Controlled Synthesis of N-Doped Hierarchical Porous Carbon Spheres Through Polydopamine for CO2 Adsorption and High-Performance Supercapacitors
Abstract
1. Introduction
2. Results and Discussion
2.1. Structure and Morphology
2.1.1. X-Ray Diffraction (XRD) Analysis
2.1.2. Morphology and Surface Elemental Composition Analyses
2.1.3. Surface Area and Pore Structure Analyses
2.1.4. Fourier-Transform Infrared (FTIR) Analysis
2.1.5. Raman Analysis
2.1.6. XPS Analysis
2.2. CO2 Adsorption Performance
2.3. Electrochemical Performance
3. Experimental Section
3.1. Materials
3.2. Preparation of Hierarchical Porous N-Doped Carbon Spheres
3.3. Characterisation
3.4. CO2 Adsorption Performance Evaluation
3.5. Electrochemical Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
XRD | X-ray diffraction |
SEM | Scanning electron microscopy |
TEM | Transmission electron microscopy |
EDS | Energy dispersive spectroscopy |
FT-IR | Fourier-transform infrared |
XPS | X-ray photoelectron spectroscopy |
DFT | Density functional theory |
CV | Cyclic voltammetry |
GCD | Galvanostatic charge/discharge |
EIS | Electrochemical impedance spectroscopy |
Rct | Charge-transfer resistance |
F127 | Polyethylene oxide(106)-block-polypropylene oxide(70)-block-polyethylene oxide(106) |
P123 | Polyethylene oxide(20)-block-polypropylene oxide(70)-block-polyethylene oxide(20) |
TMB | 1,3,5-trimethylbenzene |
Po | Polyoxyethylene |
DA | Dopamine |
PDA | Polydopamine |
PTFE | Polytetrafluoroethylene |
References
- Staciwa, P.; Sibera, D.; Pełech, I.; Narkiewicz, U.; Moszyński, D. CO2 adsorption studies on spherical carbon derived from resorcinol-formaldehyde resin and sugars. J. Environ. Chem. Eng. 2024, 12, 111735. [Google Scholar] [CrossRef]
- Ma, S.; Su, P.; Huang, W.; Jiang, S.P.; Bai, S.; Liu, J. Atomic Ni species anchored N-doped carbon hollow spheres as nanoreactors for efficient electrochemical CO2 reduction. Chem. Catal. 2019, 11, 6092–6098. [Google Scholar] [CrossRef]
- Ding, H.; Hu, B.; Zhang, B.; Zhang, H.; Yan, X.; Nie, G.; Liang, M. Carbon-based nanozymes for biomedical applications. Nano Res. 2021, 14, 570–583. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, G.; Wen, C.; Zhang, L.; Wang, Y.S. Preparation of carbon spheres from lactose by hydrothermal reaction and their performance in gas separation. Environ. Prog. Sustain. Energy 2014, 33, 581–587. [Google Scholar] [CrossRef]
- Wang, S.; Qin, J.; Zhao, Y.; Duan, L.; Wang, J.; Gao, W.; Wang, R.; Wang, C.; Pal, M.; Wu, Z.-S.; et al. Ultrahigh surface area N-doped hierarchically porous carbon for enhanced CO2 capture and electrochemical energy storage. ChemSusChem 2019, 12, 3541–3549. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, Q.; Li, C.; Zhu, L.; Huang, Y.; Zhu, X.; Sun, Y. Hydrogel-derived nitrogen-doped porous carbon framework with vanadium nitride decoration for supercapacitors with superior cycling performance. J. Mater. Sci. Technol. 2023, 155, 167–174. [Google Scholar] [CrossRef]
- Fan, Z.; Ding, B.; Guo, H.; Shi, M.; Zhang, Y.; Dong, S.; Zhang, T.; Dou, H.; Zhang, X. Dual dopamine derived polydopamine coated N-doped porous carbon spheres as a sulfur host for high-performance lithium–sulfur batteries. Chem.-Eur. J. 2019, 25, 10710–10717. [Google Scholar] [CrossRef]
- Wang, J.-G.; Liu, H.; Sun, H.; Hua, W.; Wang, H.; Liu, X.; Wei, B. One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon 2018, 127, 85–92. [Google Scholar] [CrossRef]
- Zhang, M.; Jiang, S.; Zou, J.; Qu, X.; Zhang, Z.; Wang, R.; Qiu, S. N-doped yolk−shell carbon nanospheres with “carbon bridges” for supercapacitors. ACS Appl. Nano Mater. 2023, 6, 8279–8289. [Google Scholar] [CrossRef]
- Kim, H.-S.; Kang, M.-S.; Yoo, W.-C. Highly enhanced gas sorption capacities of N-doped porous carbon spheres by hot NH3 and CO2 treatments. J. Phys. Chem. C 2015, 119, 28512–28522. [Google Scholar] [CrossRef]
- Wang, Q.; Yan, J.; Wei, T.; Feng, J.; Ren, Y.; Fan, Z.; Zhang, M.; Jing, X. Two-dimensional mesoporous carbon sheet-like framework material for high-rate supercapacitors. Carbon 2013, 60, 481–487. [Google Scholar] [CrossRef]
- Guo, Q.; Li, B.; Shen, M.; Li, W.; Gao, Q.; Xu, G. Controllable synthesis of bowl-shaped porous carbon materials through didodecyldimethylammonium bromide for high performance supercapacitors. Korean J. Chem. Eng. 2023, 40, 1331–1339. [Google Scholar] [CrossRef]
- Jin, X.; Ge, J.; Zhang, L.; Wu, Z.; Zhu, L.; Xiong, M. Synthesis of hierarchically ordered porous silica materials for CO2 capture: The role of pore structure and functionalized amine. Inorganics 2022, 10, 87. [Google Scholar] [CrossRef]
- Estevez, L.; Barpaga, D.; Zheng, J.; Sabale, S.R.; Patel, R.L.; Zhang, J.-G.; McGrail, B.P.; Motkuri, R.K. Hierarchically porous carbon materials for CO2 capture: The role of pore structure. Ind. Eng. Chem. Res. 2017, 57, 1227–1235. [Google Scholar] [CrossRef]
- Xu, C.; Hedin, N. Ultramicroporous CO2 adsorbents with tunable mesopores based on polyimines synthesized under off-stoichiometric conditions. Microporous Mesoporous Mater. 2016, 222, 80–86. [Google Scholar] [CrossRef]
- Zhang, J.; Li, H.; Li, Y.; Li, S.; Xu, Y.; Li, H. Boron-doped carbon nanoparticles for identification and tracing of microplastics in “turn-on” fluorescence mode. Chem. Eng. J. 2022, 435, 135075. [Google Scholar] [CrossRef]
- Tao, G.; Zhang, L.; Chen, L.; Cui, X.; Hua, Z.; Wang, M.; Wang, J.; Chen, Y.; Shi, J. N-doped hierarchically macro/mesoporous carbon with excellent electrocatalytic activity and durability for oxygen reduction reaction. Carbon 2015, 86, 108–117. [Google Scholar] [CrossRef]
- Yi, J.; Yu, X.; Zhang, R.; Liu, L. Chitosan-based synthesis of O, N, and P codoped hierarchical porous carbon as electrode materials for supercapacitors. Energy Fuels 2021, 35, 20339–20348. [Google Scholar] [CrossRef]
- Sun, Q.; Mu, J.; Ma, F.; Li, Y.; Zhou, P.; Zhou, T.; Wu, X.; Zhou, J. Sulfur-doped hollow porous carbon spheres as high-performance anode materials for potassium ion batteries. J. Energy Storage 2023, 72, 108297. [Google Scholar] [CrossRef]
- Zhang, J.-Y.; Zhang, G.; Jin, S.-Y.; Zhou, Y.-J.; Ji, Q.-H.; Lan, H.-C.; Liu, H.-J.; Qu, J.-H. Graphitic N in nitrogen-doped carbon promotes hydrogen peroxide synthesis from electrocatalytic oxygen reduction. Carbon 2020, 163, 154–161. [Google Scholar] [CrossRef]
- Qiu, C.; Li, M.; Qiu, D.; Yue, C.; Xian, L.; Liu, S.; Wang, F.; Yang, R. Ultra-high sulfur-doped hierarchical porous hollow carbon sphere anodes enabling unprecedented durable potassium-ion hybrid capacitors. ACS Appl. Mater. Interfaces 2021, 13, 49942–49951. [Google Scholar] [CrossRef] [PubMed]
- Jeon, I.-Y.; Noh, H.-J.; Baek, J.-B. Nitrogen-doped carbon nanomaterials: Synthesis, characteristics and applications. Chem.-Asian J. 2020, 15, 2282–2293. [Google Scholar] [CrossRef] [PubMed]
- Mainali, K.; Haghighi Mood, S.; Pelaez-Samaniego, M.R.; Sierra-Jimenez, V.; Garcia-Perez, M. Production and applications of N-doped carbons from bioresources: A review. Catal. Today 2023, 423, 114248. [Google Scholar] [CrossRef]
- Wickramaratne, N.P.; Xu, J.; Wang, M.; Zhu, L.; Dai, L.; Jaroniec, M. Nitrogen enriched porous carbon spheres: Attractive materials for supercapacitor electrodes and CO2 adsorption. Chem. Mater. 2014, 26, 2820–2828. [Google Scholar] [CrossRef]
- Jang, J.; Yoon, H. Multigram-scale fabrication of monodisperse conducting polymer and magnetic carbon nanoparticles. Small 2005, 1, 1195–1199. [Google Scholar] [CrossRef]
- Ai, K.; Liu, Y.; Ruan, C.; Lu, L.; Lu, G. Sp2 C-dominant N-doped carbon sub-micrometer spheres with a tunable size: A versatile platform for highly efficient oxygen-reduction catalysts. Adv. Mater. 2013, 25, 998–1002. [Google Scholar] [CrossRef]
- Li, X.; Song, Y.; You, L.; Gao, L.; Liu, Y.; Chen, W.; Mao, L. Synthesis of highly uniform N-doped porous carbon spheres derived from their phenolic-resin-based analogues for high performance supercapacitors. Ind. Eng. Chem. Res. 2019, 58, 2933–2944. [Google Scholar] [CrossRef]
- Liu, Z.; Li, W.; Sheng, W.; Liu, S.; Li, R.; Li, Q.; Li, D.; Yu, S.; Li, M.; Li, Y.; et al. Tunable hierarchically structured meso-macroporous carbon spheres from a solvent-mediated polymerization-induced self-assembly. J. Am. Chem. Soc. 2023, 145, 5310–5319. [Google Scholar] [CrossRef]
- Guo, D.; Fu, Y.; Bu, F.; Liang, H.; Duan, L.; Zhao, Z.; Wang, C.; El-Toni, A.M.; Li, W.; Zhao, D. Monodisperse ultrahigh nitrogen-containing mesoporous carbon nanospheres from melamine-formaldehyde resin. Small Methods 2021, 5, 2001137. [Google Scholar] [CrossRef]
- Jeskey, J.; Chen, Y.; Kim, S.; Xia, Y. EDTA-assisted synthesis of nitrogen-doped carbon nanospheres with uniform sizes for photonic and electrocatalytic applications. Chem. Mater. 2023, 35, 3024–3032. [Google Scholar] [CrossRef]
- Tang, J.; Liu, J.; Li, C.; Li, Y.; Tade, M.O.; Dai, S.; Yamauchi, Y. Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles. Angew. Chem. Int. Ed. 2015, 54, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Mokaya, R. Synthesis of ordered mesoporous carbon and nitrogen-doped carbon materials with graphitic pore walls via a simple chemical vapor deposition method. Carbon 2004, 42, 1553–1558. [Google Scholar] [CrossRef]
- Shui, J.; Wang, M.; Du, F.; Dai, L. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Sci. Adv. 2015, 1, e1400129–e1400135. [Google Scholar] [CrossRef]
- Peng, L.; Peng, H.; Liu, Y.; Wang, X.; Hung, C.-T.; Zhao, Z.; Chen, G.; Li, W.; Mai, L.; Zhao, D. Spiral self-assembly of lamellar micelles into multi-shelled hollow nanospheres with unique chiral architecture. Sci. Adv. 2021, 7, eabi7403. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sun, Q.; Wang, X.; Wen, T.; Yin, J.-J.; Wang, P.; Bai, R.; Zhang, X.-Q.; Zhang, L.-H.; Lu, A.-H.; et al. Using hollow carbon nanospheres as a light-induced free radical generator to overcome chemotherapy resistance. J. Am. Chem. Soc. 2015, 137, 1947–1955. [Google Scholar] [CrossRef]
- Ramadass, K.; Sathish, C.I.; Singh, G.; Ruban, S.; Ruban, A.M.; Bahadur, R.; Kothandam, G.; Belperio, T.; Marsh, J.; Karakoti, A.; et al. Morphologically tunable nanoarchitectonics of mixed kaolin-halloysite derived nitrogen-doped activated nanoporous carbons for supercapacitor and CO2 capture applications. Carbon 2022, 192, 133–144. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, Y.; Zhang, T.C.; Yuan, S. rGO/N-porous carbon composites for enhanced CO2 capture and energy storage performances. J. Alloys Compd. 2021, 857, 157534. [Google Scholar] [CrossRef]
- Poljanšek, I.; Šebenik, U.; Krajnc, M. Characterization of phenol-urea-formaldehyde resin by inline FTIR spectroscopy. J. Appl. Polym. Sci. 2006, 99, 2016–2028. [Google Scholar] [CrossRef]
- Chang, B.; Shi, W.; Han, S.; Zhou, Y.; Liu, Y.; Zhang, S.; Yang, B. N-rich porous carbons with a high graphitization degree and multiscale pore network for boosting high-rate supercapacitor with ultrafast charging. Chem. Eng. J. 2018, 350, 585–598. [Google Scholar] [CrossRef]
- Selvarajan, P.; Fawaz, M.; Sathish, C.; Li, M.; Chu, D.; Yu, X.; Breesec, M.B.H.; Yi, J.; Vinu, A. Activated graphene nanoplatelets decorated with carbon nitrides for efficient electrocatalytic oxygen reduction reaction. Adv. Energy Sustain. Res. 2020, 1, 2000036. [Google Scholar] [CrossRef]
- Qu, K.; Zheng, Y.; Dai, S.; Qiao, S.Z. Carbon Dots as Electron-Rich Sites to Boost the Photocatalytic Hydrogen Evolution Reaction. Nano Energy 2016, 19, 373–381. [Google Scholar] [CrossRef]
- Wan, L.; Xiao, R.; Liu, J.; Zhang, Y.; Chen, J.; Du, C.; Xie, M. A novel strategy to prepare N, S-codoped porous carbons derived from barley with high surface area for supercapacitors. Appl. Surf. Sci. 2020, 518, 146265. [Google Scholar] [CrossRef]
- Shang, Z.; An, X.; Zhang, H.; Shen, M.; Baker, F.; Liu, Y.; Ni, Y. Houttuynia-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitor. Carbon 2020, 161, 62–70. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, H.; Jia, X.; Ma, J.; Luo, Y.; Gao, J.; Xu, J. A high-performance base-metal approach for the oxidative esterification of 5-hydroxymethylfurfural. ChemCatChem 2016, 8, 2907–2911. [Google Scholar] [CrossRef]
- Yao, L.; Wang, X.; Cao, M. Three-dimensional porous carbon frameworks derived from mangosteen peel waste as promising materials for CO2 capture and supercapacitors. J. CO2 Utilization 2018, 27, 204–216. [Google Scholar]
- Sevilla, M.; Valle-Vigon, P.; Fuertes, A.B. N-doped polypyrrole-based porous carbons for CO2 capture. Adv. Funct. Mater. 2011, 21, 2781–2787. [Google Scholar] [CrossRef]
- Li, Q.; Yang, J.P.; Feng, D.; Wu, Z.; Wu, Q.; Park, S.S.; Ha, C.-S.; Zhao, D. Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture. Energy Environ. Sci. 2010, 3, 632–642. [Google Scholar] [CrossRef]
- Presser, V.; McDonough, J.; Yeon, S.-H.; Gogotsi, Y. Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy Environ. Sci. 2011, 4, 3059. [Google Scholar] [CrossRef]
- Yi, H.; Li, F.; Ning, P.; Tang, X.; Peng, J.; Li, Y.; Deng, H. Adsorption separation of CO2, CH4, and N2 on microwave activated carbon. Chem. Eng. J. 2013, 215, 635–642. [Google Scholar] [CrossRef]
- Li, X.; Bai, S.; Zhu, Z.; Sun, J.; Jin, X.; Wu, X.; Liu, J. Hollow Carbon Spheres with Abundant Micropores for Enhanced CO2 Adsorption. Langmuir 2017, 33, 1248–1255. [Google Scholar] [CrossRef]
- Liu, X.; Xie, J.-C.; Li, Q.-Y.; Liu, L.; Wei, Q.; Cui, S.-P.; Nie, Z.-R. Synthesis of hollow micro-mesoporous nitrogen-doped carbon nanoparticles for enhanced CO2 capture. J. Sol-Gel Sci. Technol. 2024, 111, 255–267. [Google Scholar] [CrossRef]
- Han, S.-D.; Li, Q.-Y.; Liu, J.-G.; Wang, Y.-L.; Wei, Q.; Cui, S.-P. Synthesis of monodisperse highly nitrogen-rich porous carbon microspheres for CO2 adsorption. J. Sol-Gel Sci. Technol. 2023, 108, 98–111. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, G.; Gao, M.; Huang, L.; Li, L.; Liu, S.; Xie, C.; Zhang, Y.; Yu, S. N-doped porous carbon from different nitrogen sources for high performance supercapacitors and CO2 adsorption. J. Alloys Compd. 2019, 786, 826–838. [Google Scholar] [CrossRef]
- Wu, C.; Xing, X.; Xiong, W.; Li, H. Cooperative regulation of hard template and emulsion self-assembly to the synthesis of N/O co-doped mesoporous hollow carbon nanospheres for supercapacitors. Diamond Relat. Mater. 2023, 139, 110273. [Google Scholar] [CrossRef]
- Hu, X.; Liu, L.; Zhang, Y.; Chen, A. Preparation of an N-doped mesoporous carbon sphere and sheet composite as a high-performance supercapacitor. J. Chem. Res. 2021, 4, 510–518. [Google Scholar] [CrossRef]
- Chen, L.; Yang, L.; Xu, C.; Chen, K.; Wang, W.; Yang, L.; Hou, Z. Dual template synthesis of interconnected 3D hollow N-doped carbon network for electrochemical applications. Carbon Lett. 2023, 33, 409–418. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, L.; Liu, M.; Yu, Y.; Hu, Z.; Liu, B.; Lv, H.; Chen, A. Controllable synthesis of N-doped hollow, yolk-shell and solid carbon spheres via template-free method. J. Alloys Compd. 2019, 778, 294–301. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.; Lin, C.; Zhang, Y. Synthesis of interconnected hollow carbon nanospheres with controllable in situ N-doping level for supercapacitors. ChemElectroChem 2022, 9, e202200801. [Google Scholar] [CrossRef]
- Zhang, M.; Zou, J.; Yan, Y.; Li, W.; Dai, Q.; Li, H.; Shi, Z.; Zhang, Z.; Wang, R.; Qiu, S. Adjustable nanoarchitectonics of N-doping yolk-shell carbon spheres via “Pyrolysis-Capture” method for high-performance supercapacitors. J. Colloid. Interface Sci. 2024, 674, 686–694. [Google Scholar] [CrossRef]
- Jia, S.; Guo, Q.; Shen, M.; Gao, Q.; Wang, K. Controlled synthesis of carbon spheres via the modulation of the hydrophobic length of fatty aldehyde for supercapacitors. Colloids Surf. A 2022, 636, 128064. [Google Scholar] [CrossRef]
Samples | BET Surface Area a (m2/g) | Vmicro b (cm3/g) | Vtotal c (cm3/g) | Vmicro/Vtotal (%) | Average Pore Diameter d (nm) | CO2 Uptake e (mmol/g) |
---|---|---|---|---|---|---|
NCS-F | 238 | 0.08 | 0.16 | 50.2 | 11.1 | 2.90/2.36 |
NCS-FP1 | 353 | 0.11 | 0.22 | 51.6 | 9.2 | 2.98/2.44 |
NCS-FP2 | 369 | 0.12 | 0.19 | 60.2 | 10.0 | 3.46/2.69 |
NCS-FP3 | 463 | 0.15 | 0.27 | 53.7 | 7.05 | 3.15/2.58 |
NCS-P | 224 | 0.06 | 0.11 | 52.1 | 6.05 | 3.08/2.52 |
Samples | C | N | O | Pyridinic-N | Pyrrolic-N | Graphitic-N | Oxidized-N |
---|---|---|---|---|---|---|---|
NCS-F | 88.73 | 3.88 | 7.39 | 0.85 | 0.75 | 1.38 | 0.85 |
NCS-FP1 | 88.47 | 3.77 | 7.76 | 0.78 | 0.72 | 1.39 | 0.85 |
NCS-FP2 | 88.49 | 4.58 | 7.01 | 1.37 | 1.16 | 1.15 | 0.89 |
NCS-FP3 | 89.31 | 4.39 | 6.30 | 1.17 | 0.21 | 2.25 | 0.51 |
NCS-P | 89.95 | 3.85 | 6.20 | 1.00 | 0.19 | 2.18 | 0.44 |
Sample | SBET (m2/g) | Situation of N-Doped (XPS) | Test Condition | CO2 Uptake (mmol/g) | Ref. |
Activated Carbon | 671 | N-undoped | 25 °C, 100% CO2, 1 bar | 2.13 | [48] |
Derived carbon | 717 | N-undoped | 0 °C, 100% CO2, 1 bar | 1.62 | [49] |
Hollow Carbon sphere | 1369 | N-doped (1.53%) | 0 °C, 100% CO2, 1 bar | 2.63 | [50] |
Hollow carbon nanoparticles | 1716 | N-doped (3.82%) | 0 °C, 100% CO2, 1 bar | 5.11 | [51] |
Carbon microspheres | 537.4 | N-doped (5.34%) | 0 °C, 100% CO2, 1 bar | 3.46 | [52] |
Carbon Spheres/NCS-FP3 | 369 | N-doped (4.03%) | 0 °C, 100% CO2, 1 bar | 3.46 | This work |
Samples | SBET(m2/g) | Electrolyte | Csp (F/g) | Stability/Cycles | Ref. |
---|---|---|---|---|---|
NCSNH3-950 | 1049 | 1 M H2SO4 | 244 (0.2 A/g) | 87.6% (10,000) | [53] |
N-MHCNs-2 | 430 | 6 M KOH | 241 (0.5 A/g) | 90.4% (3000) | [54] |
N-MCS | 717 | 6 M KOH | 273 (0.5 A/g) | 93.0% (10,000) | [55] |
NHCSs | 2044 | EMIBF4 | 234 (0.5 A/g) | 91.0% (20,000) | [56] |
N-YSCS | 1263 | 6 M KOH | 242 (1.0 A/g) | 97.3% (5000) | [57] |
NIHCSs-2 | 702 | 6 M KOH | 259 (1.0 A/g) | 70.3% (10,000) | [58] |
NYCs-800 | 780 | 6 M KOH | 301 (1.0 A/g) | 91.3% (10,000) | [59] |
NPCSs-P1.5-85-4 | 1040 | 6 M KOH | 181 (1.0 A/g) | 96.0% (5000) | [60] |
NCS-FP3 | 463 | 1 M KOH | 328 (0.5 A/g) | 99.2% (10,000) | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.; Ge, J.; Wu, Z.; Zhu, L.; Xiong, M.; Qi, J.; Ruan, C. Controlled Synthesis of N-Doped Hierarchical Porous Carbon Spheres Through Polydopamine for CO2 Adsorption and High-Performance Supercapacitors. Molecules 2025, 30, 2747. https://doi.org/10.3390/molecules30132747
Jin X, Ge J, Wu Z, Zhu L, Xiong M, Qi J, Ruan C. Controlled Synthesis of N-Doped Hierarchical Porous Carbon Spheres Through Polydopamine for CO2 Adsorption and High-Performance Supercapacitors. Molecules. 2025; 30(13):2747. https://doi.org/10.3390/molecules30132747
Chicago/Turabian StyleJin, Xiaoqi, Jinlong Ge, Zhong Wu, Linlin Zhu, Mingwen Xiong, Jiahui Qi, and Chengxiu Ruan. 2025. "Controlled Synthesis of N-Doped Hierarchical Porous Carbon Spheres Through Polydopamine for CO2 Adsorption and High-Performance Supercapacitors" Molecules 30, no. 13: 2747. https://doi.org/10.3390/molecules30132747
APA StyleJin, X., Ge, J., Wu, Z., Zhu, L., Xiong, M., Qi, J., & Ruan, C. (2025). Controlled Synthesis of N-Doped Hierarchical Porous Carbon Spheres Through Polydopamine for CO2 Adsorption and High-Performance Supercapacitors. Molecules, 30(13), 2747. https://doi.org/10.3390/molecules30132747