Rice Husks as a Biogenic Template for the Synthesis of Fe2O3/MCM-41 Nanomaterials for Polluted Water Remediation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Catalysts
2.1.1. Iron Content, Structural and Textural Properties
2.1.2. Transmission Electron Microscopy (TEM) and UV-Visible Absorption Spectroscopy (UV-Vis/DR)
2.1.3. Chemisorption of Pyridine and Surface pH
2.1.4. Electrochemical Characterization
2.2. Kinetics of Adsorption in the Dark
2.3. Photocatalytic Tests
2.4. General Discussion and Correlations
3. Materials and Methods
3.1. Synthesis of MCM-41, MCM-RHA, and Fe-Based Catalysts
3.2. Characterization
3.3. Kinetics of Adsorption and Photodegradation of RhB
3.4. Scavenger Tests for Identification of Active Species •OH and O2•–
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qadir, I.; Chhipa, R.C. Comparative studies of some physicochemical characteristics of raw water and effluents of textile industries of Sitapura, Jaipur. Int. J. Adv. Res. 2015, 3, 2444–2449. [Google Scholar]
- Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innovat. 2019, 3, 275–290. [Google Scholar] [CrossRef]
- Ma, L.; Wang, G.; Jiang, C.; Bao, H.; Xu, Q. Synthesis of core-shell TiO2@g-C3N4 hollow microspheres for efficient photocatalytic degradation of rhodamine B under visible light. Appl. Surf. Sci. 2018, 430, 263–272. [Google Scholar] [CrossRef]
- Yaseen, D.; Scholz, M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Technol. 2019, 16, 1193–1226. [Google Scholar] [CrossRef]
- Donkadokula, N.Y.; Kola, A.K.; Naz, I.; Saroj, D. A review on advanced physico-chemical and biological textile dye wastewater treatment techniques. Rev. Environ. Sci. Biotechnol. 2020, 19, 543–560. [Google Scholar] [CrossRef]
- Rathi, B.S.; Kumar, P.S.; Vo, D.V.N. Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment. Sci. Total Environ. 2021, 797, 149134. [Google Scholar] [CrossRef]
- Saeed, M.; Muneer, M.; Haq, A.U.; Akram, N. Photocatalysis: An effective tool for photodegradation of dyes—A review. Environ. Sci. Pollut. Res. 2022, 29, 293–311. [Google Scholar] [CrossRef]
- Saini, R.D. Textile organic dyes: Polluting effects and elimination methods from textile wastewater. Int. J. Chem. Eng. Res. 2017, 9, 121–136. [Google Scholar]
- Andreozzi, R.; Caprio, V.; Insola, A.; Marotta, R. Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 1999, 53, 51–59. [Google Scholar] [CrossRef]
- Deng, Y.; Zhao, R. Advanced oxidation processes (AOPs) in wastewater treatment. Curr. Pollut. Rep. 2015, 1, 167–176. [Google Scholar] [CrossRef]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment–A critical review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Shabir, M.; Yasin, M.; Hussain, M.; Shafiq, I.; Akhter, P.; Nizami, A.S.; Jeon, B.H.; Park, Y.K. A review on recent advances in the treatment of dye-polluted wastewater. J. Ind. Eng. Chem. 2022, 112, 1–19. [Google Scholar] [CrossRef]
- Wang, H.; Xu, Z.; Yang, X. Probing the formation mechanisms of reactive oxygen species in graphene oxide-catalyzed ozone advanced oxidation processes. Carbon 2025, 233, 119831. [Google Scholar] [CrossRef]
- Dong, S.; Liu, L.; Xu, W.; Cheng, H.; He, Z.; Dong, F.; Wang, D.; Wang, L.; Song, S.; Ma, J. Explore synergistic catalytic ozonation by dual active sites of oxygen vacancies and defects in MgO/biochar for atrazine degradation. J. Environ. Chem. Eng. 2024, 12, 114221. [Google Scholar]
- Copik, J.; Kudlek, E.; Dudziak, M. Removal of selected micropollutants from water by ultrasonication. Desalination Water Treat. 2023, 288, 2–11. [Google Scholar] [CrossRef]
- Singh, R.; Ali, M.; Sharma, K.; Dhyani, P.; Goyal, C.; Tripathi, C.S.P.; Guin, D. Ultrasound-activated piezocatalytic degradation of Rhodamine B, Ofloxacin, and inactivation of E. coli by BaTiO3/CuO nanocomposites. J. Environ. Chem. Eng. 2024, 12, 114741. [Google Scholar] [CrossRef]
- Abbas, G.; Bokhari, T.H.; Iqbal, M.A.; Majeed, A.; Muneer, M.; Hussain, G.; Fatima, M.; Amara, U.E. Degradation of synthetic reactive Pyrazole-133 dye by using an advanced oxidation process assisted by gamma radiations. Radiat. Phys. Chem. 2025, 229, 112418. [Google Scholar] [CrossRef]
- Reza, S.; Jangi, H.; Dehghani, Z. A novel dual-function biomimetic approach for high throughput organic dye biodegradation and hydrogen peroxide sensing using a nanosized artificial peroxidase with ultra-improved substrate affinity and superb catalytic efficiency. Process Biochem. 2025, 150, 1–20. [Google Scholar]
- Huang, Y.; Chang, H.; Cheng, X.; Liang, H. Design, mechanism and environmental application of Fenton-type based catalytic membranes. Sep. Purif. Technol. 2025, 360, 130619. [Google Scholar] [CrossRef]
- Luo, D.; Liu, X.; Lu, H.; Liu, X.; Weng, Y.; Cheng, J.; Yu, D.; Wang, J.; Li, J. Ternary hierarchical flower-like PtCuTe nanosheets mediated photo-Fenton catalysis for dye pollutant degradation. Sep. Purif. Technol. 2025, 357, 130143. [Google Scholar] [CrossRef]
- Fernández de Cordoba, M.C.; Matos, J.; Montaña, R.; Poon, P.S.; Lanfredi, S.; Praxedes, F.R.; Hernández-Garrido, J.C.; Calvino, J.J.; Rodríguez-Aguado, E.; Rodríguez-Castellón, E.; et al. Sunlight photoactivity of rice husks-derived biogenic silica. Catal. Today 2019, 328, 125–135. [Google Scholar] [CrossRef]
- Matos, J.; Arcibar-Orozco, J.; Poon, P.S.; Pecchi, G.; Rangel-Mendez, J.R. Influence of phosphorous upon the formation of DMPO-•OH and POBN-O2•− spin-trapping adducts in carbon-supported P-promoted Fe-based photocatalysts. J. Photochem. Photobiol. A Chem. 2020, 391, 112362. [Google Scholar] [CrossRef]
- Kumar, A.; Indhur, R.; Bux, F.; Kumari, S. Recent advances in mechanistic insights into microplastics mitigation strategies via emerging advanced oxidation processes: Legislation, challenges, and future direction. Sci. Total Environ. 2024, 957, 177150. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, J.; Zhang, L.; Matos, J.; Wang, L.; Yang, J. Electrocatalytic upcycling of plastic waste: Progress, challenges, and future. Electron 2024, 2, e63. [Google Scholar] [CrossRef]
- Chang, J.; Yu, B.; Peng, X.; Zhang, P.; Xu, X. Nanoconfined catalytic macrostructures for advanced water remediation: From basic understanding to future application strategies. Water Res. 2025, 272, 122960. [Google Scholar] [CrossRef]
- Ewis, D.; Ba-Abbad, M.M.; Benamor, A.; El-Naas, M.H. Adsorption of organic water pollutants by clays and clay minerals composites: A comprehensive review. Appl. Clay Sci. 2022, 229, 106686. [Google Scholar] [CrossRef]
- Zhang, P.; He, M.; Teng, W.; Li, F.; Qiu, X.; Li, K.; Wang, H. Ordered mesoporous materials for water pollution treatment: Adsorption and catalysis. Green Energy Environ. 2024, 9, 1239–1256. [Google Scholar] [CrossRef]
- Singh, S.P.; Endley, N. Chapter 5—Fabrication of nano-silica from agricultural residue and their application. Nanomaterials for agriculture and forestry applications. Micro Nano Technol. 2020, 107–134. [Google Scholar]
- Alyosef, H.A.; Schneider, D.; Wassersleben, S.; Roggendorf, H.; Weiß, M.; Eilert, A.; Denecke, R.; Hartmann, I.; Enke, D. Meso/macroporous silica from miscanthus, cereal remnant pellets, and wheat straw. ACS Sustain. Chem. Eng. 2015, 3, 2012–2021. [Google Scholar] [CrossRef]
- Bakar, R.A.; Yahya, R.; Gan, S.N. Production of high purity amorphous silica from rice husks. Procedia Chem. 2016, 19, 189–195. [Google Scholar] [CrossRef]
- Shen, Y. Rice husks silica derived nanomaterials for sustainable applications. Renew. Sustain. Energy Rev. 2017, 80, 453–466. [Google Scholar] [CrossRef]
- Ebtasam; Hasan, M.N.B.; Nayak, R.K.; Milon, M.A.H.; Ali, M.F. Nano silica and meso silica extracted from rice husk waste utilized for enhancing leather properties. Polym. Test. 2025, 142, 108680. [Google Scholar] [CrossRef]
- Arefieva, O.; Vasilyeva, M.; Lukiyanchuk, I.; Korochentsev, V.; Opra, D.; Tkachev, V.; Shlyk, D. Development of photoactive ZnS-SiO2 composites on biogenic silica matrix for organic pollutant degradation. Environ. Sci. Pollut. Res. 2024, 31, 61612–61628. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, J.; López, G.; Amutio, M.; Bilbao, J.; Olazar, M. Upgrading the rice husk char obtained by flash pyrolysis for the production of amorphous silica and high-quality activated carbon. Bioresour. Technol. 2014, 170, 132. [Google Scholar] [CrossRef] [PubMed]
- Schiavello, M. (Ed.) Photocatalysis and Environment; Trends and Applications: Kluwer, Dordrecht, 1988. [Google Scholar]
- Fujishima, A.; Hashimoto, K.; Watanabe, T. TiO2 Photocatalysis. Fundamentals and Applications; BKC Inc.: Tokyo, Japan, 1999. [Google Scholar]
- Dong, H.; Zeng, G.; Tang, L.; Fan, C.; Zhang, C.; He, X.; He, Y. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 2015, 79, 128–146. [Google Scholar] [CrossRef]
- European Scientist. Available online: https://www.europeanscientist.com/fr/sante/la-france-va-interdire-ledioxyde-de-titane-a-compter-de-2020 (accessed on 17 April 2025).
- Carraro, P.M.; Benzaquén, T.B.; Eimer, G.A. Eco-friendly synthesis of nanostructured mesoporous materials from natural source rice husk silica for environmental applications. Environ. Sci. Pollut. Res. 2021, 28, 23707–23719. [Google Scholar] [CrossRef]
- Cuello, N.I.; Elías, V.R.; Rodriguez-Torres, C.E.; Crivello, M.E.; Oliva, M.I.; Eimer, G.A. Development of iron modified MCM-41 as promising nano-composites with specific magnetic behavior. Microporous Mesoporous Mater. 2015, 203, 106–115. [Google Scholar] [CrossRef]
- Goscianska, J.; Pietzrak, R.; Matos, J. Catalytic performance of ordered mesoporous carbons modified with lanthanides in dry methane reforming. Catal. Today 2018, 301, 204–216. [Google Scholar] [CrossRef]
- Benzaquén, T.B.; Cuello, N.I.; Alfano, O.M.; Eimer, G.A. Degradation of atrazine over a heterogeneous photo-Fenton process with iron modified MCM-41 materials. Catal. Today 2017, 296, 51–58. [Google Scholar] [CrossRef]
- Liu, Z.; Sakamoto, Y.; Ohsuna, T.; Hiraga, K.; Terasaki, O.; Ko, C.H.; Shin, H.J.; Ryoo, R. TEM Studies of Platinum nanowires fabricated in mesoporous silica MCM-41. Angew. Chem. Int. Ed. 2000, 39, 3107–3110. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Salama, R.S.; El-Hakam, S.A.; Khder, A.S.; Ahmed, A.I. Synthesis of sulfated zirconium supported MCM-41 composite with high-rate adsorption of methylene blue and excellent heterogeneous catalyst. Colloids Surf. A Physicochem. Eng. Asp. 2021, 616, 126361. [Google Scholar] [CrossRef]
- Kurbanova, A.; Zákutná, D.; Gołąbek, K.; Hraníček, J.; Dugulan, A.I.; Diddams, P.; Hsieh, M.-F.; Bats, N.; Přech, J. Fe-ZSM-5 outperforms Al-ZSM-5 in paraffin cracking by increasing the olefinicity of C3-C4 products. Chem. Eng. J. 2024, 499, 156032. [Google Scholar] [CrossRef]
- Akti, F.; Balci, S. Silica xerogel and iron doped silica xerogel synthesis in presence of drying control chemical additives. Mater. Chem. Phys. 2023, 297, 127347. [Google Scholar] [CrossRef]
- Matchim-Fondjo, L.O.; Fomekong, R.L.; Tsobnang, P.K.; Teudjieukeng-Kamta, H.M.; Yonti, C.N.; Kouotou, P.M.; Ngolui, J.L. Nanoarchitectonics with Fe-doping on the optical and electrocatalytic properties of ZnO prepared by the malonate coprecipitation route: Application in the hydrogen evolution reaction. J. Alloys Compd. 2025, 1010, 176979. [Google Scholar] [CrossRef]
- Priyadharshini, A.; Velu, K.S.; Napoleon, A.A.; Roy, P.; Ahmad, N.; Palanisamy, S.; You, S.G.; Mohandoss, S.; Kim, S.-C. N, P, S-doped carbon dots as photoluminescent probe for highly sensitive detection of Cu2+ and Fe3+ ions: Applications in cancer cell imaging and real samples. J. Photochem. Photobiol. A Chem. 2025, 462, 116267. [Google Scholar] [CrossRef]
- Carraro, P.M.; Elías, V.R.; García Blanco, A.A.; Sapag, K.; Moreno, S.; Oliva, M.I.; Eimer, G.A. Synthesis and multi-technique characterization of nickel loaded MCM-41 as potential hydrogen-storage materials. Micropor. Mesopor. Mater. 2014, 191, 103–111. [Google Scholar]
- Liu, S.; Wang, Q.; van Der Voort, P.; Cool, P.; Vansant, E.; Jiang, M. Magnetic and electronic ground states of B-site-substituted LaMnO3: From antiferromagnetism to ferromagnetism. J. Magn. Mater. 2004, 280, 31–36. [Google Scholar] [CrossRef]
- Chmielarz, L.; Kustrowski, P.; Dziembaj, R.; Cool, P.; Vansant, E. Catalytic performance of various mesoporous silicas modified with copper or iron oxides introduced by different ways in the selective reduction of NO by ammonia. Appl. Catal. B Environ. 2006, 62, 369–380. [Google Scholar] [CrossRef]
- Halawy, S.A.; Osman, A.I.; Abdelkader, A.; Nasr, M.; Rooney, D.W. Assessment of Lewis-acidic surface sites using tetrahydrofuran as a suitable and smart probe molecule. ChemistryOpen 2022, 11, e202200021. [Google Scholar] [CrossRef]
- Chakraborty, B.; Viswanathan, B. Surface acidity of MCM-41 by in situ IR studies of pyridine adsorption. Catal. Today 1999, 49, 253. [Google Scholar] [CrossRef]
- Carraro, P.M.; Goldani, B.S.; Alves, D.S.; Sathicq, A.G.; Eimer, G.A.; Romanelli, G.P.; Luque, R. Stability and activity of Zn/MCM-41 materials in toluene alkylation: Microwave irradiations vs continous flow. Catalysts 2019, 9, 136. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, M.; Jin, Z.; Fan, S.; Xu, R.; Tao, Q.; Guo, X.; Xia, W.; Lu, S.; Lan, Y.; et al. Reutilizing waste self-heating bag for one-pot fabrication of supported nano zero-valent iron with high stability to activate peroxydisulfate towards sulfapyridine degradation. Sep. Purif. Technol. 2025, 354, 129337. [Google Scholar] [CrossRef]
- Cui, J.; Guo, X.; Zhang, Y.; Tan, J.; Zhang, H.; Pan, Z.; Deng, T. Elucidating the selective adsorption of heavy rare earth by phosphate modified silica: The cooperation of pore confinement and surface structure regulating. Sep. Purif. Tech. 2025, 354, 129253. [Google Scholar] [CrossRef]
- Freitas Cavalcante, J.C.; da Silva, A.M.; Batista Caldas, P.M.; de Sousa Barbosa, B.V.; da Silva Júnior, H.B.; Nicácio Alves, J.J. Characterization and optimization of biodiesel production from corn oil using heterogeneous MoO3/MCM-41 catalysts. Catal. Today 2025, 446, 115119. [Google Scholar] [CrossRef]
- Liu, G.; Pu, Z.; Matindi, C.; Cui, Z.; Wang, H.; Yang, J.; Li, J. Fabrication of charged and zwitterionic nanofiltration membranes and anti-adhesion analysis using quartz crystal microbalance with dissipation and atomic force microscopy. J. Membr. Sci. 2025, 713, 123292. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Umeki, I.; Nagashima, M.; Yamamoto, D.; Ishii, T.; Hashimoto, A.; Matsui, K. Spectroscopic study of lactonic rhodamine B immobilised on polytetrafluoroethylene porous film. Color. Technol. 2023, 139, 464–474. [Google Scholar] [CrossRef]
- Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem. Eng. J. 2009, 153, 1–8. [Google Scholar] [CrossRef]
- McKay, G.; Otterburn, M.S.; Sweeney, A.G. The removal of color from effluent using various adsorbents—III. Silica: Rate processes. Water Res. 1980, 14, 15–20. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G.A. Comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf. Environ. Prot. 1998, 76, 332–340. [Google Scholar] [CrossRef]
- Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan. Water Res. 2001, 35, 613–618. [Google Scholar] [CrossRef]
- Praxedes, F.R.; Nobre, M.A.L.; Poon, P.S.; Matos, J.; Lanfredi, S. Nanostructured KxNa1-xNbO3 hollow spheres as potential materials for the photocatalytic treatment of polluted water. Appl. Catal. B Environ. 2021, 298, 120502. [Google Scholar] [CrossRef]
- Rasalingam, S.; Peng, R.; Koodali, R.T. An insight into the adsorption and photocatalytic degradation of rhodamine B in periodic mesoporous materials. Appl. Catal. B Environ. Energy 2015, 174–175, 49–59. [Google Scholar] [CrossRef]
- Nanda, B.; Pradhan, A.C.; Parida, K.M. A comparative study on adsorption and photocatalytic dye degradation under visible light irradiation by mesoporous MnO2 modified MCM-41 nanocomposite. Microporous Mesoporous Mater. 2016, 226, 229–242. [Google Scholar] [CrossRef]
- Tian, L.; Liu, H.; Gao, Y. Degradation and adsorption of rhodamine B and phenol on TiO2/MCM-41. Kinet. Catal. 2012, 53, 554–559. [Google Scholar] [CrossRef]
- Jadhav, S.R.; Mohite, S.V.; An, K.; Bae, J.; Shim, Y.S.; Namade, L.D.; Kim, Y.; Rajpure, K.Y. Fe incorporation and modulation of oxygen vacancies in ZnO nanoparticles for photocatalytic degradation of Rhodamine B. J. Ind. Eng. Chem. 2025, 146, 668–683. [Google Scholar] [CrossRef]
Samples | Fe Content (wt. %) a | SBET (m2·g−1) b | VTP (cm3·g−1) c | Dp (nm) c | pHPZC d |
---|---|---|---|---|---|
MCM-41 | - | 996 | 0.70 | 3.5 | 6.14 |
Fe/MCM-41(2.5) | 2.6 | 948 | 0.71 | 3.5 | 6.08 |
Fe/MCM-41(5) | 4.5 | 923 | 0.69 | 3.5 | 5.95 |
Fe/MCM-41(10) | 8.4 | 801 | 0.59 | 3.5 | 5.73 |
MCM-RHA | - | 1022 | 0.91 | 3.0 | 5.89 |
Fe/MCM-RHA(2.5) | 2.3 | 889 | 0.74 | 2.6 | 5.74 |
Fe/MCM-RHA(5) | 4.7 | 877 | 0.66 | 2.8 | 5.59 |
Fe/MCM-RHA(10) | 8.7 | 761 | 0.62 | 2.6 | 5.29 |
Electrode | Voltammogram Area (μA·V−1) | Electric Charge (μC) |
---|---|---|
GCE | 0.921 | 18.42 |
GCE-SDS-Nafion | 0.797 | 15.94 |
GCE-MCM-41 | 0.788 | 15.76 |
GCE-Fe/MCM-41(2.5) | 0.720 | 14.40 |
GCE-Fe/MCM-41(5) | 0.739 | 14.78 |
GCE-Fe/MCM-41(10) | 0.805 | 16.10 |
GCE-MCM-RHA | 0.755 | 15.10 |
GCE-Fe/MCM-RHA(2.5) | 0.700 | 14.00 |
GCE-Fe/MCM-RHA(5) | 0.444 | 8.88 |
GCE-Fe/MCM-RHA(10) | 0.621 | 12.42 |
GCE-Fe2O3 | 0.607 | 12.14 |
Samples | qeq a (μmol) | k1 b (min−1) | R2k1 c | k2 d (μmol−1·min−1) | R2k2 e | kIPD f (μmol·min−1/2) | R2IPD g | CIPD h (μmol) |
---|---|---|---|---|---|---|---|---|
TiO2-P25 | 0.22 | 0.026 | 0.912 | 0.380 | 0.988 | 0.018 | 0.895 | 0.080 |
MCM-41 | 2.35 | 0.036 | 0.987 | 0.066 | 0.951 | 0.204 | 0.948 | 0.732 |
Fe/MCM-41(2.5) | 1.96 | 0.041 | 0.986 | 0.076 | 0.935 | 0.184 | 0.941 | 0.506 |
Fe/MCM-41(5) | 1.79 | 0.031 | 0.980 | 0.059 | 0.937 | 0.151 | 0.976 | 0.564 |
Fe/MCM-41(10) | 1.69 | 0.030 | 0.976 | 0.064 | 0.942 | 0.137 | 0.979 | 0.582 |
MCM-RHA | 1.91 | 0.032 | 0.960 | 0.064 | 0.995 | 0.153 | 0.918 | 0.726 |
Fe/MCM-RHA(2.5) | 1.91 | 0.042 | 0.983 | 0.108 | 0.945 | 0.152 | 0.915 | 0.718 |
Fe/MCM-RHA(5) | 1.68 | 0.034 | 0.984 | 0.071 | 0.980 | 0.163 | 0.927 | 0.412 |
Fe/MCM-RHA(10) | 1.60 | 0.037 | 0.963 | 0.074 | 0.972 | 0.122 | 0.963 | 0.656 |
Samples | kapp a × 10−3 (min−1) | R2kapp b | kapp-i/klysis c | kapp-i/kTiO2 d | C5h e (%) | vsur f (μmol.min−1) |
---|---|---|---|---|---|---|
Photolysis | 1.6 | 0.94 | 1.0 | 0.5 | 20 | 0 |
TiO2-P25 | 3.4 | 0.98 | 2.1 | 1.0 | 58 | 0.00075 |
MCM-41 | 4.3 | 0.97 | 2.7 | 1.3 | 51 | 0.01011 |
Fe/MCM-41(2.5) | 7.5 | 0.98 | 4.7 | 2.2 | 60 | 0.01470 |
Fe/MCM-41(5) | 4.4 | 0.96 | 2.8 | 1.3 | 55 | 0.00788 |
Fe/MCM-41(10) | 3.2 | 0.89 | 2.0 | 0.9 | 46 | 0.00541 |
MCM-RHA | 2.7 | 0.97 | 1.7 | 0.8 | 47 | 0.00516 |
Fe/MCM-RHA(2.5) | 7.4 | 0.97 | 4.6 | 2.2 | 74 | 0.01413 |
Fe/MCM-RHA(5) | 3.7 | 0.96 | 2.3 | 1.1 | 57 | 0.00622 |
Fe/MCM-RHA(10) | 2.4 | 0.99 | 1.5 | 0.7 | 29 | 0.00384 |
Materials | Surface Area (m2·g −1) | Pore Diameter (nm) | Pore Volume (cm3·g −1) | Adsorption (%) | Degradation (%) | Reference |
---|---|---|---|---|---|---|
Fe/MCM-41(2.5) | 948 | 3.5 | 0.71 | 68 | 60 | Present work |
Fe/MCM-RHA(2.5) | 889 | 2.6 | 0.74 | 66 | 74 | Present work |
Ti-MCM-41-10 | 1219 | 2.0 | 0.82 | 90–96 | 90 | [65] |
MnO2-MCM-41 | 1313 | 2.1 | 0.86 | 99 | 100 | [66] |
TiO2/MCM-41 | 620–724 | 4.2 | Not reported | 62–75 | 75–78 | [67] |
Fe2O3/ZnO | 34–44 | 2.2–14.2 | Not reported | Not reported | 95 | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benzaquén, T.B.; Carraro, P.M.; Eimer, G.A.; Urzúa-Ahumada, J.; Poon, P.S.; Matos, J. Rice Husks as a Biogenic Template for the Synthesis of Fe2O3/MCM-41 Nanomaterials for Polluted Water Remediation. Molecules 2025, 30, 2484. https://doi.org/10.3390/molecules30122484
Benzaquén TB, Carraro PM, Eimer GA, Urzúa-Ahumada J, Poon PS, Matos J. Rice Husks as a Biogenic Template for the Synthesis of Fe2O3/MCM-41 Nanomaterials for Polluted Water Remediation. Molecules. 2025; 30(12):2484. https://doi.org/10.3390/molecules30122484
Chicago/Turabian StyleBenzaquén, Tamara B., Paola M. Carraro, Griselda A. Eimer, Julio Urzúa-Ahumada, Po S. Poon, and Juan Matos. 2025. "Rice Husks as a Biogenic Template for the Synthesis of Fe2O3/MCM-41 Nanomaterials for Polluted Water Remediation" Molecules 30, no. 12: 2484. https://doi.org/10.3390/molecules30122484
APA StyleBenzaquén, T. B., Carraro, P. M., Eimer, G. A., Urzúa-Ahumada, J., Poon, P. S., & Matos, J. (2025). Rice Husks as a Biogenic Template for the Synthesis of Fe2O3/MCM-41 Nanomaterials for Polluted Water Remediation. Molecules, 30(12), 2484. https://doi.org/10.3390/molecules30122484