Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (179)

Search Parameters:
Keywords = electrochemical desorption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7113 KB  
Article
Evaluation of Sasa kurilensis Biomass-Derived Hard Carbon as a Promising Anode Material for Sodium-Ion Batteries
by Polina A. Marmaza, Oleg O. Shichalin, Zlata E. Priimak, Alina I. Seroshtan, Nikita P. Ivanov, Grigory P. Lakienko, Alexei S. Korenevskiy, Sergey A. Syubaev, Vitaly Yu. Mayorov, Maria A. Ushkova, Eduard A. Tokar, Roman I. Korneikov, Vadim V. Efremov, Alexy V. Ognev, Eugeniy K. Papynov and Ivan G. Tananaev
J. Compos. Sci. 2025, 9(12), 668; https://doi.org/10.3390/jcs9120668 - 3 Dec 2025
Viewed by 591
Abstract
The depletion of global lithium reserves, coupled with the necessity for environmentally sustainable and economically accessible energy storage systems, has driven the development of sodium-ion batteries (SIBs) as a promising alternative to lithium-ion technologies. Among various anode materials for SIBs, hard carbon exhibits [...] Read more.
The depletion of global lithium reserves, coupled with the necessity for environmentally sustainable and economically accessible energy storage systems, has driven the development of sodium-ion batteries (SIBs) as a promising alternative to lithium-ion technologies. Among various anode materials for SIBs, hard carbon exhibits obvious advantages and significant commercial potential owing to its high energy density, low operating potential, and stable capacity retention during prolonged cycling. Biomass represents the most attractive source of non-graphitizable carbon from a practical standpoint, being readily available, renewable, and low-cost. However, the complex internal structure of biomass precursors creates significant challenges for precise control of microstructure and properties of the resulting hard carbon materials, requiring further research and optimization of synthesis methodologies. This work reports the synthesis of hard carbon from Sasa kurilensis via pyrolysis at 900 °C and investigates the effect of alkaline pretreatment on the structural and electrochemical characteristics of the anode material for SIBs. Sasa kurilensis is employed for the first time as a source for non-graphitizable carbon synthesis, whose unique natural vascular structure forms optimal hierarchical porosity for sodium-ion intercalation upon thermal treatment. The materials were characterized by X-ray diffraction, infrared and Raman spectroscopy, scanning electron microscopy, X-ray microtomography and low-temperature nitrogen adsorption–desorption. Electrochemical properties were evaluated by galvanostatic cycling in the potential range of 0.02–2 V at a current density of 25 mAhg−1 in half-cells with sodium metal counter electrodes. The unmodified sample demonstrated a discharge capacity of 160 mAhg−1 by the 6th cycle, with an initial capacity of 77 mAhg−1. The alkaline-treated material exhibited lower discharge capacity (114 mAhg−1) and initial Coulombic efficiency (40%) due to increased specific surface area, leading to excessive electrolyte decomposition. Full article
(This article belongs to the Special Issue Composite Materials for Energy Management, Storage or Transportation)
Show Figures

Figure 1

17 pages, 2783 KB  
Article
High-Temperature Synthesis of High-Entropy Alloy PtPd_CoNiCu Nanoparticles as a Catalyst for the Oxygen Reduction Reaction
by Alina Nevelskaya, Anna Gavrilova, Nikolay Lyanguzov, Mikhail Tolstunov, Ilya Pankov, Anna Kremneva, Evgeny Gerasimov, Andrey Kokhanov and Sergey Belenov
Int. J. Mol. Sci. 2025, 26(23), 11504; https://doi.org/10.3390/ijms262311504 - 27 Nov 2025
Viewed by 568
Abstract
The aim of this work was high-temperature synthesis of PtPdCoNiCu/C nanoparticles with high-entropy alloy (HEA) structure as catalysts for oxygen reduction reaction. The materials were synthesized using a highly dispersed PtPd/C support, which was impregnated with Cu, Ni, and Co precursors followed by [...] Read more.
The aim of this work was high-temperature synthesis of PtPdCoNiCu/C nanoparticles with high-entropy alloy (HEA) structure as catalysts for oxygen reduction reaction. The materials were synthesized using a highly dispersed PtPd/C support, which was impregnated with Cu, Ni, and Co precursors followed by their precipitation with an alkali. Subsequently, the material was subjected to thermal treatment in a tube furnace at 600 °C for 1 h in a stream of argon containing 5% hydrogen. In combination with HRTEM, element mapping and line scan, XRD, and XPS data, these results confirm the successful synthesis of five-component PtPdCoNiCu high-entropy alloy nanoparticles on the surface of the carbon support. The obtained materials are characterized by a high electrochemical surface area of up to 63 m2/g(PGM), as determined by hydrogen adsorption/desorption and CO-stripping, and a high specific oxygen reduction reaction (ORR) activity of approximately 269 A/g(PGM) at 0.9 V vs. RHE. The synthesized material demonstrated outstanding stability, as confirmed by an accelerated stress test of 10,000 cycles. After the test, the electrochemical surface area decreased by only 12%, while the catalytic activity for ORR even increased. The proposed synthetic strategy opens a new pathway for obtaining promising highly stable five-component HEA nanoparticles of various compositions for application in catalysts. Full article
Show Figures

Figure 1

17 pages, 14976 KB  
Article
Hierarchical Porous P-Doped NiCo Alloy with α/ε Phase-Defect Synergy to Boost Alkaline HER Kinetics and Bifunctional Activity
by Lun Yang, Meng Zhang, Mengran Shi, Yi Yao, Ying Liu, Jianqing Zhou, Yi Cao, Zhong Li, Meifeng Liu, Xiuzhang Wang, Zhixing Gan, Haixiao Zhang, Shuai Chang, Gang Zhou and Yun Shan
Nanomaterials 2025, 15(20), 1562; https://doi.org/10.3390/nano15201562 - 14 Oct 2025
Viewed by 702
Abstract
Non-precious catalysts for alkaline hydrogen evolution reaction (HER) face a fundamental multi-scale challenge: lack of synergy between electronic structure tuning for balancing H adsorption and water dissociation, active site stabilization for boosting intrinsic turnover frequency (TOF), and mass transport. Even Pt loses 2–3 [...] Read more.
Non-precious catalysts for alkaline hydrogen evolution reaction (HER) face a fundamental multi-scale challenge: lack of synergy between electronic structure tuning for balancing H adsorption and water dissociation, active site stabilization for boosting intrinsic turnover frequency (TOF), and mass transport. Even Pt loses 2–3 orders of magnitude activity in alkaline media due to inefficient water dissociation, a synergistic gap unresolved by the Sabatier principle alone. Existing strategies only address isolated aspects: phase engineering optimizes electronic structure but not active site stability; heteroatom doping introduces defects unlinked to mass transport; and nanostructuring enhances mass transfer but not atomic-level activity. None of them address multi-scale mechanistic synergy. Herein, we design a hierarchically porous P-doped NiCo alloy (hpP-NiCo) with an aim of achieving this synergy via integrating α-FCC/ε-HCP phases, P-induced defects, and 3D porosity. The formed α/ε interface tunes the d-band center to balance H adsorption and water dissociation; and the doped P stabilizes metal-vacancy sites to boost TOF. In addition, porosity matches mass transport with active site accessibility. In 1 M KOH, hpP-NiCo reaches 1000 mA cm−2 at 185 mV overpotential and has a Tafel slope of 43.1 mV dec−1, corresponding to electrochemical desorption as the rate-limiting step and verifying Volmer acceleration. Moreover, it also exhibits bifunctional oxygen evolution reaction (OER), achieving 100 mA cm−2 at potential of 1.55 V. This work establishes a mechanistic synergy model for non-precious HER catalysts. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

20 pages, 8789 KB  
Article
The Effect of Hydrogen Embrittlement on Fracture Toughness of Cryogenic Steels
by Junggoo Park, Gyubaek An, Jeongung Park, Daehee Seong and Wonjun Jo
Metals 2025, 15(10), 1139; https://doi.org/10.3390/met15101139 - 13 Oct 2025
Cited by 1 | Viewed by 1399
Abstract
This study investigates the effect of hydrogen embrittlement on the fracture toughness of 9% Ni steel and STS 316L stainless steel under cryogenic conditions ranging from −80 °C to −253 °C. Hydrogen charging was performed using electrochemical methods, and hydrogen uptake was quantitatively [...] Read more.
This study investigates the effect of hydrogen embrittlement on the fracture toughness of 9% Ni steel and STS 316L stainless steel under cryogenic conditions ranging from −80 °C to −253 °C. Hydrogen charging was performed using electrochemical methods, and hydrogen uptake was quantitatively analyzed using thermal desorption spectroscopy (TDS). Fracture toughness was evaluated using crack tip opening displacement (CTOD) testing per ISO 12135, both without hydrogen (WO-H) and with hydrogen (W-H). The results showed a gradual decrease in CTOD values with decreasing temperature in both steels under hydrogen-free conditions, with ductile fracture maintained even at −253 °C. In contrast, hydrogen-charged specimens exhibited significant toughness degradation at intermediate subzero temperatures (−80 °C to −130 °C), particularly in 9% Ni steel due to its BCC crystal structure. However, at −160 °C and below, the effect of hydrogen embrittlement was suppressed mainly owing to the reduced hydrogen diffusivity. Scanning electron microscopy (SEM) analysis confirmed the transition from ductile to brittle fracture with decreasing temperature and hydrogen influences. At −253 °C, fully brittle fracture surfaces were observed in all specimens, confirming that at ultra-low temperatures, fracture behavior is dominated by temperature effects rather than hydrogen. These findings identify a practical temperature limit (approximately −160 °C) below which hydrogen embrittlement becomes negligible, providing critical insights for the design and application of structural materials in hydrogen cryogenic environments. Full article
Show Figures

Figure 1

28 pages, 1509 KB  
Review
Life After Adsorption: Regeneration, Management, and Sustainability of PFAS Adsorbents in Water Treatment
by Magdalena Andrunik and Marzena Smol
Water 2025, 17(19), 2813; https://doi.org/10.3390/w17192813 - 25 Sep 2025
Cited by 1 | Viewed by 4169
Abstract
Per- and polyfluoroalkyl substances (PFASs) represent one of the most challenging classes of persistent organic pollutants, and adsorption is currently one of the most widely deployed method for their removal from water. However, the long-term sustainability of adsorption-based treatment depends on how adsorbents [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) represent one of the most challenging classes of persistent organic pollutants, and adsorption is currently one of the most widely deployed method for their removal from water. However, the long-term sustainability of adsorption-based treatment depends on how adsorbents are regenerated, managed after exhaustion, and integrated into broader environmental and regulatory frameworks. This review synthesises recent advances in regeneration strategies for PFAS-saturated adsorbents, including thermal, solvent-based, chemical, hybrid, and emerging methods, and provides a targeted analysis of policy and regulatory frameworks governing PFAS management in water. Evidence from the literature is critically assessed with attention to regeneration efficiencies, adsorbent stability, secondary waste generation, and long-term reuse potential. Life cycle assessment (LCA) studies are also examined to evaluate the environmental and cost implications of different management options. The analysis highlights that while solvent and chemical regeneration achieve high short-term recovery, thermal processes offer partial destructive potential, and electrochemical methods are emerging as promising but unproven alternatives. Persistent challenges include incomplete PFAS desorption, performance decline over multiple cycles, energy intensity, and secondary waste burdens. Advancing sustainable PFAS treatment requires integrated evaluation frameworks linking technical performance with environmental impact and cost, supported by policy drivers that incentivize regeneration and safe end-of-life management. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 10122 KB  
Article
Effect of Copper Alloying on Hydrogen Embrittlement of Fe-28Mn-10Al-1C Austenitic Low-Density Steel
by Jiahao Gu, Sifan Jiang, Yanfei Qi, Xiqiang Ren and Yungang Li
Materials 2025, 18(17), 4139; https://doi.org/10.3390/ma18174139 - 4 Sep 2025
Viewed by 1197
Abstract
This study investigated the hydrogen embrittlement behavior of Fe-28Mn-10Al-1C-(0,3) Cu austenitic low-density steels after hydrogen charging. Electrochemical hydrogen charging and thermal desorption spectroscopy (TDS) were employed to characterize hydrogen desorption behavior and identify hydrogen trap types in cold-rolled (LZ) and annealed (TH) conditions. [...] Read more.
This study investigated the hydrogen embrittlement behavior of Fe-28Mn-10Al-1C-(0,3) Cu austenitic low-density steels after hydrogen charging. Electrochemical hydrogen charging and thermal desorption spectroscopy (TDS) were employed to characterize hydrogen desorption behavior and identify hydrogen trap types in cold-rolled (LZ) and annealed (TH) conditions. Uniaxial tensile tests were conducted to obtain mechanical properties and the hydrogen embrittlement index (HEI), enabling quantitative evaluation of hydrogen embrittlement susceptibility. Fracture surface morphology was analyzed to elucidate the underlying embrittlement mechanisms. Results indicate that annealing treatment and Cu addition have negligible effects on the activation energy of reversible hydrogen traps, suggesting similar trap types. The reversible hydrogen content decreased by 0.1 wt.ppm and 0.2 wt.ppm in LZ-3Cu and TH-3Cu, respectively, compared to their Cu-free counterparts, indicating that Cu addition mitigates the accumulation of reversible hydrogen. Annealed specimens exhibited lower HEI values, with the HEI of TH-0Cu decreasing from 21.3% to 13.5% and that of TH-3Cu reaching only 9.6%. Fracture mode transitioned from mixed brittle-ductile to fully ductile with Cu alloying, accompanied by a shift from the coupled the Hydrogen-Enhanced Decohesion (HEDE) and the Hydrogen-Enhanced Localized Plasticity (HELP) mechanism to the HELP-dominated mechanism. Collectively, these findings demonstrate that Cu alloying significantly enhances the resistance of austenitic low-density steels to hydrogen embrittlement. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

19 pages, 32194 KB  
Article
Effectiveness and Remediation Mechanisms of Geo-Electrochemical Technology for Arsenic Removal in Paddy Soil from Northern Guangxi
by Yuxiong Jiang, Meilan Wen, Yao Sun, Panfeng Liu, Yunxue Ma, Caiyun Zhang and Xiaohan Zhang
Toxics 2025, 13(9), 728; https://doi.org/10.3390/toxics13090728 - 29 Aug 2025
Viewed by 717
Abstract
Arsenic pollution in paddy soil is a major environmental issue, and its remediation has become a subject of broad interest. Geo-electrochemical technology has been shown to have significant potential for remediating heavy metal-contaminated soils in recent years. Taking contaminated paddy soil from northern [...] Read more.
Arsenic pollution in paddy soil is a major environmental issue, and its remediation has become a subject of broad interest. Geo-electrochemical technology has been shown to have significant potential for remediating heavy metal-contaminated soils in recent years. Taking contaminated paddy soil from northern Guangxi as the research subject, this study aims to assess the effectiveness of geo-electrochemical technology for arsenic remediation. An orthogonal experimental design was used to identify the optimal combination of parameters, including power supply duration, voltage gradient, power supply mode, and electrolyte type. The arsenic removal efficiency was thoroughly assessed, and the underlying remediation mechanisms associated with geo-electrochemical technology combined with EDTA-2Na were extensively investigated. The findings revealed a substantial decrease in the residual arsenic fraction after treatment, accompanied by a substantial increase in the mobility and bioavailability of arsenic. The maximum removal rate of arsenic from the soil was determined to be 19.59%. Among the analyzed factors, electrolyte type exerted the most significant influence on the arsenic removal efficiency, followed by power supply duration and voltage gradient, while the impact of the power supply mode was less significant. The optimal remediation effect was achieved under the following conditions: a power supply duration of 108 h, a voltage gradient of 0.6 V/cm, continuous power supply mode, and the use of EDTA-2Na as the electrolyte. The multiple strong coordinating atoms in EDTA-2Na can form stable chelates with Fe3+ and Al3+ bound to arsenic in the soil, thereby causing the desorption of arsenic. The integration of geo-electrochemical technology with EDTA-2Na forms a synergistic multiphase electrochemical reaction mechanism, significantly improving the overall remediation efficiency in arsenic-contaminated soils. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

20 pages, 4501 KB  
Article
Performance Study of Biomass Carbon-Based Materials in Electrocatalytic Fenton Degradation of Printing and Dyeing Wastewater
by Lie Wen, Yan An and Yanhua Lei
Catalysts 2025, 15(9), 818; https://doi.org/10.3390/catal15090818 - 28 Aug 2025
Cited by 1 | Viewed by 1060
Abstract
Biomass carbon materials exhibit a significant specific surface area, carbon defects, and oxygen-containing functional groups during the electrochemical cathodic oxygen reduction (ORR) process, resulting in an enhanced adsorption–desorption of reaction intermediates (e.g., *OH and *OOH) by the catalyst. In this study, a cost-effective [...] Read more.
Biomass carbon materials exhibit a significant specific surface area, carbon defects, and oxygen-containing functional groups during the electrochemical cathodic oxygen reduction (ORR) process, resulting in an enhanced adsorption–desorption of reaction intermediates (e.g., *OH and *OOH) by the catalyst. In this study, a cost-effective biomass-derived carbon material (HBC-500) was prepared through low-temperature pyrolysis at 500 °C using Spirulina as a precursor for H2O2 production. By employing surface engineering modification of the carbon-based material to promote the ORR process’s two-electron selectivity, HBC-500 demonstrated consistent experimental results with the RRDE findings at pH = 5, yielding 238.40 mg·L−1 of hydrogen peroxide within a 90 min duration at a current density of 50 mA·cm−2. Furthermore, HBC-500 accomplished over 95% degradation within 30 min at pH = 5 and maintained approximately 91.79% electrocatalytic activity after undergoing five consecutive electrocatalytic cycles lasting 300 min. These results establish HBC-500 biomass carbon material as a highly suitable candidate for H2O2 production and Fenton degradation of organic wastewater. Full article
Show Figures

Graphical abstract

17 pages, 1969 KB  
Article
Towards an Implantable Aptamer Biosensor for Monitoring in Inflammatory Bowel Disease
by Yanan Huang, Wenlu Duan, Fei Deng, Wenxian Tang, Sophie C. Payne, Tianruo Guo, Ewa M. Goldys, Nigel H. Lovell and Mohit N. Shivdasani
Biosensors 2025, 15(8), 546; https://doi.org/10.3390/bios15080546 - 19 Aug 2025
Cited by 3 | Viewed by 1481
Abstract
Inflammatory bowel disease (IBD) is a relapsing–remitting condition resulting in chronic inflammation of the gastrointestinal tract. Present methods are either inadequate or not viable for continuous tracking of disease progression in individuals. In this study, we present the development towards an implantable biosensor [...] Read more.
Inflammatory bowel disease (IBD) is a relapsing–remitting condition resulting in chronic inflammation of the gastrointestinal tract. Present methods are either inadequate or not viable for continuous tracking of disease progression in individuals. In this study, we present the development towards an implantable biosensor for detecting interleukin-6 (IL-6), an important cytokine implicated in IBD. The optimised sensor design includes a gold surface functionalised with a known IL-6-specific aptamer, integrating a recognition sequence and an electrochemical redox probe. The IL-6 aptasensor demonstrated a sensitivity of up to 40% and selectivity up to 10% to the IL-6 target in vitro. Sensors were found to degrade over 7 days when exposed to recombinant IL-6, with the degradation rate rapidly increasing when exposed to intestinal mucosa. A feasibility in vivo experiment with a newly designed implantable gut sensor array confirmed rapid degradation over a 5-h implantation period. We achieved up to a 93% reduction in sensor degradation rates, with a polyvinyl alcohol–methyl acrylate hydrogel coating that aimed to reduce nonspecific interactions in complex analytes compared to uncoated sensors. Degradation was linked to desorption of the monolayer leading to breakage of gold thiol bonds. While there are key challenges to be resolved before a stable implantable IBD sensor is realised, this work highlights the potential of aptamer-based biosensors as effective tools for long-term diagnostic monitoring in IBD. Full article
Show Figures

Figure 1

16 pages, 2126 KB  
Article
Characteristic Influence of Cerium Ratio on PrMn Perovskite-Based Cathodes for Solid Oxide Fuel Cells
by Esra Balkanlı Ünlü, Meltem Karaismailoğlu Elibol and Halit Eren Figen
Catalysts 2025, 15(8), 786; https://doi.org/10.3390/catal15080786 - 18 Aug 2025
Viewed by 1026
Abstract
In this study, cerium with different ratios (x = 0 (zero), 0.1, 0.15, 0.5) was added to the PrMn structure as an A-site material to evaluate characteristic behavior as a potential cathode material for solid oxide fuel cells. The PrxCe1−x [...] Read more.
In this study, cerium with different ratios (x = 0 (zero), 0.1, 0.15, 0.5) was added to the PrMn structure as an A-site material to evaluate characteristic behavior as a potential cathode material for solid oxide fuel cells. The PrxCe1−xMnO3−δ electrocatalysts were synthesized using the sol–gel combustion method and were assessed for their electrochemical, phase, and structural properties, as well as desorption and reducibility capabilities. Phase changes, from orthorhombic to cubic structures observed upon cerium additions, were evaluated via the X-Ray diffraction method. X-Ray photoelectron spectroscopy (XPS) showed the valence states of the surface between the Ce4+/Ce3+ and Pr4+/Pr3+ redox pairs, while oxygen temperature programmed desorption (O2-TPD) analysis was used to evaluate the oxygen adsorption and desorption behavior of the electrocatalysts. Redox characterization, evaluated via hydrogen atmosphere temperature-programmed reduction (H2-TPR), revealed that a higher cerium ratio in the structure lowered the reduction temperature, suggesting a better dynamic oxygen exchange capability at a lower temperature for the Pr0.5Ce0.5MnO3−δ catalyst compared to the electrochemical behavior analysis by the electrochemical impedance spectroscopy method. Moreover, the symmetrical cell tests with Pr0.5Ce0.5MnO3−δ electrodes showed that, when combined with scandia-stabilized zirconia (ScSZ) electrolyte, the overall polarization resistance was reduced by approximately 28% at 800 °C compared to cells with yttria-stabilized zirconia (YSZ) electrolyte. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Graphical abstract

10 pages, 1814 KB  
Article
Impact of Surface Preparation on the Quantification of Diffusible Hydrogen Content in Aluminum Alloys
by Mehrdad Hoseinpoor, Nikola Macháčková, Terezie Košová Altnerová, Sandrine Zanna, Darja Rudomilova and Tomáš Prošek
Metals 2025, 15(8), 913; https://doi.org/10.3390/met15080913 - 17 Aug 2025
Cited by 1 | Viewed by 1087
Abstract
The impact of final surface preparation immediately prior to hydrogen content measurements in aluminum alloy samples was investigated using thermal desorption analysis (TDA). Samples ground in water showed an apparent hydrogen signal. Glow-discharge optical emission spectroscopy (GDOES) confirmed that the analyzed hydrogen originated [...] Read more.
The impact of final surface preparation immediately prior to hydrogen content measurements in aluminum alloy samples was investigated using thermal desorption analysis (TDA). Samples ground in water showed an apparent hydrogen signal. Glow-discharge optical emission spectroscopy (GDOES) confirmed that the analyzed hydrogen originated from the subsurface layer. X-ray photoelectron spectroscopy (XPS) revealed the presence of a thin aluminum oxide/hydroxide layer on the surface. Formation of these compounds indicates that hydrogen was introduced into the material by the reaction of oxide-free aluminum with water molecules during the grinding, followed by its entrapment at near-surface interstitial lattice sites. Chemical pickling in concentrated nitric acid and combined grinding, chemical pickling, and electrochemical polishing approaches are proposed as proper surface-preparation techniques for samples without and with adherent corrosion products, respectively. Full article
(This article belongs to the Special Issue Light Alloy and Its Application (2nd Edition))
Show Figures

Figure 1

20 pages, 5107 KB  
Article
Controlled Synthesis of N-Doped Hierarchical Porous Carbon Spheres Through Polydopamine for CO2 Adsorption and High-Performance Supercapacitors
by Xiaoqi Jin, Jinlong Ge, Zhong Wu, Linlin Zhu, Mingwen Xiong, Jiahui Qi and Chengxiu Ruan
Molecules 2025, 30(13), 2747; https://doi.org/10.3390/molecules30132747 - 26 Jun 2025
Cited by 2 | Viewed by 1046
Abstract
Hierarchical porous N-doped carbon spheres featuring a combination of micropores, mesopores and macropores as well as tuneable properties were synthesised using dopamine as a carbon precursor and triblock copolymers (F127, P123 and F127/P123 composites) as templates via direct polymerisation-induced self-assembly. The structures and [...] Read more.
Hierarchical porous N-doped carbon spheres featuring a combination of micropores, mesopores and macropores as well as tuneable properties were synthesised using dopamine as a carbon precursor and triblock copolymers (F127, P123 and F127/P123 composites) as templates via direct polymerisation-induced self-assembly. The structures and textures of these materials were characterised using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, N2 adsorption–desorption isotherm analysis, Fourier-transform infrared spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The sample synthesised at an F127:P123 molar ratio of 1:3 (NCS-FP3) exhibited the highest surface area (463 m2/g) and pore volume (0.27 cm3/g). The hydrophobic/hydrophilic molar ratios of the templates were adjusted to control the morphology of the corresponding micelles and hence the porous structures and morphologies of the carbon spheres, which exhibited high CO2 capture capacities (2.90–3.46 mmol/g at 273 K and 760 mmHg) because of their developed microporous structures and N doping. Additionally, NCS-FP3 exhibited an outstanding electrochemical performance, achieving a high specific capacitance (328.3 F/g at a current density of 0.5 A/g) and outstanding cycling stability (99.2% capacitance retention after 10,000 cycles). These high CO2 capture and electrochemical performances were ascribed to the beneficial effects of pore structures and surface chemistry features. Full article
Show Figures

Figure 1

28 pages, 5628 KB  
Article
Rice Husks as a Biogenic Template for the Synthesis of Fe2O3/MCM-41 Nanomaterials for Polluted Water Remediation
by Tamara B. Benzaquén, Paola M. Carraro, Griselda A. Eimer, Julio Urzúa-Ahumada, Po S. Poon and Juan Matos
Molecules 2025, 30(12), 2484; https://doi.org/10.3390/molecules30122484 - 6 Jun 2025
Cited by 4 | Viewed by 1124
Abstract
This work shows a sustainable methodology for the synthesis of biogenic materials designed for the removal and photodegradation of rhodamine B (RhB), a highly dangerous environmental pollutant that induces reproductive toxicity. The classical synthesis of MCM-41-ordered mesoporous materials was modified using biocompatible rice [...] Read more.
This work shows a sustainable methodology for the synthesis of biogenic materials designed for the removal and photodegradation of rhodamine B (RhB), a highly dangerous environmental pollutant that induces reproductive toxicity. The classical synthesis of MCM-41-ordered mesoporous materials was modified using biocompatible rice husk as the silica template. Iron was incorporated and the so-prepared biogenic photocatalysts were characterized by X-ray diffraction, N2 adsorption–desorption isotherms, transmission electron microscopy, diffuse reflectance UV-Vis, surface pH, cyclic voltammetry, and Fourier transform infrared spectral analysis of pyridine adsorption. The photocatalytic performance of the materials was evaluated following the removal by adsorption and the photon-driven degradation of RhB. The adsorption capacity and photocatalytic activity of the biogenic materials were correlated with their properties, including iron content, texture, surface content, and electrochemical properties. The best biogenic material boosted the degradation rates of RhB under UV irradiation up to 4.7 and 2.2 times greater than the direct photolysis and the benchmark semiconductor TiO2-P25. It can be concluded that the use of rice husks for the synthesis of biogenic Fe-modified mesoporous materials is a promising strategy for wastewater treatment applications, particularly in the removal of highly toxic organic dyes. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules: Recent Advances in Photochemistry)
Show Figures

Graphical abstract

15 pages, 2985 KB  
Article
Influence of Precursors on Physical Characteristics of MoS2 and Their Correlation with Potential Electrochemical Applications
by Cătălin Alexandru Sălăgean, Liviu Cosmin Coteț, Monica Baia, Carmen Ioana Fort, Graziella Liana Turdean, Lucian Barbu-Tudoran, Mihaela Diana Lazar and Lucian Baia
Materials 2025, 18(9), 2111; https://doi.org/10.3390/ma18092111 - 4 May 2025
Cited by 2 | Viewed by 1822
Abstract
MoS2, a key material for supercapacitors, batteries, photovoltaics, catalysis, and sensing applications, was synthesized using the hydrothermal method. Different precursors such as molybdenum sources (ammonium heptamolybdate tetrahydrate ((NH4)6Mo7O24·4H2O) and sodium molybdate [...] Read more.
MoS2, a key material for supercapacitors, batteries, photovoltaics, catalysis, and sensing applications, was synthesized using the hydrothermal method. Different precursors such as molybdenum sources (ammonium heptamolybdate tetrahydrate ((NH4)6Mo7O24·4H2O) and sodium molybdate hydrate (Na2MoO4·2H2O)) combined with L-cysteine, thiourea, and thioacetamide, as the sulfur source, were involved. The obtained samples were morphologically and structurally characterized by X-ray diffraction, Raman spectroscopy, N2 adsorption/desorption measurements, and Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy (SEM–EDX). Electrochemical impedance spectroscopy was involved in MoS2 characterization as electrode materials. The objective of this study was to ascertain the impact of precursor combinations on the morphological, structural, and electrochemical characteristics of MoS2. A thorough examination of the empirical data revealed that the MoS2 compounds, which were synthesized using thiourea as the sulfur source, exhibited a more pronounced flower-like morphology, increased crystallite size, and enhanced electrochemical properties with potential electrochemical applications. Full article
(This article belongs to the Special Issue Advanced Nanomaterials and Nanocomposites for Energy Conversion)
Show Figures

Figure 1

15 pages, 3210 KB  
Article
Electrocatalyst of PdNi Particles on Carbon Black for Hydrogen Oxidation Reaction in Alkaline Membrane Fuel Cell
by Carolina Silva-Carrillo, Edgar Alonso Reynoso-Soto, Ivan Cruz-Reyes, Moisés Israel Salazar-Gastélum, Balter Trujillo-Navarrete, Sergio Pérez-Sicairos, José Roberto Flores-Hernández, Tatiana Romero-Castañón, Francisco Paraguay-Delgado and Rosa María Félix-Navarro
Nanomaterials 2025, 15(9), 664; https://doi.org/10.3390/nano15090664 - 27 Apr 2025
Cited by 1 | Viewed by 1151
Abstract
This work reports the synthesis of PdNi bimetallic particles and Pd on Carbon black (Vulcan XC-72) by reverse microemulsion and the chemical reduction of metallic complexes. The physicochemical characterization techniques used for the bimetallic and metallic materials were TGA, STEM, ICP-OES, and XRD. [...] Read more.
This work reports the synthesis of PdNi bimetallic particles and Pd on Carbon black (Vulcan XC-72) by reverse microemulsion and the chemical reduction of metallic complexes. The physicochemical characterization techniques used for the bimetallic and metallic materials were TGA, STEM, ICP-OES, and XRD. Also, the electrocatalysts were studied by electrochemical techniques such as anodic CO stripping and β-NiOOH reduction to elucidate the Pd and Ni surface sites participation in the reactions. The electrocatalysts were evaluated in the anodic reaction in anion-exchange membrane fuel cells (AEMFC) and the hydrogen oxidation reaction (HOR) in alkaline media. The results indicate that PdNi/C electrocatalysts exhibited higher electrocatalytic activity than Pd/C electrocatalysts in both the half-cell test and in the AEMFC, even with the same Pd loading, which is attributed to the bifunctional mechanism that provides OH- groups in oxophilic sites associated to Ni, that can facilitate the desorption of Hads in the Pd sites for the bimetallic material. Full article
Show Figures

Graphical abstract

Back to TopTop