Impact of Surface Preparation on the Quantification of Diffusible Hydrogen Content in Aluminum Alloys
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure
3.2. TDA
3.3. GDOES
3.4. XPS
4. Discussion
5. Conclusions
- Substantial errors in the hydrogen content quantification in aluminum alloys using the TDA technique can be introduced by grinding in water.
- Chemical pickling in concentrated nitric acid is a safe and simple surface preparation method for samples without adherent corrosion products.
- For proper preparation of corroded surfaces with adherent corrosion products, successive steps of grinding, electrochemical polishing, and chemical pickling are recommended.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HE | Hydrogen embrittlement |
TDA | Thermal desorption analysis |
GDOES | Glow-discharge optical emission spectroscopy |
XPS | X-ray photoelectron spectroscopy |
SEM | Scanning electron microscopy |
SSRT | Slow strain rate testing |
References
- Scully, J.; Young Jr, G.; Smith, S. Hydrogen embrittlement of aluminum and aluminum-based alloys. In Gaseous Hydrogen Embrittlement of Materials in Energy Technologies; Elsevier: Amsterdam, The Netherlands, 2012; pp. 707–768. [Google Scholar]
- Moshtaghi, M.; Safyari, M.; Kuramoto, S.; Hojo, T. Unraveling the effect of dislocations and deformation-induced boundaries on environmental hydrogen embrittlement behavior of a cold-rolled Al–Zn–Mg–Cu alloy. Int. J. Hydrogen Energy 2021, 46, 8285–8299. [Google Scholar] [CrossRef]
- Safyari, M.; Moshtaghi, M.; Hojo, T.; Akiyama, E. Mechanisms of hydrogen embrittlement in high-strength aluminum alloys containing coherent or incoherent dispersoids. Corros. Sci. 2022, 194, 109895. [Google Scholar] [CrossRef]
- Georgiou, E.; Celis, J.-P.; Panagopoulos, C. The effect of cold rolling on the hydrogen susceptibility of 5083 aluminum alloy. Metals 2017, 7, 451. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, X.; Chen, J.; Wang, Z.; Li, X.; Zhang, X.; Gao, L. Study of Hydrogen-Induced Plastic Damage Response of 7085-T7651 High-Strength Aluminum Alloy. Metals 2022, 13, 40. [Google Scholar] [CrossRef]
- Safyari, M.; Reiter, J.; Moshtaghi, M. Interaction of aluminum alloys with pressurized hydrogen affecting permeability: H-induced lattice expansion versus H-induced defects. Mater. Lett. 2023, 346, 134501. [Google Scholar] [CrossRef]
- Bhuiyan, M.S.; Toda, H.; Peng, Z.; Hang, S.; Horikawa, K.; Uesugi, K.; Takeuchi, A.; Sakaguchi, N.; Watanabe, Y. Combined microtomography, thermal desorption spectroscopy, X-ray diffraction study of hydrogen trapping behavior in 7XXX aluminum alloys. Mater. Sci. Eng. A 2016, 655, 221–228. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, S.; Ma, H.; Wang, H.; Hua, L.; Fu, S. Analysis of hydrogen embrittlement on aluminum alloys for vehicle-mounted hydrogen storage tanks: A review. Metals 2021, 11, 1303. [Google Scholar] [CrossRef]
- Choo, W.; Lee, J.Y. Thermal analysis of trapped hydrogen in pure iron. Metall. Trans. A 1982, 13, 135–140. [Google Scholar] [CrossRef]
- Silva, M.I.; Sorger, G.; Malitckii, E.; Vilaça, P. Hydrogen-as-a-probe applied to investigate the influence of extraction and preparation methods on TDS spectra of 13CrMo4-5 samples. J. Mater. Sci. 2024, 59, 20735–20764. [Google Scholar] [CrossRef]
- Arroyo, B.; Andrea, L.; Álvarez, J.A.; Cicero, S.; Lacalle, R. Analysis of samples cleaning methods prior to hydrogen content determination in steel. Metals 2020, 10, 723. [Google Scholar] [CrossRef]
- Hayashi, S.-i.H.S.-i. Hydrogen introduction by abrasion in aluminum. Jpn. J. Appl. Phys. 1996, 35, 6191. [Google Scholar] [CrossRef]
- Horikawa, K.; Matsubara, T.; Kobayashi, H. Hydrogen charging of Al–Mg–Si-based alloys by friction in water and its effect on tensile properties. Mater. Sci. Eng. A 2019, 764, 138199. [Google Scholar] [CrossRef]
- Kamoutsi, H.; Haidemenopoulos, G.; Bontozoglou, V.; Petroyiannis, P.; Pantelakis, S.G. Effect of prior deformation and heat treatment on the corrosion-induced hydrogen trapping in aluminium alloy 2024. Corros. Sci. 2014, 80, 139–142. [Google Scholar] [CrossRef]
- Kamoutsi, H.; Haidemenopoulos, G.; Mavros, H.; Karantonidis, C.; Floratos, P.; Alhosani, Z.; Cho, P.; Anjum, D.; Ravaux, F.; Polychronopoulou, K. Effect of precipitate coherency on the corrosion-induced hydrogen trapping in 2024 aluminum alloy. Int. J. Hydrogen Energy 2021, 46, 34487–34497. [Google Scholar] [CrossRef]
- Haidemenopoulos, G.; Hassiotis, N.; Papapolymerou, G.; Bontozoglou, V. Hydrogen absorption into aluminum alloy 2024-T3 during exfoliation and alternate immersion testing. Corrosion 1998, 54, 73–78. [Google Scholar] [CrossRef]
- Kissinger, H.E. Reaction kinetics in differential thermal analysis. Anal. Chem. 1957, 29, 1702–1706. [Google Scholar] [CrossRef]
- Jiang, L.; Li, J.; Liu, G.; Wang, R.; Chen, B.; Zhang, J.; Sun, J.; Yang, M.; Yang, G.; Yang, J. Length-scale dependent microalloying effects on precipitation behaviors and mechanical properties of Al–Cu alloys with minor Sc addition. Mater. Sci. Eng. A 2015, 637, 139–154. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, G.; Ding, X.; Sun, J.; Chen, K. Modeling the strengthening response to aging process of heat-treatable aluminum alloys containing plate/disc-or rod/needle-shaped precipitates. Mater. Sci. Eng. A 2003, 344, 113–124. [Google Scholar] [CrossRef]
- Košová Altnerová, T.; Rudomilova, D.; Novák, P.; Prošek, T. The Role of Precipitates in Hydrogen Embrittlement of Precipitation-Hardenable Aluminum Alloys. Metals 2024, 14, 1287. [Google Scholar] [CrossRef]
- Young Jr, G.; Scully, J. The diffusion and trapping of hydrogen in high purity aluminum. Acta Mater. 1998, 46, 6337–6349. [Google Scholar] [CrossRef]
- Chao, P.; Karnesky, R.A. Hydrogen isotope trapping in Al–Cu binary alloys. Mater. Sci. Eng. A 2016, 658, 422–428. [Google Scholar] [CrossRef]
- Safyari, M.; Moshtaghi, M.; Kuramoto, S. Environmental hydrogen embrittlement associated with decohesion and void formation at soluble coarse particles in a cold-rolled Al–Cu based alloy. Mater. Sci. Eng. A 2021, 799, 139850. [Google Scholar] [CrossRef]
- Strohmeier, B.R. An ESCA method for determining the oxide thickness on aluminum alloys. Surf. Interface Anal. 1990, 15, 51–56. [Google Scholar] [CrossRef]
- Godart, P.; Fischman, J.; Seto, K.; Hart, D. Hydrogen production from aluminum-water reactions subject to varied pressures and temperatures. Int. J. Hydrogen Energy 2019, 44, 11448–11458. [Google Scholar] [CrossRef]
- Shmelev, V.; Nikolaev, V.; Lee, J.H.; Yim, C. Hydrogen production by reaction of aluminum with water. Int. J. Hydrogen Energy 2016, 41, 16664–16673. [Google Scholar] [CrossRef]
- Ilyukhina, A.; Kravchenko, O.; Bulychev, B. Studies on microstructure of activated aluminum and its hydrogen generation properties in aluminum/water reaction. J. Alloys Compd. 2017, 690, 321–329. [Google Scholar] [CrossRef]
- Kumar, D.; Muthukumar, K. An overview on activation of aluminium-water reaction for enhanced hydrogen production. J. Alloys Compd. 2020, 835, 155189. [Google Scholar] [CrossRef]
- Kuramoto, S.; Okahana, J.; Kanno, M. Hydrogen assisted intergranular crack propagation during environmental embrittlement in an Al-Zn-Mg-Cu Alloy. Mater. Trans. 2001, 42, 2140–2143. [Google Scholar] [CrossRef]
- Safyari, M.; Moshtaghi, M.; Kuramoto, S. On the role of traps in the microstructural control of environmental hydrogen embrittlement of a 7xxx series aluminum alloy. J. Alloys Compd. 2021, 855, 157300. [Google Scholar] [CrossRef]
- Zeng, C.; Hu, J.; Ouyang, C. Hydrogen solution in tetrahedral or octahedral interstitial sites in Al. J. Alloys Compd. 2011, 509, 9214–9217. [Google Scholar] [CrossRef]
- Gu, H.; Wang, J.; Li, Z. Molecular dynamics simulation of tensile behavior on ceramic particles reinforced aluminum matrix nanocomposites. Int. J. Mater. Sci. Appl. 2016, 5, 151–159. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, X.; Thompson, G.; Hashimoto, T.; Scamans, G.; Afseth, A. Precipitation in an AA6111 aluminium alloy and cosmetic corrosion. Acta Mater. 2007, 55, 353–360. [Google Scholar] [CrossRef]
- Wang, S.-S.; Huber, D.; Poplawsky, J.D.; Colijn, H.; Frankel, G. The subsurface structure of abraded Al–Zn–Mg–Cu alloy. Materialia 2021, 16, 101065. [Google Scholar] [CrossRef]
- Alias, J.; Alang, N. Formation of Surface Deformed Layer of AZ31 Magnesium Alloy Subjected to Conventional Mechanical Grinding. J. Mater. Eng. Perform. 2024, 34, 6905–6915. [Google Scholar] [CrossRef]
- Safyari, M.; Hojo, T.; Moshtaghi, M. Effect of environmental relative humidity on hydrogen-induced mechanical degradation in an Al–Zn–Mg–Cu alloy. Vacuum 2021, 192, 110489. [Google Scholar] [CrossRef]
- Iwata, T.; Matsumoto, T.; Terakawa, S.; Kobayashi, H. Fabrication of Al 2 O 3/Al structure by nitric acid oxidation at room temperature. Cent. Eur. J. Phys. 2010, 8, 1015–1020. [Google Scholar]
- Peter, M. Valence and core photoemission of the films formed electrochemically on aluminium in nitric acid. J. Chem. Soc. Faraday Trans. 1993, 89, 263–266. [Google Scholar] [CrossRef]
Method | Denomination | Steps |
---|---|---|
1 | Degreasing in acetone | Degreasing |
Drying | ||
2 | Grinding in air | Dry grinding |
Degreasing | ||
Drying | ||
3 | Grinding in demineralized water | Wet grinding |
Degreasing | ||
Drying | ||
4 | Grinding in ethanol | Wet grinding |
Degreasing | ||
Drying | ||
5 | Grinding in acetone | Wet grinding |
Degreasing | ||
Drying | ||
6 | Chemical pickling | Degreasing |
Chemical pickling, 5 min | ||
Degreasing | ||
Drying | ||
7 | Grinding in demineralized water + electrochemical polishing and chemical pickling | Wet grinding |
Electrochemical polishing, 160 mA·cm−2, 2 min | ||
Chemical pickling, 3 min | ||
Degreasing | ||
Drying |
Al2p (Alox) [at.%] | O1s (O2−) [at.%] | O1s (OH−) [at.%] | Thickness [nm] |
---|---|---|---|
32.5 | 35.2 | 32.3 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoseinpoor, M.; Macháčková, N.; Košová Altnerová, T.; Zanna, S.; Rudomilova, D.; Prošek, T. Impact of Surface Preparation on the Quantification of Diffusible Hydrogen Content in Aluminum Alloys. Metals 2025, 15, 913. https://doi.org/10.3390/met15080913
Hoseinpoor M, Macháčková N, Košová Altnerová T, Zanna S, Rudomilova D, Prošek T. Impact of Surface Preparation on the Quantification of Diffusible Hydrogen Content in Aluminum Alloys. Metals. 2025; 15(8):913. https://doi.org/10.3390/met15080913
Chicago/Turabian StyleHoseinpoor, Mehrdad, Nikola Macháčková, Terezie Košová Altnerová, Sandrine Zanna, Darja Rudomilova, and Tomáš Prošek. 2025. "Impact of Surface Preparation on the Quantification of Diffusible Hydrogen Content in Aluminum Alloys" Metals 15, no. 8: 913. https://doi.org/10.3390/met15080913
APA StyleHoseinpoor, M., Macháčková, N., Košová Altnerová, T., Zanna, S., Rudomilova, D., & Prošek, T. (2025). Impact of Surface Preparation on the Quantification of Diffusible Hydrogen Content in Aluminum Alloys. Metals, 15(8), 913. https://doi.org/10.3390/met15080913