Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,311)

Search Parameters:
Keywords = electricity transition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1729 KB  
Article
Electric BRT Readiness and Impacts in Athens, Greece: A Gradient Boosting-Based Decision Support Framework
by Parmenion Delialis, Orfeas Karountzos, Konstantia Kontodimou, Christina Iliopoulou and Konstantinos Kepaptsoglou
World Electr. Veh. J. 2026, 17(1), 6; https://doi.org/10.3390/wevj17010006 (registering DOI) - 20 Dec 2025
Abstract
The integration of electric buses into urban transportation networks is a priority for policymakers aiming to promote sustainable public mobility. Among available technologies, electric Bus Rapid Transit (eBRT) systems offer an environmentally friendly and operationally effective alternative to conventional modes. This study introduces [...] Read more.
The integration of electric buses into urban transportation networks is a priority for policymakers aiming to promote sustainable public mobility. Among available technologies, electric Bus Rapid Transit (eBRT) systems offer an environmentally friendly and operationally effective alternative to conventional modes. This study introduces a Machine Learning Decision Support Framework designed to assess the feasibility of deploying eBRT systems in urban environments. Using a dataset of 28 routes in the Athens Metropolitan Area, the framework integrates diverse variables such as land use, population coverage, proximity to public transport, points of interest, road characteristics, and safety indicators. The XGBoost model demonstrated strong predictive performance, outperforming traditional approaches and highlighting the significance of points of interest, land use diversity, green spaces, and roadway infrastructure in forecasting travel times. Overall, the proposed framework provides urban planners and policymakers with a robust, data-driven tool for evaluating the practical and environmental viability of eBRT systems. Full article
(This article belongs to the Special Issue Zero Emission Buses for Public Transport)
Show Figures

Figure 1

19 pages, 600 KB  
Article
Carbon Footprint Analysis of Alcohol Production in a Distillery in Three Greenhouse Gas Emission Scopes
by Magdalena Wróbel-Jędrzejewska, Łukasz Przybysz, Ewelina Włodarczyk, Filip Owczarek and Łukasz Ściubak
Sustainability 2026, 18(1), 57; https://doi.org/10.3390/su18010057 (registering DOI) - 19 Dec 2025
Abstract
The study presents a comprehensive assessment of greenhouse gas (GHG) emissions and the carbon footprint (CF) of high-percentage spirit production in a Polish distillery. The analysis followed the GHG Protocol and ISO 14067:2018 standards, covering direct and indirect emissions across three Scopes. Using [...] Read more.
The study presents a comprehensive assessment of greenhouse gas (GHG) emissions and the carbon footprint (CF) of high-percentage spirit production in a Polish distillery. The analysis followed the GHG Protocol and ISO 14067:2018 standards, covering direct and indirect emissions across three Scopes. Using life cycle assessment (LCA) with a gate-to-gate boundary, emissions were across key technological processes. Verified operational data for 2022–2024 included detailed records of energy and fuel consumption. Electricity use was identified as the dominant emission source, accounting for 70–93% of total GHG emissions, followed by natural gas and transport fuels. The integration of renewable energy sources, including biomass and photovoltaic installations, resulted in a significant decrease in GHG emissions. The average carbon footprint of spirit production declined from 1.02 kg CO2eq/L in 2022 to 0.12–0.15 kg CO2eq/L in 2023–2024, representing an over 85% reduction in emission intensity. Production increased, but the company implemented better practices, including the use of biomass and photovoltaics as energy sources, which translated into a reduction in its carbon footprint. Scenario analysis showed that implementing the replacement of conventional fuels with renewables could lower total GHG emissions by up to 35%. The results confirm that renewable energy implementation and energy-efficiency improvements are effective decarbonization strategies for the spirits industry, supporting compliance with European Green Deal objectives and the transition toward climate-neutral production. Full article
Show Figures

Figure 1

60 pages, 1791 KB  
Systematic Review
Approaches for Lifetime Prediction of Vehicle Traction Battery Systems During a Technical Inspection: A Systematic Review
by Markus Gregor, Maximilian Bauder, Aline Kirsten Vidal de Oliveira, Pascal Mast, Ricardo Rüther and Hans-Georg Schweiger
World Electr. Veh. J. 2026, 17(1), 3; https://doi.org/10.3390/wevj17010003 - 19 Dec 2025
Abstract
Creating trust in society for new technologies, such as a new types of powertrains, and making them marketable requires transparent, neutral, and independent technical verification. This is crucial for the acceptance and success of electrified vehicles in the used car markets. A key [...] Read more.
Creating trust in society for new technologies, such as a new types of powertrains, and making them marketable requires transparent, neutral, and independent technical verification. This is crucial for the acceptance and success of electrified vehicles in the used car markets. A key component of electric vehicles is the traction battery, whose current and future condition, particularly regarding aging, determines its residual value and safe operation. This review aims to identify and evaluate methods for predicting the lifetime of onboard traction batteries, focusing on their applicability in technical inspections. A systematic literature and patent review was conducted using targeted keywords, yielding 22 patents and 633 publications. From these, 150 distinct lifetime prediction methods were extracted and categorized into a four-level mind map. These methods are summarized, cited, and structured in detailed tables. The relationships between approaches are explained to clarify the current research landscape. Long Short-Term Memory, Convolutional Neural Networks, and Particle Filters were identified as the most frequently used techniques. However, no methods were found suitable for predicting the lifetime of traction batteries during technical vehicle inspections, which operate under short test durations, limited data access, and diverse real-world operating conditions. Most studies focused on cell-level testing and did not address complete battery systems in operational vehicles. This gap highlights the need for applied research and the development of practical methods to support battery assessment in real-world conditions. Advancing this field is essential to foster confidence in battery systems and enable a sustainable transition to electromobility. Full article
(This article belongs to the Section Energy Supply and Sustainability)
Show Figures

Figure 1

21 pages, 3646 KB  
Article
Short-Term Load Forecasting in Price-Volatile Markets: A Pattern-Clustering and Adaptive Modeling Approach
by Xiangluan Dong, Yan Yu, Hongyang Jin, Zhanshuo Hu and Jieqiu Bao
Processes 2026, 14(1), 5; https://doi.org/10.3390/pr14010005 - 19 Dec 2025
Abstract
Under the ongoing electricity market reforms, short-term load forecasting (STLF) is increasingly challenged by pronounced non-stationarity driven by price fluctuations. This study proposes an adaptive STLF framework tailored to price-induced non-stationarity. Firstly, a market state identification method based on load–price joint clustering is [...] Read more.
Under the ongoing electricity market reforms, short-term load forecasting (STLF) is increasingly challenged by pronounced non-stationarity driven by price fluctuations. This study proposes an adaptive STLF framework tailored to price-induced non-stationarity. Firstly, a market state identification method based on load–price joint clustering is developed to structurally model the temporal interactions between price and load. It allows the automatic extraction of typical market patterns and helps uncover how price fluctuations drive load variations. Secondly, a gated mixture forecasting network is proposed to dynamically adapt to the inertia of historical price fluctuations. By integrating parallel branches with an adaptive weighting mechanism, the model dynamically captures historical price features and achieves both rapid response and steady correction under market volatility. Finally, a Transformer-based expert model with multi-scale dependency learning is introduced to capture sequential dependencies and state transitions across different load regimes through self-attention, thereby enhancing model generalization and stability. Case studies using real market data confirm that the proposed approach delivers substantial performance improvements, offering reliable support for system dispatch and market operations. Relative to mainstream baseline models, it reduces MAPE by 1.08–2.62 percentage points. Full article
Show Figures

Figure 1

22 pages, 4884 KB  
Article
Integrating Microtopographic Engineering with Native Plant Functional Diversity to Support Restoration of Degraded Arid Ecosystems
by Yassine Fendane, Mohamed Djamel Miara, Hassan Boukcim, Sami D. Almalki, Shauna K. Rees, Abdalsamad Aldabaa, Ayman Abdulkareem and Ahmed H. Mohamed
Land 2025, 14(12), 2445; https://doi.org/10.3390/land14122445 - 18 Dec 2025
Abstract
Active restoration structures such as microtopographic water-harvesting designs are widely implemented in dryland ecosystems to improve soil moisture, reduce erosion, and promote vegetation recovery. We assessed the combined effects of planted species identity, planting diversity (mono-, bi- and multi-species mixtures), and micro-catchment (half-moon) [...] Read more.
Active restoration structures such as microtopographic water-harvesting designs are widely implemented in dryland ecosystems to improve soil moisture, reduce erosion, and promote vegetation recovery. We assessed the combined effects of planted species identity, planting diversity (mono-, bi- and multi-species mixtures), and micro-catchment (half-moon) structures on seedling performance and spontaneous natural regeneration in a hyper-arid restoration pilot site in Sharaan National Park, northwest Saudi Arabia. Thirteen native plant species, of which four—Ochradenus baccatus, Haloxylon persicum, Haloxylon salicornicum, and Acacia gerrardii—formed the dominant planted treatments, were established in 18 half-moons and monitored for survival, growth, and natural recruitment. Seedling survival after 20 months differed significantly among planting treatments, increasing from 58% in mono-plantings to 69% in bi-plantings and 82% in multi-plantings (binomial GLMM, p < 0.001), indicating a positive effect of planting diversity on establishment. Growth traits (height, collar diameter, and crown dimensions) were synthesized into an Overall Growth Index (OGI) and an entropy-weighted OGI (EW-OGI). Mixed-effects models revealed strong species effects on both indices (F12,369 ≈ 7.2, p < 0.001), with O. baccatus and H. persicum outperforming other taxa and cluster analysis separating “fast expanders”, “moderate growers”, and “decliners”. Trait-based modeling showed that lateral crown expansion was the main driver of overall performance, whereas stem thickening and fruit production contributed little. Between 2022 and 2024, half-moon soils exhibited reduced electrical conductivity and exchangeable Na, higher organic carbon, and doubled available P, consistent with emerging positive soil–plant feedbacks. Spontaneous recruits were dominated by perennials (≈67% of richness), with perennial dominance increasing from mono- to multi-plantings, although Shannon diversity differences among treatments were small and non-significant. The correlation between OGI and spontaneous richness was positive but weak (r = 0.29, p = 0.25), yet plots dominated by O. baccatus hosted nearly two additional spontaneous species relative to other plantings, highlighting its strong facilitative role. Overall, our results show that half-moon micro-catchments, especially when combined with functionally diverse native plantings, can simultaneously improve soil properties and promote biotic facilitation, fostering a transition from active intervention to passive, self-sustaining restoration in hyper-arid environments. Full article
Show Figures

Figure 1

33 pages, 1956 KB  
Review
Renewable Energy Integration in Sustainable Transport: A Review of Emerging Propulsion Technologies and Energy Transition Mechanisms
by Anna Kochanek, Tomasz Zacłona, Iga Pietrucha, Agnieszka Petryk, Urszula Ziemiańczyk, Zuzanna Basak, Paweł Guzdek, Leyla Akbulut, Atılgan Atılgan and Agnieszka Dorota Woźniak
Energies 2025, 18(24), 6610; https://doi.org/10.3390/en18246610 - 18 Dec 2025
Abstract
Decarbonization of transport is a key element of the energy transition and of achieving the Sustainable Development Goals. Integration of renewable energy into transport systems is assessed together with the potential of electric, hybrid, hydrogen, and biofuel-based propulsion to enable low emission mobility. [...] Read more.
Decarbonization of transport is a key element of the energy transition and of achieving the Sustainable Development Goals. Integration of renewable energy into transport systems is assessed together with the potential of electric, hybrid, hydrogen, and biofuel-based propulsion to enable low emission mobility. Literature published from 2019 to 2025 is synthesized using structured searches in Scopus, Web of Science, and Elsevier and evidence is integrated through a thematic comparative approach focused on energy efficiency, life cycle greenhouse gas emissions, and technology readiness. Quantitative findings indicate that battery electric vehicles typically require about 18 to 20 kWh per 100 km, compared with about 60 to 70 kWh per 100 km in energy equivalent terms for internal combustion cars. With higher renewable shares in electricity generation, life cycle CO2 equivalent emissions are reduced by about 60 to 70 percent under average European grid conditions and up to about 80 percent when renewables exceed 50 percent. Energy storage and smart grid management, including vehicle to grid operation, are identified as enabling measures and are associated with peak demand reductions of about 5 to 10 percent. Hydrogen and advanced biofuels remain important for heavy duty, maritime, and aviation segments where full electrification is constrained. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

13 pages, 2463 KB  
Article
Phase Transitions and Switching Dynamics of Topological Domains in Hafnium Oxide-Based Cylindrical Ferroelectrics from Three-Dimensional Phase Field Simulation
by Pengying Chang, Hanxiao Zhang, Mengyao Xie, Huan Zhang and Yiyang Xie
Nanomaterials 2025, 15(24), 1901; https://doi.org/10.3390/nano15241901 - 18 Dec 2025
Viewed by 27
Abstract
The phase transitions and switching dynamics of topological polar textures in hafnium oxide (HfO2)-based cylindrical-shell ferroelectrics are studied using a three-dimensional (3D) phase field model based on the self-consistent solution of the time-dependent Ginzburg–Landau model and Poisson equation. The comprehensive interplays [...] Read more.
The phase transitions and switching dynamics of topological polar textures in hafnium oxide (HfO2)-based cylindrical-shell ferroelectrics are studied using a three-dimensional (3D) phase field model based on the self-consistent solution of the time-dependent Ginzburg–Landau model and Poisson equation. The comprehensive interplays of bulk free energy, gradient energy, depolarization energy, and elastic energy are taken into account. When a cylindrical ferroelectric device is biased under the in-plane radial electric field, there is a size-controlled phase transition between the ferroelectric (FE), antiferroelectric (AFE), and paraelectric (PE) phases, depending on ferroelectric film thickness and cylindrical shell radius. For in-plane polarization textures at the equilibriums, the FE phase has a Néel-like texture with a center-type four-quad domain, the AFE phase has a monodomain texture, and the PE phase has a Bloch-like texture with a vortex four-quad domain. These polarization domain textures are resultant from energy competition and topologically protected by the geometrical confinement. The polarization dynamics from polar states towards equilibriums are analyzed considering the separated contributions of x- and y-components of polarizations that are driven by x-y in-plane electric fields. The emergent topological domains and phase transitions provide guidelines for geometrical engineering of a novel nano-structured ferroelectric device that is different from the planar one, offering new possibilities for multi-functional high-density ferroelectric memory. Full article
(This article belongs to the Special Issue HfO2-Based Ferroelectric Thin Films and Devices)
Show Figures

Figure 1

24 pages, 2467 KB  
Article
Assessment of Decarbonization Scenarios for the Portuguese Road Sector
by João Salvador, Gonçalo O. Duarte and Patrícia C. Baptista
Energies 2025, 18(24), 6587; https://doi.org/10.3390/en18246587 - 17 Dec 2025
Viewed by 57
Abstract
This study presents a scenario-based modeling framework to evaluate potential decarbonization pathways for Portugal’s road transport sector. The model simulates the evolution of a light-duty vehicle (LDV) fleet under varying degrees of electrification and biofuel integration, accounting for energy consumption, CO2 emissions [...] Read more.
This study presents a scenario-based modeling framework to evaluate potential decarbonization pathways for Portugal’s road transport sector. The model simulates the evolution of a light-duty vehicle (LDV) fleet under varying degrees of electrification and biofuel integration, accounting for energy consumption, CO2 emissions and market shares of alternative propulsion technologies. Coupled with projected energy mix trajectories, the framework estimates final energy demand and well-to-wheel (WTW) emissions for each scenario, benchmarking outcomes against national and European climate targets. A key structural limitation identified is the long vehicle survival rate—averaging 14 years—which constrains fleet renewal and delays the transition to full electrification. Diesel-powered light commercial vehicles exhibit even slower replacement dynamics, rendering the Portuguese targets of full electrification by 2030 highly improbable without targeted scrappage and incentive programs. Scenario analysis indicates that even with accelerated electric vehicle (EV) uptake, battery electric vehicles (BEVs) would comprise only 12% of the fleet by 2030 and 77% by 2050. Electrification scenario raises electricity demand fortyfold by 2050, stressing generation and infrastructure. Scenarios that consider diversification of energy sources reduce this strain but require triple electricity for large-scale green hydrogen and synthetic fuel production. Full article
Show Figures

Figure 1

30 pages, 16514 KB  
Article
Research on the Supply–Demand Evaluation and Configuration Optimization of Urban Residential Public Charging Facilities Based on Collaborative Service Networks: A Case Study of Hongshan District, Wuhan
by Yanyan Huang, Yunfang Zha, You Zou, Xudong Jia, Zaiyu Fan, Hangyi Ren, Yilun Wei and Daoyuan Chen
World Electr. Veh. J. 2025, 16(12), 675; https://doi.org/10.3390/wevj16120675 - 17 Dec 2025
Viewed by 65
Abstract
The rapid growth of electric vehicles has intensified the spatial mismatch between the layout of charging infrastructure and user demand, resulting in a structural contradiction in which “local oversupply” and “local shortages” coexist. To systematically diagnose and optimize this issue, this study develops [...] Read more.
The rapid growth of electric vehicles has intensified the spatial mismatch between the layout of charging infrastructure and user demand, resulting in a structural contradiction in which “local oversupply” and “local shortages” coexist. To systematically diagnose and optimize this issue, this study develops an innovative analytical framework for a “residential area–charging infrastructure” collaborative service network and conducts an empirical analysis using Hongshan District in Wuhan as a case study. The framework integrates actual facility utilization data, complex network analysis, and spatial clustering methods. The findings reveal that the collaborative service network in the study area is overall sparse, exhibiting a distinct “core–periphery” structure, with noticeable patterns of resource concentration and isolation. Residential areas can be categorized into three types based on their supply–demand characteristics: efficient-collaborative, transitional-mixed, and low-demand peripheral areas. The predominance of the transitional-mixed type indicates that most areas are currently in an unstable state of supply–demand adjustment. A key systemic mechanism identified in this study is the significant “collaborative reinforcement effect” between facility utilization rates and network centrality. Building on these insights, we propose a hierarchical optimization strategy consisting of “overall network optimization—local cluster coordination—individual facility enhancement.” This ultimately forms a comprehensive decision-support framework for “assessment—diagnosis—optimization,” providing scientific evidence and new solutions for the precise planning and efficient operation of urban charging infrastructure. Full article
(This article belongs to the Section Charging Infrastructure and Grid Integration)
Show Figures

Figure 1

15 pages, 1627 KB  
Article
Experimental Study on Pure Ammonia as a Single Fuel in a Range-Extended Electric Vehicle
by Qiyang Sun, Rulong Li, Yunliang Qi, Hongjian Pan, Wuzhe Zhu, Zhelong Lin, Qingchu Chen and Zhi Wang
Energies 2025, 18(24), 6583; https://doi.org/10.3390/en18246583 - 17 Dec 2025
Viewed by 70
Abstract
Ammonia can significantly reduce carbon emissions when used in internal combustion engines. However, pure ammonia is considered difficult to ignite and has a slow flame propagation speed, which makes its application challenging. Furthermore, previous research on pure ammonia engines has been based on [...] Read more.
Ammonia can significantly reduce carbon emissions when used in internal combustion engines. However, pure ammonia is considered difficult to ignite and has a slow flame propagation speed, which makes its application challenging. Furthermore, previous research on pure ammonia engines has been based on bench tests, with no vehicle-level tests reported to date. In this study, an engine was tested using pure ammonia as a single fuel in a range-extended hybrid electric vehicle. First, a pure ammonia hybrid power system was implemented in a light-duty vehicle. By motoring the engine instantly to its optimal operating window, the hybrid mode ensures a rapid transition to stable combustion. The results show that, using pure ammonia, the engine can operate stably within a speed range of 1000–3175 rpm. The engine achieves an output power of 45 kW, with an indicated thermal efficiency exceeding 40% under 3175 rpm. Compared to gasoline, pure ammonia has a longer ignition delay but a similar combustion duration. Pure ammonia requires an earlier spark timing and higher intake temperature. The ammonia and NO remain high even after being treated by a three-way catalyst. This research verifies the feasibility of using pure ammonia as a single fuel in hybrid modes, offering broad application prospects in scenarios such as marine power and stationary power generation. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

25 pages, 1424 KB  
Article
Exploring Effective Supply Chain Readiness and Resilience Within the Marine Renewable Energy Sector: A Future Reality Tree Approach
by Rachel K. Mason-Jones, Paul G. Davies, Andrew J. Thomas and Christian A. Griffiths
Sustainability 2025, 17(24), 11275; https://doi.org/10.3390/su172411275 - 16 Dec 2025
Viewed by 97
Abstract
Marine renewable energy technologies (MRE-T), which capture energy from oceans and seas, represent a pivotal area for sustainable energy development. These technologies, including wave energy converters, tidal energy systems, ocean thermal energy conversion, and salinity gradient power, offer the potential to diversify energy [...] Read more.
Marine renewable energy technologies (MRE-T), which capture energy from oceans and seas, represent a pivotal area for sustainable energy development. These technologies, including wave energy converters, tidal energy systems, ocean thermal energy conversion, and salinity gradient power, offer the potential to diversify energy sources, reduce reliance on fossil fuels, and mitigate climate change impacts. Despite its vast potential, marine renewable energy currently constitutes only a small fraction of global electricity generation, highlighting the challenges and complexities associated with its development and deployment. This paper builds on original research undertaken in 2019 by the authors exploring the barriers for companies attempting to enter the Marine Renewable Energy-Supply Chain (MRE-SC). The aim of this paper is to adopt the Theory of Constraints (ToC) approach to develop a Future Reality Tree (FRT) which creates a roadmap to enable companies to successfully enter the MRE-SC. This will enable academics and practitioners to visualize the cause-and-effect relationships around market entry into MRE-SCs for companies, whilst outlining the future goals, and the pathways to achieving the desired results within a holistic system. Therefore, the FRT provides a bridge between current and future visions and provides a valuable strategic perspective on the way companies can transition into the MRE-SC, thereby enabling a future state to be described, guiding the identification of changes that are required to establish an effective change management approach. Full article
(This article belongs to the Special Issue Sustainability Advances in Supply Chain and Operations Management)
Show Figures

Figure 1

33 pages, 2339 KB  
Article
Transitioning to Hydrogen Trucks in Small Economies: Policy, Infrastructure, and Innovation Dynamics
by Aleksandrs Kotlars, Justina Hudenko, Inguna Jurgelane-Kaldava, Jelena Stankevičienė, Maris Gailis, Igors Kukjans and Agnese Batenko
Sustainability 2025, 17(24), 11272; https://doi.org/10.3390/su172411272 - 16 Dec 2025
Viewed by 91
Abstract
Decarbonizing heavy-duty freight transport is essential for achieving climate neutrality targets. Although internal combustion engine (ICE) trucks currently dominate logistics, they contribute substantially to greenhouse gas emissions. Zero-emission alternatives, such as battery electric vehicles (BEVs) and hydrogen fuel cell vehicles (H2), provide different [...] Read more.
Decarbonizing heavy-duty freight transport is essential for achieving climate neutrality targets. Although internal combustion engine (ICE) trucks currently dominate logistics, they contribute substantially to greenhouse gas emissions. Zero-emission alternatives, such as battery electric vehicles (BEVs) and hydrogen fuel cell vehicles (H2), provide different decarbonization pathways; however, their relative roles remain contested, particularly in small economies. While BEVs benefit from technological maturity and declining costs, hydrogen offers advantages for high-payload, long-haul operations, especially within energy-intensive cold supply chains. The aim of this paper is to examine the gradual transition from ICE trucks to hydrogen-powered vehicles with a specific focus on cold-chain logistics, where reliability and energy intensity are critical. The hypothesis is that applying a system dynamics forecasting approach, incorporating investment costs, infrastructure coverage, government support, and technological progress, can more effectively guide transition planning than traditional linear methods. To address this, the study develops a system dynamics economic model tailored to the structural characteristics of a small economy, using a European case context. Small markets face distinct constraints: limited fleet sizes reduce economies of scale, infrastructure deployment is disproportionately costly, and fiscal capacity to support subsidies is restricted. These conditions increase the risk of technology lock-in and emphasize the need for coordinated, adaptive policy design. The model integrates acquisition and maintenance costs, fuel consumption, infrastructure rollout, subsidy schemes, industrial hydrogen demand, and technology learning rates. It incorporates subsystems for fleet renewal, hydrogen refueling network expansion, operating costs, industrial demand linkages, and attractiveness functions weighted by operator decision preferences. Reinforcing and balancing feedback loops capture the dynamic interactions between fleet adoption and infrastructure availability. Inputs combine fixed baseline parameters with variable policy levers such as subsidies, elasticity values, and hydrogen cost reduction rates. Results indicate that BEVs are structurally more favorable in small economies due to lower entry costs and simpler infrastructure requirements. Hydrogen adoption becomes viable only under scenarios with strong, sustained subsidies, accelerated station deployment, and sufficient cross-sectoral demand. Under favorable conditions, hydrogen can approach cost and attractiveness parity with BEVs. Overall, market forces alone are insufficient to ensure a balanced zero-emission transition in small markets; proactive and continuous government intervention is required for hydrogen to complement rather than remain secondary to BEV uptake. The novelty of this study lies in the development of a system dynamics model specifically designed for small-economy conditions, integrating industrial hydrogen demand, policy elasticity, and infrastructure coverage limitations, factors largely absent from the existing literature. Unlike models focused on large markets or single-sector applications, this approach captures cross-sector synergies, small-scale cost dynamics, and subsidy-driven points, offering a more realistic framework for hydrogen truck deployment in small-country environments. The model highlights key leverage points for policymakers and provides a transferable tool for guiding freight decarbonization strategies in comparable small-market contexts. Full article
Show Figures

Figure 1

27 pages, 2864 KB  
Article
Economic and Efficiency Impacts of Repartition Keys in Renewable Energy Communities: A Simulation-Based Analysis for the Portuguese Context
by João Faria, Joana Figueira, José Pombo, Sílvio Mariano and Maria Calado
Energies 2025, 18(24), 6567; https://doi.org/10.3390/en18246567 - 16 Dec 2025
Viewed by 175
Abstract
Renewable Energy Communities (RECs) are a cornerstone of the European Union’s energy transition strategy, promoting decentralized and participatory energy models. A fundamental design aspect of RECs is the choice of Keys of Repartition (KoRs), which govern the allocation of locally generated energy among [...] Read more.
Renewable Energy Communities (RECs) are a cornerstone of the European Union’s energy transition strategy, promoting decentralized and participatory energy models. A fundamental design aspect of RECs is the choice of Keys of Repartition (KoRs), which govern the allocation of locally generated energy among participants. This study evaluated the economic and technical impacts of four KoR strategies—static, dynamic (based on load or production), and hybrid—within the Portuguese regulatory framework. A simulation-based methodology was employed, considering both small and large-scale communities, with and without energy storage systems, including stationary batteries and electric vehicles (EVs). Results show that storage integration markedly improves self-sufficiency and self-consumption, with stationary batteries playing the most significant role, while EVs provided only a residual contribution. Furthermore, the results demonstrated that the choice of KoR has a decisive impact on REC performance: in small-scale communities, outcomes depend strongly on participant demand profiles and storage availability, whereas in large-scale communities, operational rules become the key factor in ensuring efficient energy sharing, higher self-consumption, and improved balance between generation and demand. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

29 pages, 3429 KB  
Article
Integrating Eco-Design and a Building-Integrated Photovoltaic (BIPV) System for Achieving Net Zero Energy Building for a Hot–Dry Climate
by Mohamed Ouazzani Ibrahimi, Abdelali Mana, Samir Idrissi Kaitouni and Abdelmajid Jamil
Buildings 2025, 15(24), 4538; https://doi.org/10.3390/buildings15244538 - 16 Dec 2025
Viewed by 205
Abstract
Despite growing interest in positive-energy and net-zero-energy buildings (NZEBs), few studies have addressed the integration of biobased construction with building-integrated photovoltaics (BIPV) under hot–dry climate conditions, particularly in Morocco and North Africa. This study fills this gap by presenting a simulation-based evaluation of [...] Read more.
Despite growing interest in positive-energy and net-zero-energy buildings (NZEBs), few studies have addressed the integration of biobased construction with building-integrated photovoltaics (BIPV) under hot–dry climate conditions, particularly in Morocco and North Africa. This study fills this gap by presenting a simulation-based evaluation of energy performance and renewable energy integration strategies for a residential building in the Fes-Meknes region. Two structural configurations were compared using dynamic energy simulations in DesignBuilder/EnergyPlus, that is, a conventional concrete brick model and an eco-constructed alternative based on biobased wooden materials. Thus, the wooden construction reduced annual energy consumption by 33.3% and operational CO2 emissions by 50% due to enhanced thermal insulation and moisture-regulating properties. Then multiple configurations of the solar energy systems were analysed, and an optimal hybrid off-grid hybrid system combining rooftop photovoltaic, BIPV, and lithium-ion battery storage achieved a 100% renewable energy fraction with an annual output of 12,390 kWh. While the system incurs a higher net present cost of $45,708 USD, it ensures full grid independence, lowers the electricity cost to $0.70/kWh, and improves occupant comfort. The novelty of this work lies in its integrated approach, which combines biobased construction, lifecycle-informed energy modelling, and HOMER-optimised PV/BIPV systems tailored to a hot, dry climate. The study provides a replicable framework for designing NZEBs in Morocco and similar arid regions, supporting the low-carbon transition and informing policy, planning, and sustainable construction strategies. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

23 pages, 3223 KB  
Article
Comprehensive Well-to-Wheel Life Cycle Assessment of Battery Electric Heavy-Duty Trucks Using Real-World Data: A Case Study in Southern California
by Miroslav Penchev, Kent C. Johnson, Arun S. K. Raju and Tahir Cetin Akinci
Vehicles 2025, 7(4), 162; https://doi.org/10.3390/vehicles7040162 - 16 Dec 2025
Viewed by 184
Abstract
This study presents a well-to-wheel life-cycle assessment (WTW-LCA) comparing battery-electric heavy-duty trucks (BEVs) with conventional diesel trucks, utilizing real-world fleet data from Southern California’s Volvo LIGHTS project. Class 7 and Class 8 vehicles were analyzed under ISO 14040/14044 standards, combining measured diesel emissions [...] Read more.
This study presents a well-to-wheel life-cycle assessment (WTW-LCA) comparing battery-electric heavy-duty trucks (BEVs) with conventional diesel trucks, utilizing real-world fleet data from Southern California’s Volvo LIGHTS project. Class 7 and Class 8 vehicles were analyzed under ISO 14040/14044 standards, combining measured diesel emissions from portable emissions measurement systems (PEMSs) with BEV energy use derived from telematics and charging records. Upstream (“well-to-tank”) emissions were estimated using USLCI datasets and the 2020 Southern California Edison (SCE) power mix, with an additional scenario for BEVs powered by on-site solar energy. The analysis combines measured real-world energy consumption data from deployed battery electric trucks with on-road emission measurements from conventional diesel trucks collected by the UCR team. Environmental impacts were characterized using TRACI 2.1 across climate, air quality, toxicity, and fossil fuel depletion impact categories. The results show that BEVs reduce total WTW CO2-equivalent emissions by approximately 75% compared to diesel. At the same time, criteria pollutants (NOx, VOCs, SOx, PM2.5) decline sharply, reflecting the shift in impacts from vehicle exhaust to upstream electricity generation. Comparative analyses indicate BEV impacts range between 8% and 26% of diesel levels across most environmental indicators, with near-zero ozone-depletion effects. The main residual hotspot appears in the human-health cancer category (~35–38%), linked to upstream energy and materials, highlighting the continued need for grid decarbonization. The analysis focuses on operational WTW impacts, excluding vehicle manufacturing, battery production, and end-of-life phases. This use-phase emphasis provides a conservative yet practical basis for short-term fleet transition strategies. By integrating empirical performance data with life-cycle modeling, the study offers actionable insights to guide electrification policies and optimize upstream interventions for sustainable freight transport. These findings provide a quantitative decision-support basis for fleet operators and regulators planning near-term heavy-duty truck electrification in regions with similar grid mixes, and can serve as an empirical building block for future cradle-to-grave and dynamic LCA studies that extend beyond the operational well-to-wheels scope adopted here. Full article
Show Figures

Figure 1

Back to TopTop