmani, A.; Abdel-Haleem, F.M.; Bechelany, M. Modern Designs of Electrochemical Sensor Platforms for Environmental Analyses: Principles, Nanofabrication Opportunities, and Challenges. Trends Environ. Anal. Chem. 2023, 38, e00199. [Google Scholar] [CrossRef]
- Gandhi, M.; Amreen, K. Electrochemical Profiling of Plants. Electrochem 2022, 3, 434–450. [Google Scholar] [CrossRef]
- Rabinowitch, E.; U.S. Atomic Energy Commission. Photosynthesis; U.S. Atomic Energy Commission: Washington, DC, USA, 1949. [Google Scholar]
- Eberhard, S.; Finazzi, G.; Wollman, F.-A. The Dynamics of Photosynthesis. Annu. Rev. Genet. 2008, 42, 463–515. [Google Scholar] [CrossRef]
- Penn, C.J.; Camberato, J.J. A Critical Review on Soil Chemical Processes That Control How Soil pH Affects Phosphorus Availability to Plants. Agriculture 2019, 9, 120. [Google Scholar] [CrossRef]
- Chugh, B.; Thakur, S.; Singh, A.K.; Joany, R.M.; Rajendran, S.; Nguyen, T.A. Electrochemical Sensors for Agricultural Application. In Nanosensors for Smart Agriculture; Denizli, A., Nguyen, T.A., Rajendran, S., Yasin, G., Nadda, A.K., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2022; pp. 147–164. ISBN 978-0-12-824554-5. [Google Scholar] [CrossRef]
- Nadporozhskaya, M.; Kovsh, N.; Paolesse, R.; Lvova, L. Recent advances in chemical sensors for soil analysis: A review. Chemosensors 2022, 10, 35. [Google Scholar] [CrossRef]
- Caron, W.-O.; Lamhamedi, M.S.; Viens, J.; Messaddeq, Y. Practical Application of Electrochemical Nitrate Sensor under Laboratory and Forest Nursery Conditions. Sensors 2016, 16, 1190. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, N.P.; Venugopalan, S.; Senthilkumar, N.; Santhosh, P.; Kavita, B.; Prabu, H.G. Voltammetric determination of nitroaromatic and nitramine explosives contamination in soil. Talanta 2006, 69, 656–662. [Google Scholar] [CrossRef] [PubMed]
- Burton, L.; Jayachandran, K.; Bhansali, S. Review—The “Real-Time” Revolution for In Situ Soil Nutrient Sensing. J. Electrochem. Soc. 2020, 167, 037569. [Google Scholar] [CrossRef]
- Mishra, P.; Mapara, S.; Vyas, P. Testing/monitoring of soil chemical level using wireless sensor network technology. Int. J. Appl. Innov. Eng. Manag. 2015, 4, 114–117. [Google Scholar]
- Kundu, M.; Krishnan, P.; Chobhe, K.A.; Manjaiah, K.M.; Pant, R.P.; Chawla, G. Fabrication of Electrochemical Nanosensor for Detection of Nitrate Content in Soil Extract. J. Soil Sci. Plant Nutr. 2022, 22, 2777–2792. [Google Scholar] [CrossRef]
- Baumbauer, C.L.; Goodrich, P.J.; Payne, M.E.; Anthony, T.; Beckstoffer, C.; Toor, A.; Silver, W.; Arias, A.C. Printed Potentiometric Nitrate Sensors for Use in Soil. Sensors 2022, 22, 4095. [Google Scholar] [CrossRef]
- Hossain, M.I.; Khaleque, M.A.; Ali, M.R.; Bacchu, M.S.; Hossain, M.S.; Shahed, S.M.F.; Saad Aly, M.A.; Khan, M.Z.H. Development of Electrochemical Sensors for Quick Detection of Environmental (Soil and Water) NPK Ions. RSC Adv. 2024, 14, 9137–9158. [Google Scholar] [CrossRef]
- Ibrahim, H.; Yin, S.; Moru, S.; Zhu, Y.; Castellano, M.J.; Dong, L. In Planta Nitrate Sensor Using a Photosensitive Epoxy Bioresin. ACS Appl. Mater. Interfaces 2022, 14, 25949–25961. [Google Scholar] [CrossRef] [PubMed]
- Murad, M.O. Obtaining Chemical Properties through Soil Electrical Resistivity. J. Civ. Eng. Res. 2012, 2, 120–128. [Google Scholar] [CrossRef]
- Bellosta-Diest, A.; Campo-Bescós, M.Á.; Zapatería-Miranda, J.; Casalí, J.; Arregui, L.M. Evaluation of Nitrate Soil Probes for a More Sustainable Agriculture. Sensors 2022, 22, 9288. [Google Scholar] [CrossRef]
- Pratama, H.; Yunan, A.; Candra, R.A. Design and Build a Soil Nutrient Measurement Tool for Citrus Plants Using NPK Soil Sensors Based on the Internet of Things. Brill. Res. Artif. Intell. 2021, 1, 67–74. [Google Scholar] [CrossRef]
- Kumar, L.; Srivani, M.; Nishath, M.; Akhil, T.; Naveen, A.; Kumar, K. Monitoring of Soil Nutrients Using Soil NPK Sensor and Arduino. Ecol. Environ. Conserv. 2024, 30, 239–246. [Google Scholar] [CrossRef]
- Huang, J.; Hartemink, A.E. Soil and Environmental Issues in Sandy Soils. Earth-Sci. Rev. 2020, 208, 103295. [Google Scholar] [CrossRef]
- Riaz, M.; Marschner, P. Sandy Soil Amended with Clay Soil: Effect of Clay Soil Properties on Soil Respiration, Microbial Biomass, and Water Extractable Organic C. J. Soil Sci. Plant Nutr. 2020, 20, 2465–2470. [Google Scholar] [CrossRef]
- Qi, F.; Kunihiko, E.; Guodong, C. Soil Water and Chemical Characteristics of Sandy Soils and Their Significance to Land Reclamation. J. Arid Environ. 2002, 51, 35–54. [Google Scholar] [CrossRef]
- Shinwari, M.W.; Zhitomirsky, D.; Deen, I.A.; Selvaganapathy, P.R.; Deen, M.J.; Landheer, D. Microfabricated Reference Electrodes and Their Biosensing Applications. Sensors 2010, 10, 1679–1715. [Google Scholar] [CrossRef] [PubMed]
- Kundu, M.; Krishnan, P.; Kotnala, R.K.; Sumana, G. Recent developments in biosensors to combat agricultural challenges and their future prospects. Trends Food Sci. Technol. 2019, 88, 157–178. [Google Scholar] [CrossRef]
- Deswal, S. Biosensors and Their Application in Environmental Monitoring. J. Technol. 2024, 12, 875–888. [Google Scholar]
- Sadanandom, A.; Napier, R.M. Biosensors in Plants. Curr. Opin. Plant Biol. 2010, 13, 736–743. [Google Scholar] [CrossRef]
- Madufor, N.J.K.; Perold, W.J.; Opara, U.L. Detection of Plant Diseases Using Biosensors: A Review. Acta Hortic. 2018, 1201, 83–90. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, M.; Yang, Q.; Wei, H.; Xia, A.; Wang, L.; Ben, Y.; Zhou, Q.; Yang, Z.; Huang, X. A Living Plant Cell-Based Biosensor for Real-Time Monitoring Invisible Damage of Plant Cells under Heavy Metal Stress. Sci. Total Environ. 2019, 697, 134097. [Google Scholar] [CrossRef] [PubMed]
- Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical Biosensors: Recommended Definitions and Classification. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Pudake, R.N.; Jain, U.; Kole, C. (Eds.) Biosensors in Agriculture: Recent Trends and Future Perspectives; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Hamed, S.; Ibba, P.; Petrelli, M.; Ciocca, M.; Lugli, P.; Petti, L. Transistor-Based Plant Sensors for Agriculture 4.0 Measurements. In Proceedings of the 2021 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Trento-Bolzano, Italy, 3–5 November 2021; pp. 69–74. [Google Scholar]
- Lo Presti, D.; Di Tocco, J.; Massaroni, C.; Cimini, S.; De Gara, L.; Singh, S.; Raucci, A.; Manganiello, G.; Woo, S.L.; Schena, E.; et al. Current Understanding, Challenges and Perspective on Portable Systems Applied to Plant Monitoring and Precision Agriculture. Biosens. Bioelectron. 2023, 222, 115005. [Google Scholar] [CrossRef] [PubMed]
- Elli, G.; Hamed, S.; Petrelli, M.; Ibba, P.; Ciocca, M.; Lugli, P.; Petti, L. Field-Effect Transistor-Based Biosensors for Environmental and Agricultural Monitoring. Sensors 2022, 22, 4178. [Google Scholar] [CrossRef] [PubMed]
- Marks, A.; Griggs, S.; Gasparini, N.; Moser, M. Organic Electrochemical Transistors: An Emerging Technology for Biosensing. Adv. Mater. Interfaces 2022, 9, 2102039. [Google Scholar] [CrossRef]
- Coppedè, N.; Vurro, F.; Manfredi, R.; Janni, M.; Zappettini, A.; Gentile, F. Introducing State Variables in Organic Electrochemical Transistors with Application to Biophysical Systems. IEEE Sens. J. 2019, 19, 11753–11758. [Google Scholar] [CrossRef]
- Niu, Y.; Qin, Z.; Zhang, Y.; Chen, C.; Liu, S.; Chen, H. Expanding the potential of biosensors: A review on organic field effect transistor (OFET) and organic electrochemical transistor (OECT) biosensors. Mater. Futures 2023, 2, 042401. [Google Scholar] [CrossRef]
- White, H.S.; Kittlesen, G.P.; Wrighton, M.S. Chemical Derivatization of an Array of Three Gold Microelectrodes with Polypyrrole: Fabrication of a Molecule-Based Transistor. J. Am. Chem. Soc. 1984, 106, 5375–5377. [Google Scholar] [CrossRef]
- Hu, F.; Xue, Y.; Xu, J.; Lu, B. PEDOT-Based Conducting Polymer Actuators. Front. Robot. AI 2019, 6, 114. [Google Scholar] [CrossRef]
- Yang, Y.; Deng, H.; Fu, Q. Recent Progress on PEDOT:PSS-Based Polymer Blends and Composites for Flexible Electronics and Thermoelectric Devices. Mater. Chem. Front. 2020, 4, 3130–3152. [Google Scholar] [CrossRef]
- Amato, D.; Montanaro, G.; Vurro, F.; Coppedé, N.; Briglia, N.; Petrozza, A.; Janni, M.; Zappettini, A.; Cellini, F.; Nuzzo, V. Towards In Vivo Monitoring of Ions Accumulation in Trees: Response of an in Planta Organic Electrochemical Transistor Based Sensor to Water Flux Density, Light and Vapor Pressure Deficit Variation. Appl. Sci. 2021, 11, 4729. [Google Scholar] [CrossRef]
- Coppedè, N.; Janni, M.; Bettelli, M.; Maida, C.L.; Gentile, F.; Villani, M.; Ruotolo, R.; Iannotta, S.; Marmiroli, N.; Marmiroli, M.; et al. An in vivo biosensing, biomimetic electrochemical transistor with applications in plant science and precision farming. Sci. Rep. 2017, 7, 16195. [Google Scholar] [CrossRef] [PubMed]
- Gentile, F.; Vurro, F.; Janni, M.; Manfredi, R.; Cellini, F.; Petrozza, A.; Zappettini, A.; Coppedè, N. A Biomimetic, Biocompatible OECT Sensor for the Real-Time Measurement of Concentration and Saturation of Ions in Plant Sap. Adv. Electron. Mater. 2022, 8, 2200092. [Google Scholar] [CrossRef]
- Vurro, F.; Manfredi, R.; Bettelli, M.; Bocci, G.; Cologni, A.L.; Cornali, S.; Reggiani, R.; Marchetti, E.; Coppedè, N.; Caselli, S.; et al. In Vivo Sensing to Monitor Tomato Plants in Field Conditions and Optimize Crop Water Management. Precis. Agric. 2023, 24, 2479–2499. [Google Scholar] [CrossRef]
- Vurro, F.; Marchetti, E.; Bettelli, M.; Manfrini, L.; Finco, A.; Sportolaro, C.; Coppedè, N.; Palermo, N.; Tommasini, M.G.; Zappettini, A.; et al. Application of the OECT-Based In Vivo Biosensor Bioristor in Fruit Tree Monitoring to Improve Agricultural Sustainability. Chemosensors 2023, 11, 374. [Google Scholar] [CrossRef]
- Finco, A.; Bentivoglio, D.; Chiaraluce, G.; Alberi, M.; Chiarelli, E.; Maino, A.; Mantovani, F.; Montuschi, M.; Raptis, K.G.C.; Semenza, F.; et al. Combining Precision Viticulture Technologies and Economic Indices to Sustainable Water Use Management. Water 2022, 14, 1493. [Google Scholar] [CrossRef]
- Diacci, C.; Abedi, T.; Lee, J.W.; Gabrielsson, E.O.; Berggren, M.; Simon, D.T.; Niittylä, T.; Stavrinidou, E. Diurnal in Vivo Xylem Sap Glucose and Sucrose Monitoring Using Implantable Organic Electrochemical Transistor Sensors. iScience 2021, 24, 101966. [Google Scholar] [CrossRef] [PubMed]
- Cooper, G.M. Photosynthesis. In The Cell: A Molecular Approach, 2nd ed.; Sinauer Associates: Sunderland, MA, USA, 2000. [Google Scholar]
- Geiger, D. Plant Glucose Transporter Structure and Function. Pflug. Arch. Eur. J. Physiol. 2020, 472, 1111–1128. [Google Scholar] [CrossRef]
- Mayrhofer, S.; Heizmann, U.; Magel, E.; Eiblmeier, M.; Müller, A.; Rennenberg, H.; Hampp, R.; Schnitzler, J.-P.; Kreuzwieser, J. Carbon Balance in Leaves of Young Poplar Trees. Plant Biol. 2004, 6, 730–739. [Google Scholar] [CrossRef]
- Strand, E.; Bihar, E.; Gleason, S.; Han, S.; Schreiber, S.; Renny, M.; Malliaras, G.; Mcleod, R.; Whiting, G. Printed Organic Electrochemical Transistors for Detecting Nutrients in Whole Plant Sap. Adv. Electron. Mater. 2022, 8, 2100853. [Google Scholar] [CrossRef]
- Nawaz, A.; Liu, Q.; Leong, W.L.; Fairfull-Smith, K.E.; Sonar, P. Organic Electrochemical Transistors for In Vivo Bioelectronics. Adv. Mater. 2021, 33, 2101874. [Google Scholar] [CrossRef]
- Ajayan, J.; Mohankumar, P.; Mathew, R.; Thoutam, L.R.; Kaushik, B.K.; Nirmal, D. Organic Electrochemical Transistors (OECTs): Advancements and Exciting Prospects for Future Biosensing Applications. IEEE Trans. Electron Devices 2023, 70, 3401–3412. [Google Scholar] [CrossRef]
- Bihar, E.; Strand, E.J.; Crichton, C.A.; Renny, M.N.; Bonter, I.; Tran, T.; Atreya, M.; Gestos, A.; Haseloff, J.; McLeod, R.R.; et al. Self-healable stretchable printed electronic cryogels for in-vivo plant monitoring. npj Flex. Electron. 2023, 7, 48. [Google Scholar] [CrossRef]
- Li, D.; Zhang, P.; Chen, T.; Qin, W. Recent Development and Challenges in Spectroscopy and Machine Vision Technologies for Crop Nitrogen Diagnosis: A Review. Remote Sens. 2020, 12, 2578. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Loures, L.; Chamizo, A.; Ferreira, P.; Loures, A.; Castanho, R.; Panagopoulos, T. Assessing the Effectiveness of Precision Agriculture Management Systems in Mediterranean Small Farms. Sustainability 2020, 12, 3765. [Google Scholar] [CrossRef]
- Martos, V.; Ahmad, A.; Cartujo, P.; Ordoñez, J. Ensuring Agricultural Sustainability through Remote Sensing in the Era of Agriculture 5.0. Appl. Sci. 2021, 11, 5911. [Google Scholar] [CrossRef]
- Muhie, S.H. Novel Approaches and Practices to Sustainable Agriculture. J. Agric. Food Res. 2022, 10, 100446. [Google Scholar] [CrossRef]
- Massa, D.; Magán, J.J.; Montesano, F.F.; Tzortzakis, N. Minimizing Water and Nutrient Losses from Soilless Cropping in Southern Europe. Agric. Water Manag. 2020, 241, 106395. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Jin, X.; Bian, L.; Ge, Y. High-Throughput Phenotyping of Plant Leaf Morphological, Physiological, and Biochemical Traits on Multiple Scales Using Optical Sensing. Crop J. 2023, 11, 1303–1318. [Google Scholar] [CrossRef]
- Calzadilla, P.I.; Carvalho, F.E.L.; Gomez, R.; Lima Neto, M.C.; Signorelli, S. Assessing Photosynthesis in Plant Systems: A Cornerstone to Aid in the Selection of Resistant and Productive Crops. Environ. Exp. Bot. 2022, 201, 104950. [Google Scholar] [CrossRef]
- Li, D.; Li, C.; Yao, Y.; Li, M.; Liu, L. Modern Imaging Techniques in Plant Nutrition Analysis: A Review. Comput. Electron. Agric. 2020, 174, 105459. [Google Scholar] [CrossRef]
- Urban, L.; Aarrouf, J.; Bidel, L.P. Assessing the effects of water deficit on photosynthesis using parameters derived from measurements of leaf gas exchange and of chlorophyll a fluorescence. Front. Plant Sci. 2017, 8, 2068. [Google Scholar] [CrossRef]
- Hallik, L.; Šarauskis, E.; Kazlauskas, M.; Bručienė, I.; Mozgeris, G.; Steponavičius, D.; Tõrra, T. Proximal Sensing Sensors for Monitoring Crop Growth. In Information and Communication Technologies for Agriculture—Theme I: Sensors; Bochtis, D.D., Lampridi, M., Petropoulos, G.P., Ampatzidis, Y., Pardalos, P., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 43–97. ISBN 978-3-030-84144-7. [Google Scholar]
- Rajak, P.; Ganguly, A.; Adhikary, S.; Bhattacharya, S. Internet of Things and Smart Sensors in Agriculture: Scopes and Challenges. J. Agric. Food Res. 2023, 14, 100776. [Google Scholar] [CrossRef]
- Azhar, A.; Merdekawati, E.; Pramudia, A.; Cahyo, A.N.; Ehara, H.; Dahliani, L. Ambient Air Temperatures and Solar Radiation Affect OJIP Fluorescence Transients of Coffee Plants in an Agroforestry System. Agrosyst. Geosci. Environ. 2023, 6, e20340. [Google Scholar] [CrossRef]
- Bullock, D.G.; Anderson, D.S. Evaluation of the Minolta SPAD-502 Chlorophyll Meter for Nitrogen Management in Corn. J. Plant Nutr. 1998, 21, 741–755. [Google Scholar] [CrossRef]
- Vlaović, J.; Balen, J.; Grgić, K.; Žagar, D.; Galić, V.; Šimić, D. An Overview of Chlorophyll Fluorescence Measurement Process, Meters and Methods. In Proceedings of the 2020 International Conference on Smart Systems and Technologies (SST), Osijek, Croatia, 14–16 October 2020; pp. 245–250. [Google Scholar]
- Laveglia, S.; Altieri, G.; Genovese, F.; Matera, A.; Di Renzo, G.C. Advances in Sustainable Crop Management: Integrating Precision Agriculture and Proximal Sensing. AgriEngineering 2024, 6, 3084–3120. [Google Scholar] [CrossRef]
- Ali, M.M.; Al-Ani, A.; Eamus, D.; Tan, D.K.Y. Leaf Nitrogen Determination Using Non-Destructive Techniques–A Review. J. Plant Nutr. 2017, 40, 928–953. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, P.; Liu, S.; Wang, C.; Liu, J. Evaluation of the Methods for Estimating Leaf Chlorophyll Content with SPAD Chlorophyll Meters. Remote Sens. 2022, 14, 5144. [Google Scholar] [CrossRef]
- Gitelson, A.; Solovchenko, A.; Viña, A. Foliar Absorption Coefficient Derived from Reflectance Spectra: A Gauge of the Efficiency of in Situ Light-Capture by Different Pigment Groups. J. Plant Physiol. 2020, 254, 153277. [Google Scholar] [CrossRef] [PubMed]
- Ates, F.; Kaya, O. The Relationship Between Iron and Nitrogen Concentrations Based on Kjeldahl Method and SPAD-502 Readings in Grapevine (Vitis vinifera L. cv. ‘Sultana Seedless’). Erwerbs-Obstbau 2021, 63, 53–59. [Google Scholar] [CrossRef]
- Turner, F.T.; Jund, M.F. Chlorophyll Meter to Predict Nitrogen Topdress Requirement for Semidwarf Rice. Agron. J. 1991, 83, 926–928. [Google Scholar] [CrossRef]
- Güler, S.; Büyük, G. Relationships Among Chlorophyll-Meter Reading Value, Leaf N, and Yield of Cucumber and Tomatoes. Acta Hortic. 2007, 729, 307–311. [Google Scholar] [CrossRef]
- Fritschi, F.B.; Ray, J.D. Soybean Leaf Nitrogen, Chlorophyll Content, and Chlorophyll a/b Ratio. Photosynthetica 2007, 45, 92–98. [Google Scholar] [CrossRef]
- Glenn, D.M.; Tabb, A. Evaluation of Five Methods to Measure Normalized Difference Vegetation Index (NDVI) in Apple and Citrus. Int. J. Fruit Sci. 2019, 19, 191–210. [Google Scholar] [CrossRef]
- Taskos, D.G.; Koundouras, S.; Stamatiadis, S.; Zioziou, E.; Nikolaou, N.; Karakioulakis, K.; Theodorou, N. Using Active Canopy Sensors and Chlorophyll Meters to Estimate Grapevine Nitrogen Status and Productivity. Precis. Agric. 2015, 16, 77–98. [Google Scholar] [CrossRef]
- Wang, K.; Li, W.; Deng, L.; Lyu, Q.; Zheng, Y.; Yi, S.; Xie, R.; Ma, Y.; He, S. Rapid Detection of Chlorophyll Content and Distribution in Citrus Orchards Based on Low-Altitude Remote Sensing and Bio-Sensors. Int. J. Agric. Biol. Eng. 2018, 11, 164–169. [Google Scholar] [CrossRef]
- Boussadia, O.; Steppe, K.; Zgallai, H.; Ben El Hadj, S.; Braham, M.; Lemeur, R.; Van Labeke, M.C. Nondestructive Determination of Nitrogen and Chlorophyll Content in Olive Tree Leaves and the Relation with Photosynthesis and Fluorescence Parameters. Photosynthetica 2011, 49, 149–153. [Google Scholar] [CrossRef]
- Arantes, A.d.M.; Donato, S.L.R.; de Siqueira, D.L.; Amorim, E.P.; Rodrigues Filho, V.A. Chlorophyll Index for Real-Time Prediction of Nutritional Status of “Prata” Banana. Rev. Bras. Eng. Agríc. Ambient. 2016, 20, 99–106. [Google Scholar] [CrossRef]
- Neto, C.B.; Carranca, C.; Clemente, J.; de Varennes, A. Assessing the Nitrogen Nutritional Status of Young Non-Bearing ‘Rocha’ Pear Trees Grown in a Mediterranean Region by Using a Chlorophyll Meter. J. Plant Nutr. 2011, 34, 627–639. [Google Scholar] [CrossRef]
- Shibaeva, T.G.; Mamaev, A.V.; Sherudilo, E.G. Evaluation of a SPAD-502 Plus Chlorophyll Meter to Estimate Chlorophyll Content in Leaves with Interveinal Chlorosis. Russ. J. Plant Physiol. 2020, 67, 690–696. [Google Scholar] [CrossRef]
- Kim, B.H.; Lee, J.; Han, G.D. Environmental Influences on SPAD Values in Prunus Mume Trees: A Comparative Study of Leaf Position and Photosynthetic Efficiency Across Different Light Conditions. J. Environ. Sci. Int. 2024, 33, 501–509. [Google Scholar] [CrossRef]
- Cerovic, Z.G.; Ghozlen, N.B.; Milhade, C.; Obert, M.; Debuisson, S.; Moigne, M.L. Nondestructive Diagnostic Test for Nitrogen Nutrition of Grapevine (Vitis vinifera L.) Based on Dualex Leaf-Clip Measurements in the Field. J. Agric. Food Chem. 2015, 63, 3669–3680. [Google Scholar] [CrossRef] [PubMed]
- Goulas, Y.; Cerovic, Z.G.; Cartelat, A.; Moya, I. Dualex: A New Instrument for Field Measurements of Epidermal Ultraviolet Absorbance by Chlorophyll Fluorescence. Appl. Opt. 2004, 43, 4488. [Google Scholar] [CrossRef]
- Julkunen-Tiitto, R.; Nenadis, N.; Neugart, S.; Robson, M.; Agati, G.; Vepsäläinen, J.; Zipoli, G.; Nybakken, L.; Winkler, B.; Jansen, M.A.K. Assessing the Response of Plant Flavonoids to UV Radiation: An Overview of Appropriate Techniques. Phytochem. Rev. 2015, 14, 273–297. [Google Scholar] [CrossRef]
- Samborski, S.M.; Tremblay, N.; Fallon, E. Strategies to Make Use of Plant Sensors-Based Diagnostic Information for Nitrogen Recommendations. Agron. J. 2009, 101, 800–816. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, X.; Ma, Y.; Zhang, R.; Cao, Q.; Zhu, Y.; Cao, W.; Tian, Y. A Comparative Assessment of Measures of Leaf Nitrogen in Rice Using Two Leaf-Clip Meters. Sensors 2020, 20, 175. [Google Scholar] [CrossRef] [PubMed]
- Overbeck, V.; Schmitz, M.; Tartachnyk, I.; Blanke, M. Identification of Light Availability in Different Sweet Cherry Orchards under Cover by Using Non-Destructive Measurements with a Dualex™. Eur. J. Agron. 2018, 93, 50–56. [Google Scholar] [CrossRef]
- Tremblay, N.; Wang, Z.; Cerovic, Z.G. Sensing Crop Nitrogen Status with Fluorescence Indicators. A Review. Agron. Sustain. Dev. 2012, 32, 451–464. [Google Scholar] [CrossRef]
- Cartelat, A.; Cerovic, Z.G.; Goulas, Y.; Meyer, S.; Lelarge, C.; Prioul, J.-L.; Barbottin, A.; Jeuffroy, M.-H.; Gate, P.; Agati, G.; et al. Optically Assessed Contents of Leaf Polyphenolics and Chlorophyll as Indicators of Nitrogen Deficiency in Wheat (Triticum aestivum L.). Field Crops Res. 2005, 91, 35–49. [Google Scholar] [CrossRef]
- Tremblay, N.; Wang, Z.; Bélec, C. Evaluation of the Dualex for the Assessment of Corn Nitrogen Status. J. Plant Nutr. 2007, 30, 1355–1369. [Google Scholar] [CrossRef]
- Tremblay, N.; Wang, Z.; Bélec, C. Performance of Dualex in Spring Wheat for Crop Nitrogen Status Assessment, Yield Prediction and Estimation of Soil Nitrate Content. J. Plant Nutr. 2009, 33, 57–70. [Google Scholar] [CrossRef]
- Ronga, D.; Rizza, F.; Badeck, F.-W.; Milc, J.; Laviano, L.; Montevecchi, G.; Pecchioni, N.; Francia, E. Physiological Responses to Chilling in Cultivars of Processing Tomato Released and Cultivated over the Past Decades in Southern Europe. Sci. Hortic. 2018, 231, 118–125. [Google Scholar] [CrossRef]
- Friedel, M.; Hendgen, M.; Stoll, M.; Löhnertz, O. Performance of Reflectance Indices and of a Handheld Device for Estimating In-Field the Nitrogen Status of Grapevine Leaves. Aust. J. Grape Wine Res. 2020, 26, 110–120. [Google Scholar] [CrossRef]
- Oustric, J.; Morillon, R.; Luro, F.; Herbette, S.; Lourkisti, R.; Giannettini, J.; Berti, L.; Santini, J. Tetraploid Carrizo Citrange Rootstock (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.) Enhances Natural Chilling Stress Tolerance of Common Clementine (Citrus clementina Hort. Ex Tan). J. Plant Physiol. 2017, 214, 108–115. [Google Scholar] [CrossRef]
- Román Ecija, M.; Olivares-García, C.; Rivas, J.C.; Velasco-Amo, M.P.; Navas Cortés, J.A.; Landa, B.B. Assessment of Physiological Traits of Olive Trees Infected by Xylella fastidiosa Subspecies. In Proceedings of the 9th Meeting of the IOBC-WPRS Working Group “Integrated Protection of Olive Crops”, Lisboa, Portugal, 26–29 October 2021. [Google Scholar] [CrossRef]
- Muñoz-Huerta, R.F.; Guevara-Gonzalez, R.G.; Contreras-Medina, L.M.; Torres-Pacheco, I.; Prado-Olivarez, J.; Ocampo-Velazquez, R.V. A Review of Methods for Sensing the Nitrogen Status in Plants: Advantages, Disadvantages and Recent Advances. Sensors 2013, 13, 10823–10843. [Google Scholar] [CrossRef] [PubMed]
- de Souza, R.; Peña-Fleitas, M.T.; Thompson, R.B.; Gallardo, M.; Grasso, R.; Padilla, F.M. The Use of Chlorophyll Meters to Assess Crop N Status and Derivation of Sufficiency Values for Sweet Pepper. Sensors 2019, 19, 2949. [Google Scholar] [CrossRef] [PubMed]
- Padilla, F.M.; Gallardo, M.; Peña-Fleitas, M.T.; De Souza, R.; Thompson, R.B. Proximal Optical Sensors for Nitrogen Management of Vegetable Crops: A Review. Sensors 2018, 18, 2083. [Google Scholar] [CrossRef]
- Zhu, J.; Tremblay, N.; Liang, Y. Comparing SPAD and atLEAF Values for Chlorophyll Assessment in Crop Species. Can. J. Soil Sci. 2012, 92, 645–648. [Google Scholar] [CrossRef]
- Novichonok, E.V.; Novichonok, A.O.; Kurbatova, J.A.; Markovskaya, E.F. Use of the atLEAF+ Chlorophyll Meter for a Nondestructive Estimate of Chlorophyll Content. Photosynthetica 2016, 54, 130–137. [Google Scholar] [CrossRef]
- da Silva, T.M.M.; Costa, B.R.S.; Oldoni, H.; Mitsuyuki, M.C.; Bassoi, L.H. Calibration of Chlorophyll Hand-Held Meter Based on Vineyard NDVI Zones for Estimation of Leaf N Content. Cienc. E Agrotecnologia 2022, 46, e006222. [Google Scholar] [CrossRef]
- Hebbar, K.B.; Subramanian, P.; Sheena, T.L.; Shwetha, K.; Sugatha, P.; Arivalagan, M.; Varaprasad, P.V. Chlorophyll and Nitrogen Determination in Coconut Using a Non-Destructive Method. J. Plant Nutr. 2016, 39, 1610–1619. [Google Scholar] [CrossRef]
- Kamarianakis, Z.; Panagiotakis, S. Design and Implementation of a Low-Cost Chlorophyll Content Meter. Sensors 2023, 23, 2699. [Google Scholar] [CrossRef] [PubMed]
- Gianquinto, G.; Goffart, J.P.; Olivier, M.; Guarda, G.; Colauzzi, M.; Dalla Costa, L.; Delle Vedove, G.; Vos, J.; Mackerron, D.K.L. The Use of Hand-Held Chlorophyll Meters as a Tool to Assess the Nitrogen Status and to Guide Nitrogen Fertilization of Potato Crop. Potato Res. 2004, 47, 35–80. [Google Scholar] [CrossRef]
- Bracke, J.; Elsen, A.; Adriaenssens, S.; Vandendriessche, H.; Van Labeke, M.-C. Utility of Proximal Plant Sensors to Support Nitrogen Fertilization in Chrysanthemum. Sci. Hortic. 2019, 256, 108544. [Google Scholar] [CrossRef]
- Gorai, T.; Yadav, P.K.; Choudhary, G.L.; Kumar, A. Site-Specific Crop Nutrient Management for Precision Agriculture—A Review. Curr. J. Appl. Sci. Technol. 2021, 40, 37–52. [Google Scholar] [CrossRef]
- Wang, X.; Miao, Y.; Guan, Y.; Xia, T.; Lu, J.; Mulla, D.J. An Evaluation of Two Active Canopy Sensor Systems for Non-Destructive Estimation of Spring Maize Biomass. In Proceedings of the 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Tianjin, China, 18–20 July 2016; pp. 1–6. [Google Scholar]
- Maresma, A.; Chamberlain, L.; Tagarakis, A.; Kharel, T.; Godwin, G.; Czymmek, K.J.; Shields, E.; Ketterings, Q.M. Accuracy of NDVI-Derived Corn Yield Predictions Is Impacted by Time of Sensing. Comput. Electron. Agric. 2020, 169, 105236. [Google Scholar] [CrossRef]
- Van Loon, J.; Speratti, A.B.; Gabarra, L.; Govaerts, B. Precision for Smallholder Farmers: A Small-Scale-Tailored Variable Rate Fertilizer Application Kit. Agriculture 2018, 8, 48. [Google Scholar] [CrossRef]
- Govaerts, B.; Verhulst, N.; Sayre, K.D.; De Corte, P.; Goudeseune, B.; Lichter, K.; Crossa, J.; Deckers, J.; Dendooven, L. Evaluating Spatial within Plot Crop Variability for Different Management Practices with an Optical Sensor. Plant Soil 2007, 299, 29–42. [Google Scholar] [CrossRef]
- Ennaji, O.; Vergütz, L.; El Allali, A. Machine Learning in Nutrient Management: A Review. Artif. Intell. Agric. 2023, 9, 1–11. [Google Scholar] [CrossRef]
- Zsebő, S.; Bede, L.; Kukorelli, G.; Kulmány, I.M.; Milics, G.; Stencinger, D.; Teschner, G.; Varga, Z.; Vona, V.; Kovács, A.J. Yield Prediction Using NDVI Values from GreenSeeker and MicaSense Cameras at Different Stages of Winter Wheat Phenology. Drones 2024, 8, 88. [Google Scholar] [CrossRef]
- Mirzakhaninafchi, H.; Singh, M.; Bector, V.; Gupta, O.P.; Singh, R. Design and Development of a Variable Rate Applicator for Real-Time Application of Fertilizer. Sustainability 2021, 13, 8694. [Google Scholar] [CrossRef]
- Freeman, K.W.; Girma, K.; Arnall, D.B.; Mullen, R.W.; Martin, K.L.; Teal, R.K.; Raun, W.R. By-Plant Prediction of Corn Forage Biomass and Nitrogen Uptake at Various Growth Stages Using Remote Sensing and Plant Height. Agron. J. 2007, 99, 530–536. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Shen, J.; Yu, W.; Yuan, F.; Cheng, S.; Huang, S.; Wang, H.; Yang, W.; Liu, F. Improving In-Season Estimation of Rice Yield Potential and Responsiveness to Topdressing Nitrogen Application with Crop Circle Active Crop Canopy Sensor. Precis. Agric. 2016, 17, 136–154. [Google Scholar] [CrossRef]
- Walker, H.V.; Jones, J.E.; Swarts, N.D.; Rodemann, T.; Kerslake, F.; Dambergs, R.G. Predicting Grapevine Canopy Nitrogen Status Using Proximal Sensors and Near-Infrared Reflectance Spectroscopy. J. Plant Nutr. Soil Sci. 2021, 184, 204–304. [Google Scholar] [CrossRef]
- Poudyal, C.; Sandhu, H.; Ampatzidis, Y.; Odero, D.C.; Arbelo, O.C.; Cherry, R.H.; Costa, L.F. Prediction of Morpho-Physiological Traits in Sugarcane Using Aerial Imagery and Machine Learning. Smart Agric. Technol. 2023, 3, 100104. [Google Scholar] [CrossRef]
- Mao, L.; Song, Q.; Li, X.; Zheng, H.; Zhu, X.G. Would Reducing Chlorophyll Content Result in a Higher Photosynthesis Nitrogen Use Efficiency in Crops? Food Energy Secur. 2024, 13, e576. [Google Scholar] [CrossRef]
- Hamdani, S.; Wang, H.; Zheng, G.; Perveen, S.; Qu, M.; Khan, N.; Khan, W.; Jiang, J.; Li, M.; Liu, X.; et al. Genome-Wide Association Study Identifies Variation of Glucosidase Being Linked to Natural Variation of the Maximal Quantum Yield of Photosystem II. Physiol. Plant. 2019, 166, 105–119. [Google Scholar] [CrossRef]
- Giorio, P.; Nuzzo, V.; Guida, G.; Albrizio, R. Black Leaf-Clips of a Commercial Fluorometer Increased Leaf Temperature during Dark Adaptation under High Solar Radiation. Photosynthetica 2012, 50, 467–471. [Google Scholar] [CrossRef]
- Giorio, P. Black Leaf-Clips Increased Minimum Fluorescence Emission in Clipped Leaves Exposed to High Solar Radiation during Dark Adaptation. Photosynthetica 2011, 49, 371–379. [Google Scholar] [CrossRef]
- Chen, S.; Zheng, Q.; Qi, Z.; Ding, J.; Song, X.; Xia, X. Stress-Induced Delay of the I-P Rise of the Fast Chlorophyll a Fluorescence Transient in Tomato. Sci. Hortic. 2024, 326, 112741. [Google Scholar] [CrossRef]
- Zarei, Z.; Heidari, H.; Honarmand, S.J.; Bafkar, A. Improving Grain Yield and Water Use Efficiency in Maize by Wick Irrigation. Irrig. Sci. 2024, 42, 785–800. [Google Scholar] [CrossRef]
- Khadem Moghadam, N.; Motesharezadeh, B.; Maali-Amiri, R.; Asgari Lajayer, B.; Astatkie, T. Effects of Potassium and Zinc on Physiology and Chlorophyll Fluorescence of Two Cultivars of Canola Grown under Salinity Stress. Arab J. Geosci. 2020, 13, 771. [Google Scholar] [CrossRef]
- de Lima, R.S.N.; Figueiredo, F.A.M.M.d.A.; Martins, A.O.; Deus, B.C.d.S.d.; Ferraz, T.M.; Gomes, M.d.M.d.A.; de Sousa, E.F.; Glenn, D.M.; Campostrini, E. Partial Rootzone Drying (PRD) and Regulated Deficit Irrigation (RDI) Effects on Stomatal Conductance, Growth, Photosynthetic Capacity, and Water-Use Efficiency of Papaya. Sci. Hortic. 2015, 183, 13–22. [Google Scholar] [CrossRef]
- Zha, Q.; Xi, X.; He, Y.; Jiang, A. Transcriptomic Analysis of the Leaves of Two Grapevine Cultivars under High-Temperature Stress. Sci. Hortic. 2020, 265, 109265. [Google Scholar] [CrossRef]
- Spyroglou, I.; Rybka, K.; Maldonado Rodriguez, R.; Stefański, P.; Valasevich, N.M. Quantitative Estimation of Water Status in Field-Grown Wheat Using Beta Mixed Regression Modelling Based on Fast Chlorophyll Fluorescence Transients: A Method for Drought Tolerance Estimation. J. Agron. Crop Sci. 2021, 207, 589–605. [Google Scholar] [CrossRef]
- Mirzaee, M.; Rees, D.; Colgan, R.J.; Tully, M.S. Diagnosing Bitter Pit in Apple During Storage by Chlorophyll Fluorescence as a Non-Destructive Tool. Acta Hortic. 2015, 1079, 235–242. [Google Scholar] [CrossRef]
- Keutgen, A.J.; Keutgen, N.; Wszelaczyńska, E.; Pobereżny, J.; Milczarek, D.; Tatarowska, B.; Flis, B. Evaluation of Photosynthetic and Yield Traits in Ten Potato Clones and Cultivars Under Farming Conditions in Poland. Potato Res. 2020, 63, 75–95. [Google Scholar] [CrossRef]
- Coswosk, G.G.; Gonçalves, V.M.L.; de Lima, V.J.; de Souza, G.A.R.; Teixeira do Amaral Junior, A.; Pereira, M.G.; de Oliveira, E.C.; Leite, J.T.; Kamphorst, S.H.; de Oliveira, U.A.; et al. Utilizing Visible Band Vegetation Indices from Unmanned Aerial Vehicle Images for Maize Phenotyping. Remote Sens. 2024, 16, 3015. [Google Scholar] [CrossRef]
- Ran, X.; Wang, X.; Gao, X.; Liang, H.; Liu, B.; Huang, X. Effects of Salt Stress on the Photosynthetic Physiology and Mineral Ion Absorption and Distribution in White Willow (Salix alba L.). PLoS ONE 2021, 16, e0260086. [Google Scholar] [CrossRef]
- Rostami, M.; Koocheki, A.R.; Mahallati, M.N.; Kafi, M. Evaluation of chlorophyll meter (SPAD) data for prediction of nitrogen status in corn (Zea mays L.). Am.-Eurasian J. Agric. Sci. 2008, 3, 79–85. [Google Scholar]
- Casa, R.; Castaldi, F.; Pascucci, S.; Pignatti, S. Chlorophyll estimation in field crops: An assessment of handheld leaf meters and spectral reflectance measurements. J. Agric. Sci. 2015, 153, 876–890. [Google Scholar] [CrossRef]
- Habibullah, M.; Mohebian, M.R.; Soolanayakanahally, R.; Wahid, K.A.; Dinh, A. A Cost-Effective and Portable Optical Sensor System to Estimate Leaf Nitrogen and Water Contents in Crops. Sensors 2020, 20, 1449. [Google Scholar] [CrossRef]
- Ninama, A.R.; Ram, K.V.; Solanki, B.P.; Choudhary, R. Greenseeker—Modern Tool for Nitrogen Management. Int. J. Res. Agron. 2024, 7, 124–129. [Google Scholar] [CrossRef]
- Yin, Z.; Meng, F.; Song, H.; He, X.; Xu, X.; Yu, D. Mapping Quantitative Trait Loci Associated with Chlorophyll a Fluorescence Parameters in Soybean (Glycine max (L.) Merr.). Planta 2010, 231, 875–885. [Google Scholar] [CrossRef]
- Saberioon, M.M.; Amin, M.S.M.; Gholizadeh, A.; Ezri, M.H. A Review of Optical Methods for Assessing Nitrogen Contents during Rice Growth. Appl. Eng. Agric. 2014, 30, 657–669. [Google Scholar]
- Kubiak, K.; Kotlarz, J.; Spiralski, M.; Szymański, J. Nitrogen Fertilization Assessment in Maize (Zea mays L.) Using Hyperspectral UV/VIS/NIR Data. Remote Sens. Lett. 2023, 14, 1251–1259. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, T.; Yang, C.; Song, H.; Jiang, Z.; Zhou, G.; Zhang, D.; Feng, H.; Xie, J. Segmenting Purple Rape-seed Leaves in the Field from UAV RGB Imagery Using Deep Learning as an Auxiliary Means for Nitrogen Stress Detection. Remote Sens. 2020, 12, 1403. [Google Scholar] [CrossRef]
- Sudhakar, M.; Priya, R.M. Computer Vision Based Machine Learning and Deep Learning Approaches for Identification of Nutrient Deficiency in Crops: A Survey. Nat. Environ. Pollut. Technol. 2023, 22, 1387–1399. [Google Scholar]
- Matese, A.; Toscano, P.; Di Gennaro, S.F.; Genesio, L.; Vaccari, F.P.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B. Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture. Remote Sens. 2015, 7, 2971–2990. [Google Scholar] [CrossRef]
- Christiansen, M.P.; Laursen, M.S.; Jørgensen, R.N.; Skovsen, S.; Gislum, R. Designing and Testing a UAV Mapping System for Agricultural Field Surveying. Sensors 2017, 17, 2703. [Google Scholar] [CrossRef] [PubMed]
- Nelson, A. Remote Sensing for Sustainable Agricultural Management. In Sustaining Global Food Security: The Nexus of Science and Policy; Csiro Publishing: Clayton, Australia, 2019; p. 369. [Google Scholar]
- Copernicus. Homepage|Copernicus. Available online: https://www.copernicus.eu/en (accessed on 29 November 2024).
- Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications. Agronomy 2020, 10, 641. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A Commentary Review on the Use of Normalized Difference Vegetation Index (NDVI) in the Era of Popular Remote Sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, Y.; Yao, F.; Wang, P.; Guo, W.; Li, L.; Yang, L. Advances in Estimation Methods of Vegetation Water Content Based on Optical Remote Sensing Techniques. Sci. China Technol. Sci. 2010, 53, 1159–1167. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; NASA/GSFC: Greenbelt, MD, USA, 1973.
- Kokaly, R.F.; Asner, G.P.; Ollinger, S.V.; Martin, M.E.; Wessman, C.A. Characterizing Canopy Biochemistry from Imaging Spectroscopy and Its Application to Ecosystem Studies. Remote Sens. Environ. 2009, 113, S78–S91. [Google Scholar] [CrossRef]
- Watt, M.S.; Pearse, G.D.; Dash, J.P.; Melia, N.; Leonardo, E.M.C. Application of Remote Sensing Technologies to Identify Impacts of Nutritional Deficiencies on Forests. ISPRS J. Photogramm. Remote Sens. 2019, 149, 226–241. [Google Scholar] [CrossRef]
- Siedliska, A.; Baranowski, P.; Pastuszka-Woźniak, J.; Zubik, M.; Krzyszczak, J. Identification of Plant Leaf Phosphorus Content at Different Growth Stages Based on Hyperspectral Reflectance. BMC Plant Biol. 2021, 21, 28. [Google Scholar] [CrossRef] [PubMed]
- Severtson, D.; Callow, N.; Flower, K.; Neuhaus, A.; Olejnik, M.; Nansen, C. Unmanned Aerial Vehicle Canopy Reflectance Data Detects Potassium Deficiency and Green Peach Aphid Susceptibility in Canola. Precis. Agric 2016, 17, 659–677. [Google Scholar] [CrossRef]
- de Oliveira, M.R.R.; Queiroz, T.R.G.; Teixeira, A.d.S.; Moreira, L.C.J.; Leão, R.A.d.O. Reflectance Spectrometry Applied to the Analysis of Nitrogen and Potassium Deficiency in Cotton. Rev. Ciênc. Agron. 2020, 51, e20196705. [Google Scholar] [CrossRef]
- Mazur, P.; Gozdowski, D.; Stępień, W.; Wójcik-Gront, E. Does Drone Data Allow the Assessment of Phosphorus and Potassium in Soil Based on Field Experiments with Winter Rye? Agronomy 2023, 13, 446. [Google Scholar] [CrossRef]
- Illana Rico, S.; Cano Marchal, P.; Martínez Gila, D.; Gámez García, J. Multiple Instance Regression for the Estimation of Leaf Nutrient Content in Olive Trees Using Multispectral Data Taken with UAVs. Biosyst. Eng. 2024, 242, 91–99. [Google Scholar] [CrossRef]
- Noguera, M.; Aquino, A.; Ponce, J.M.; Cordeiro, A.; Silvestre, J.; Arias-Calderón, R.; Marcelo, M.d.E.; Jordão, P.; Andújar, J.M. Nutritional Status Assessment of Olive Crops by Means of the Analysis and Modelling of Multispectral Images Taken with UAVs. Biosyst. Eng. 2021, 211, 1–18. [Google Scholar] [CrossRef]
- Li, Y.; Du, C.; Zhang, T.; Ge, Y.; Liu, W.; Yuan, S.; Liu, X. Estimation of citrus leaves’ nitrogen content by multispectral unmanned aerial vehicle remote sensing based on semi-supervised twin neural network regression. J. Appl. Remote Sens. 2024, 18, 034506. [Google Scholar] [CrossRef]
- Osco, L.P.; Nogueira, K.; Marques Ramos, A.P.; Faita Pinheiro, M.M.; Furuya, D.E.G.; Gonçalves, W.N.; de Castro Jorge, L.A.; Marcato Junior, J.; dos Santos, J.A. Semantic Segmentation of Citrus-Orchard Using Deep Neural Networks and Multispectral UAV-Based Imagery. Precis. Agric 2021, 22, 1171–1188. [Google Scholar] [CrossRef]
- Costa, L.; Kunwar, S.; Ampatzidis, Y.; Albrecht, U. Determining Leaf Nutrient Concentrations in Citrus Trees Using UAV Imagery and Machine Learning. Precis. Agric 2022, 23, 854–875. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, Z.; Zhao, F.; Liu, J.; Li, Z.; Wang, X.; Gao, Y. An Estimation of the Leaf Nitrogen Content of Apple Tree Canopies Based on Multispectral Unmanned Aerial Vehicle Imagery and Machine Learning Methods. Agronomy 2024, 14, 552. [Google Scholar] [CrossRef]
- Sun, G.; Hu, T.; Chen, S.; Sun, J.; Zhang, J.; Ye, R.; Zhang, S.; Liu, J. Using UAV-Based Multispectral Remote Sensing Imagery Combined with DRIS Method to Diagnose Leaf Nitrogen Nutrition Status in a Fertigated Apple Orchard. Precis. Agric 2023, 24, 2522–2548. [Google Scholar] [CrossRef]
- Peng, X.; Chen, D.; Zhou, Z.; Zhang, Z.; Xu, C.; Zha, Q.; Wang, F.; Hu, X. Prediction of the Nitrogen, Phosphorus and Potassium Contents in Grape Leaves at Different Growth Stages Based on UAV Multispectral Remote Sensing. Remote Sens. 2022, 14, 2659. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, C.; Ma, Y.; Chen, X.; Lu, B.; Song, Y.; Zhang, Z.; Zhang, R. Estimation of Nitrogen Concentration in Walnut Canopies in Southern Xinjiang Based on UAV Multispectral Images. Agronomy 2023, 13, 1604. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Wu, T. Monitoring of Leaf Nitrogen Content in a Citrus Orchard by Landsat 8 OLI Imagery. In Proceedings of the Twelfth International Conference on Signal Processing Systems; SPIE: Bellingham, WA, USA, 2021; Volume 11719, pp. 23–36. [Google Scholar]
- Shukla, A.; Kot, R. An Overview of Hyperspectral Remote Sensing and Its Applications in Various Disciplines. IRA-Int. J. Appl. Sci. 2016, 5, 85. [Google Scholar] [CrossRef]
- Teke, M.; Deveci, H.S.; Haliloğlu, O.; Gürbüz, S.Z.; Sakarya, U. A Short Survey of Hyperspectral Remote Sensing Applications in Agriculture. In Proceedings of the 2013 6th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, Turkey, 12–14 June 2013; pp. 171–176. [Google Scholar]
- Mariotto, I.; Thenkabail, P.S.; Huete, A.; Slonecker, E.T.; Platonov, A. Hyperspectral versus multispectral crop-productivity modeling and type discrimination for the HyspIRI mission. Remote Sens. Environ. 2013, 139, 291–305. [Google Scholar] [CrossRef]
- Adam, E.; Mutanga, O.; Rugege, D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review. Wetl. Ecol. Manag. 2010, 18, 281–296. [Google Scholar] [CrossRef]
- Govender, M.; Chetty, K.; Naiken, V.; Bulcock, H. A comparison of satellite hyperspectral and multispectral remote sensing imagery for improved classification and mapping of vegetation. Water SA 2008, 34, 147–154. [Google Scholar] [CrossRef]
- Sahoo, R.N.; Ray, S.S.; Manjunath, K.R. Hyperspectral Remote Sensing of Agriculture. Curr. Sci. 2015, 108, 848–859. [Google Scholar]
- Nigam, R.; Tripathy, R.; Dutta, S.; Bhagia, N.; Nagori, R.; Chandrasekar, K.; Kot, R.; Bhattacharya, B.K.; Ustin, S. Crop Type Discrimination and Health Assessment Using Hyperspectral Imaging. Curr. Sci. 2019, 116, 1108–1123. [Google Scholar] [CrossRef]
- Nguyen, H.D.D.; Pan, V.; Pham, C.; Valdez, R.; Doan, K.; Nansen, C. Night-based hyperspectral imaging to study association of horticultural crop leaf reflectance and nutrient status. Comput. Electron. Agric. 2020, 173, 105458. [Google Scholar] [CrossRef]
- Usha, K.; Singh, B. Potential Applications of Remote Sensing in Horticulture—A Review. Sci. Hortic. 2013, 153, 71–83. [Google Scholar] [CrossRef]
- Liu, Y.; Lyu, Q.; He, S.; Yi, S.; Liu, X.; Xie, R.; Zheng, Y.; Deng, L. Prediction of Nitrogen and Phosphorus Contents in Citrus Leaves Based on Hyperspectral Imaging. Int. J. Agric. Biol. Eng. 2015, 8, 80–88. [Google Scholar] [CrossRef]
- Gomez-Casero, M.T.; Lopez-Granados, F.; Pena-Barragan, J.M.; Jurado-Exposito, M.; Garcia-Torres, L. Assessing nitrogen and potassium deficiencies in olive orchards through discriminant analysis of hyperspectral data. J. Am. Soc. Hortic. Sci. 2007, 132, 611–618. [Google Scholar] [CrossRef]
- Zhang, T.-T.; Liu, F. Application of hyperspectral remote sensing in mineral identification and mapping. In Proceedings of the 2012 2nd International Conference on Computer Science and Network Technology, Changchun, China, 29–31 December 2012; pp. 103–106. [Google Scholar]
- Bajwa, S.G.; Tian, L.F. Soil Fertility Characterization in Agricultural Fields Using Hyperspectral Remote Sensing. Trans. ASAE 2005, 48, 2399–2406. [Google Scholar] [CrossRef]
- Song, Y.-Q.; Zhao, X.; Su, H.-Y.; Li, B.; Hu, Y.-M.; Cui, X.-S. Predicting Spatial Variations in Soil Nutrients with Hyperspectral Remote Sensing at Regional Scale. Sensors 2018, 18, 3086. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, X.; Li, M.; Xue, Y.; Qin, A.; Gao, G.; Wang, M.; Jiang, Y. Utilization of the Fusion of Ground-Space Remote Sensing Data for Canopy Nitrogen Content Inversion in Apple Orchards. Horticulturae 2023, 9, 1085. [Google Scholar] [CrossRef]
- Ye, X.; Abe, S.; Zhang, S. Estimation and Mapping of Nitrogen Content in Apple Trees at Leaf and Canopy Levels Using Hyperspectral Imaging. Precis. Agric 2020, 21, 198–225. [Google Scholar] [CrossRef]
- Chancia, R.; Bates, T.; Vanden Heuvel, J.; van Aardt, J. Assessing Grapevine Nutrient Status from Unmanned Aerial System (UAS) Hyperspectral Imagery. Remote Sens. 2021, 13, 4489. [Google Scholar] [CrossRef]
- Deery, D.; Jimenez-Berni, J.; Jones, H.; Sirault, X.; Furbank, R. Proximal Remote Sensing Buggies and Potential Applications for Field-Based Phenotyping. Agronomy 2014, 4, 349–379. [Google Scholar] [CrossRef]
- Pallottino, F.; Antonucci, F.; Costa, C.; Bisaglia, C.; Figorilli, S.; Menesatti, P. Optoelectronic Proximal Sensing Vehicle-Mounted Technologies in Precision Agriculture: A Review. Comput. Electron. Agric. 2019, 162, 859–873. [Google Scholar] [CrossRef]
- Dechant, B.; Cuntz, M.; Vohland, M.; Schulz, E.; Doktor, D. Estimation of Photosynthesis Traits from Leaf Reflectance Spectra: Correlation to Nitrogen Content as the Dominant Mechanism. Remote Sens. Environ. 2017, 196, 279–292. [Google Scholar] [CrossRef]
- Tripodi, P.; Massa, D.; Venezia, A.; Cardi, T. Sensing Technologies for Precision Phenotyping in Vegetable Crops: Current Status and Future Challenges. Agronomy 2018, 8, 57. [Google Scholar] [CrossRef]
- Xi, R.; Gu, Y.; Zhang, X.; Ren, Z. Nitrogen Monitoring and Inversion Algorithms of Fruit Trees Based on Spectral Remote Sensing: A Deep Review. Front. Plant Sci. 2024, 15, 1489151. [Google Scholar] [CrossRef]
- Ozdogan, M.; Yang, Y.; Allez, G.; Cervantes, C. Remote Sensing of Irrigated Agriculture: Opportunities and Challenges. Remote Sens. 2010, 2, 2274–2304. [Google Scholar] [CrossRef]
- Atzberger, C. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef]
- Khanal, S.; Kc, K.; Fulton, J.P.; Shearer, S.; Ozkan, E. Remote Sensing in Agriculture—Accomplishments, Limitations, and Opportunities. Remote Sens. 2020, 12, 3783. [Google Scholar] [CrossRef]
- Omia, E.; Bae, H.; Park, E.; Kim, M.S.; Baek, I.; Kabenge, I.; Cho, B.-K. Remote Sensing in Field Crop Monitoring: A Comprehensive Review of Sensor Systems, Data Analyses and Recent Advances. Remote Sens. 2023, 15, 354. [Google Scholar] [CrossRef]
- Verma, B.; Porwal, M.; Jha, A.K.; Vyshnavi, R.G.; Rajpoot, A.; Nagar, A.K. Enhancing Precision Agriculture and Environmental Monitoring Using Proximal Remote Sensing. J. Exp. Agric. Int. 2023, 45, 162–176. [Google Scholar] [CrossRef]
- Alexopoulos, A.; Koutras, K.; Ali, S.B.; Puccio, S.; Carella, A.; Ottaviano, R.; Kalogeras, A. Complementary Use of Ground-Based Proximal Sensing and Airborne/Spaceborne Remote Sensing Techniques in Precision Agriculture: A Systematic Review. Agronomy 2023, 13, 1942. [Google Scholar] [CrossRef]
- Bausch, W.C.; Khosla, R. QuickBird Satellite versus Ground-Based Multi-Spectral Data for Estimating Nitrogen Status of Irrigated Maize. Precis. Agric 2010, 11, 274–290. [Google Scholar] [CrossRef]
- Fiorentini, M.; Zenobi, S.; Orsini, R. Remote and Proximal Sensing Applications for Durum Wheat Nutritional Status Detection in Mediterranean Area. Agriculture 2021, 11, 39. [Google Scholar] [CrossRef]
- Darra, N.; Psomiadis, E.; Kasimati, A.; Anastasiou, A.; Anastasiou, E.; Fountas, S. Remote and Proximal Sensing-Derived Spectral Indices and Biophysical Variables for Spatial Variation Determination in Vineyards. Agronomy 2021, 11, 741. [Google Scholar] [CrossRef]
Name | Analytes | Material Analyzed | Working Mechanism | Accuracy | Advantages | Limitations | References |
---|---|---|---|---|---|---|---|
Miniature multi-ion sensor | NO3−, H2PO4−, and K+ | Plant and soil | ISE combined with ANN | 96% | It can effectively identify NPK ions thanks to the integrated ANN. Real-time monitoring. | Extensive calibration and limited to NPK ions. | [53] |
Potentiometric nitrate sensors | NO3− | Soil | ISE with polymer membrane with an ionophore | 87–98% | Cost-effective, mass producible, rapid response and low power consumption. Real-time monitoring. | Extensive calibration and interference with Ca. | [100] |
Electrochemical sensor | NO3−, H2PO4−, and K+ | Soil and water | ISE | Not specified. | Fast detection, a high sensitivity to NPK, and is portable. Real-time monitoring. | It is limited to NPK. It requires regular calibration. | [101] |
In planta nitrate sensor | NO3− and NO2− | Plant | Redox reaction with VB12 | 97% | It is characterized by high sensitivity and selectivity for nitrate detection. Real-time monitoring | Interference with other ions like Ca and PO43−, and K at high concentrations. | [102] |
NPK probes | EC, NH4, H2PO4−, and K+ | Soil | ISE | 85–90% | Detection of soil NPK ions, CE, temperature and humidity. Real-time monitoring. | Limited range and accuracy. | [105] |
Name | Analytes | Material Analyzed | Working Mechanism | Accuracy | Advantages | Limitations | References |
---|---|---|---|---|---|---|---|
Bioristor | Na+, Ca2+, Mg2+ and K+ | Plant | OECT | 89–85% | It tracks the dynamic changes in sap ion concentrations for a long period (120 days). Real-time monitoring. | Degradation of organic materials in adverse environmental conditions and constant calibration. | [122] |
Xylem glucose and sucrose sensor | Sucrose and glucose | Plant | OECT | Not specified | Useful to monitor glucose and sucrose concentrations. High sensitivity. Real-time monitoring. | Degradation of organic materials in adverse environmental conditions and constant calibration. | [133] |
OECT biosensor | K+ | Plant | OECT | 98% | It effectively measures K concentrations in raw sap and aqueous solutions. | Degradation of organic materials in adverse environmental conditions and constant calibration. | [137,140] |
Name | Analytes | Organ Analyzed | Working Mechanism | Accuracy | Advantages | Limitations | References |
---|---|---|---|---|---|---|---|
SPAD meter | Chlorophyll | Leaf | Light absorbance | ±1 SPAD unit | Rapid measurements. Non-destructive method. | Limited to chlorophyll measurement. Point measurements not continuous. | [222] |
Dualex meter | Chlorophyll, flavonoids and NBI | Leaf | Light absorbance | ±0.5 Dualex unit | Rapid measurements. Non-destructive method. More parameters measured than other instruments. | Point measurements not continuous. It is necessary to make replications to overcome the heterogeneity. | [223] |
AtLeaf | Chlorophyll | Leaf | Light absorbance | ±2 AtLeaf units. | Small instrument size. Rapid measurements. Non-destructive method. | Measurements are strongly influenced by ambient light conditions. Limited to chlorophyll measurement. | [224] |
Greenseeker | NDVI | Leaf | Spectral reflectance | ±0.01 NDVI | The instrument can be adapted to tractors. Useful for monitoring large fields. Non-destructive method. | It requires proper calibration for different tree species and environmental conditions. Dense clouds or dust can affect the measurements. | [225] |
Pocket PEA | Chlorophyll fluorescence | Leaf | Fluorescence analysis | ±0.01 Fv/Fm | It is easily used in the field, providing rapid and immediate measurements. Non-destructive method. | Measurements are influenced by environmental lighting conditions and dust or dirt on the leaves. | [226] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bulacio Fischer, P.T.; Carella, A.; Massenti, R.; Fadhilah, R.; Lo Bianco, R. Advances in Monitoring Crop and Soil Nutrient Status: Proximal and Remote Sensing Techniques. Horticulturae 2025, 11, 182. https://doi.org/10.3390/horticulturae11020182
Bulacio Fischer PT, Carella A, Massenti R, Fadhilah R, Lo Bianco R. Advances in Monitoring Crop and Soil Nutrient Status: Proximal and Remote Sensing Techniques. Horticulturae. 2025; 11(2):182. https://doi.org/10.3390/horticulturae11020182
Chicago/Turabian StyleBulacio Fischer, Pedro Tomas, Alessandro Carella, Roberto Massenti, Raudhatul Fadhilah, and Riccardo Lo Bianco. 2025. "Advances in Monitoring Crop and Soil Nutrient Status: Proximal and Remote Sensing Techniques" Horticulturae 11, no. 2: 182. https://doi.org/10.3390/horticulturae11020182
APA StyleBulacio Fischer, P. T., Carella, A., Massenti, R., Fadhilah, R., & Lo Bianco, R. (2025). Advances in Monitoring Crop and Soil Nutrient Status: Proximal and Remote Sensing Techniques. Horticulturae, 11(2), 182. https://doi.org/10.3390/horticulturae11020182