materials-logo

Journal Browser

Journal Browser

Advanced Nanomaterials and Nanocomposites for Energy Conversion

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Advanced Nanomaterials and Nanotechnology".

Deadline for manuscript submissions: 20 July 2025 | Viewed by 1898

Special Issue Editors


E-Mail Website
Guest Editor
Associate Professor, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, China
Interests: solar thermal utilization; nanofluids; phase-change materials; thermophysical properties

E-Mail Website
Guest Editor
Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, School of Energy and Power Engineering, Chongqing University, Chongqing, China
Interests: interfacial resistance; water transport; membrane separation; adsorptive separation; nanoporous materials
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues

The rapid growth of the global population has significantly increased energy consumption and pressure on the environment. New materials with intriguing physical and chemical properties provide opportunities to address these challenges. Nanomaterials and nanocomposites have wide application potentials in energy applications, and the research in this area is developing fast, including the synthesis of nanomaterials, design of micro-structured materials, and their applications in energy areas (energy production, energy conversion, energy storage, etc.). The field is rapidly advancing into new areas of discovery.

It is my pleasure to invite you to submit a manuscript to this Special Issue. Full papers, communications, and reviews are all welcome.

Dr. Xiong Zheng
Prof. Dr. Lang Liu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanomaterials
  • nanocomposites
  • energy storage
  • energy conversion
  • renewable energy

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

11 pages, 2615 KiB  
Article
Electronic Excitation-Induced Modification in Electronic Structure and Magnetism for Pulsed Laser Deposited Barium Strontium Titanate Thin Films with Changing Fe Impurity
by Arkaprava Das and Carla Bittencourt
Materials 2025, 18(11), 2534; https://doi.org/10.3390/ma18112534 - 28 May 2025
Viewed by 243
Abstract
This study presents a comprehensive analysis of the modifications in electronic structure and magnetism resulting from electronic excitation in pulsed laser-deposited Ba0.7Sr0.3FexTi(1−x)O3 thin films, specifically for compositions with x = 0, 0.1, and 0.2. [...] Read more.
This study presents a comprehensive analysis of the modifications in electronic structure and magnetism resulting from electronic excitation in pulsed laser-deposited Ba0.7Sr0.3FexTi(1−x)O3 thin films, specifically for compositions with x = 0, 0.1, and 0.2. To investigate the effects of electronic energy loss (Se) within the lattice, we performed 120 MeV Ag ion irradiation at varying fluences (1 × 1012 ions/cm2 and 5 × 1012 ions/cm2) and compared the results with those of the pristine sample. The Se induces lattice damage by generating ion tracks along its trajectory, which subsequently leads to a reduction in peak intensity observed in X-ray diffraction patterns. Atomic force microscopy micrographs indicate that irradiation resulted in a decrease in average grain height, accompanied by a more homogeneous grain distribution. X-ray photoelectron spectroscopy reveals a significant increase in oxygen vacancy (VO) concentration as ion fluence increases. Ferromagnetism exhibits progressive deterioration with rising irradiation fluence. Due to the high Se and multiple ion impact processes, cation interstitial defects are highly likely, which may overshadow the influence of VO in inducing ferromagnetism, thereby contributing to an overall decline in magnetic properties. Furthermore, the elevated Se potentially disrupts bound magnetic polarons, leading to a degradation of long-range ferromagnetism. Collectively, this investigation elucidates the electronic excitation-induced modulation of ferromagnetism, employing Fe impurity incorporation and irradiation techniques for precise defect engineering. Full article
(This article belongs to the Special Issue Advanced Nanomaterials and Nanocomposites for Energy Conversion)
Show Figures

Figure 1

15 pages, 2985 KiB  
Article
Influence of Precursors on Physical Characteristics of MoS2 and Their Correlation with Potential Electrochemical Applications
by Cătălin Alexandru Sălăgean, Liviu Cosmin Coteț, Monica Baia, Carmen Ioana Fort, Graziella Liana Turdean, Lucian Barbu-Tudoran, Mihaela Diana Lazar and Lucian Baia
Materials 2025, 18(9), 2111; https://doi.org/10.3390/ma18092111 - 4 May 2025
Viewed by 332
Abstract
MoS2, a key material for supercapacitors, batteries, photovoltaics, catalysis, and sensing applications, was synthesized using the hydrothermal method. Different precursors such as molybdenum sources (ammonium heptamolybdate tetrahydrate ((NH4)6Mo7O24·4H2O) and sodium molybdate [...] Read more.
MoS2, a key material for supercapacitors, batteries, photovoltaics, catalysis, and sensing applications, was synthesized using the hydrothermal method. Different precursors such as molybdenum sources (ammonium heptamolybdate tetrahydrate ((NH4)6Mo7O24·4H2O) and sodium molybdate hydrate (Na2MoO4·2H2O)) combined with L-cysteine, thiourea, and thioacetamide, as the sulfur source, were involved. The obtained samples were morphologically and structurally characterized by X-ray diffraction, Raman spectroscopy, N2 adsorption/desorption measurements, and Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy (SEM–EDX). Electrochemical impedance spectroscopy was involved in MoS2 characterization as electrode materials. The objective of this study was to ascertain the impact of precursor combinations on the morphological, structural, and electrochemical characteristics of MoS2. A thorough examination of the empirical data revealed that the MoS2 compounds, which were synthesized using thiourea as the sulfur source, exhibited a more pronounced flower-like morphology, increased crystallite size, and enhanced electrochemical properties with potential electrochemical applications. Full article
(This article belongs to the Special Issue Advanced Nanomaterials and Nanocomposites for Energy Conversion)
Show Figures

Figure 1

Review

Jump to: Research

25 pages, 4046 KiB  
Review
A Review of Nanofiber Electrodes and the In Situ Exsolution of Nanoparticles for Solid Oxide Cells
by Jakub Lach, Michał Gogacz, Piotr Winiarz, Yihan Ling, Mingjiong Zhou and Kun Zheng
Materials 2025, 18(6), 1272; https://doi.org/10.3390/ma18061272 - 13 Mar 2025
Cited by 1 | Viewed by 912
Abstract
Solid oxide cells (SOCs) can operate efficiently in solid oxide fuel cell (SOFC) and/or solid oxide electrolysis cell (SOEC) modes, and are one of the most promising electrochemical devices for energy conversion and storage, facilitating the integration of renewable energies with the electric [...] Read more.
Solid oxide cells (SOCs) can operate efficiently in solid oxide fuel cell (SOFC) and/or solid oxide electrolysis cell (SOEC) modes, and are one of the most promising electrochemical devices for energy conversion and storage, facilitating the integration of renewable energies with the electric grid. However, the SOC electrodes suffer performance and stability issues, especially in the case of fuel electrodes when SOCs are fueled by cheaper and more available fuels such as methane and natural gas. Typical Ni-YSZ cermet fuel electrodes suffer problems of coarsening, carbon deposition, and sulfur poisoning. Therefore, developing new electrodes using novel design strategies for SOCs is crucial. In this review work, the fuel electrode development strategies including the in situ exsolution of nanoparticles, multi-elemental nanocatalysts, and nanofiber materials have been reviewed and summarized for the design of new electrodes for SOCs. Nanofiber electrodes with in situ exsolved nanoparticles, which combine the advantages of a unique nanofiber microstructure and stable and active exsolved nanoparticles, are of great interest and significantly contribute to the development of high-performance fuel electrodes for SOCs. Full article
(This article belongs to the Special Issue Advanced Nanomaterials and Nanocomposites for Energy Conversion)
Show Figures

Figure 1

Back to TopTop