Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (644)

Search Parameters:
Keywords = electricity and hydrogen storage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2513 KB  
Article
Hydrogen-Involved Renewable Energy Base Planning in Desert and Gobi Regions Under Electricity-Carbon-Hydrogen Markets
by Jiankun Hu, Xiaoheng Ji, Haiji Wang, Guoping Feng and Minghao Song
Processes 2025, 13(11), 3655; https://doi.org/10.3390/pr13113655 - 11 Nov 2025
Abstract
China is developing renewable energy bases (REBs) in the desert and Gobi regions. However, the intermittency of renewable energy and the temporal mismatch between peak renewable generation and peak load demand severely disrupt the power supply reliability of these REBs. Hydrogen storage technology, [...] Read more.
China is developing renewable energy bases (REBs) in the desert and Gobi regions. However, the intermittency of renewable energy and the temporal mismatch between peak renewable generation and peak load demand severely disrupt the power supply reliability of these REBs. Hydrogen storage technology, characterized by high energy density and long-term storage capability, is an effective method for enhancing the power supply reliability. Therefore, this paper proposes a REB planning model in the desert and Gobi regions considering seasonal hydrogen storage introduction as well as electricity-carbon-hydrogen markets trading. Furthermore, a combination scenario generation method considering extreme scenario optimization is proposed. Among which, the extreme scenarios selected through an iterative selection method based on maximizing scenario divergence contain more incremental information, providing data support for the proposed model. Finally, the simulation was conducted in the desert and Gobi regions of Yinchuan, Ningxia Province, China, primarily verifying that (1) the REB incorporating hydrogen storage can fully leverage hydrogen storage to achieve seasonal and long-term electricity transfer and utilization. The project has a payback period of 10 years, with an internal rate of return of 13.30% and a return on investment of 16.34%, thus showing significant development potential. (2) Compared to the typical battery-involved REB, the hydrogen-involved energy storage facility achieved a 59.39% annual profit, a 10.98% internal rate of return, a 14.93% return on investment, and a 1.51% improvement in power supply reliability by sacrificing a 52.49% increase in construction cost. (3) Compared to REB planning based only on typical scenarios, the power supply reliability of REBs based on the proposed combination scenario generation method improved by 8.58%. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

23 pages, 1707 KB  
Article
A Two-Stage Optimal Dispatch Strategy for Electric-Thermal-Hydrogen Integrated Energy System Based on IGDT and Fuzzy Chance-Constrained Programming
by Na Sun, Hongxu He and Haiying Dong
Energies 2025, 18(22), 5927; https://doi.org/10.3390/en18225927 - 11 Nov 2025
Abstract
To address the economic and reliability challenges of high-penetration renewable energy integration in electricity-heat-hydrogen integrated energy systems and support the dual-carbon strategy, this paper proposes an optimal dispatch method integrating Information Gap Decision Theory (IGDT) and Fuzzy Chance-Constrained Programming (FCCP). An IES model [...] Read more.
To address the economic and reliability challenges of high-penetration renewable energy integration in electricity-heat-hydrogen integrated energy systems and support the dual-carbon strategy, this paper proposes an optimal dispatch method integrating Information Gap Decision Theory (IGDT) and Fuzzy Chance-Constrained Programming (FCCP). An IES model coupling multiple energy components was constructed to exploit multi-energy complementarity. A stepped carbon trading mechanism was introduced to quantify emission costs. For interval uncertainties in renewable generation, IGDT-based robust and opportunistic dispatch models were established; for fuzzy load uncertainties, FCCP transformed them into deterministic equivalents, forming a dual-layer “IGDT-FCCP” uncertainty handling framework. Simulation using CPLEX demonstrated that the proposed model dynamically adjusts uncertainty tolerance and confidence levels, effectively balancing economy, robustness, and low-carbon performance under complex uncertainties: reducing total costs by 12.7%, cutting carbon emissions by 28.1%, and lowering renewable curtailment to 1.8%. This study provides an advanced decision-making paradigm for low-carbon resilient IES. Full article
19 pages, 3974 KB  
Article
First-Principles Investigation of Structural, Electronic, Thermoelectric, and Hydrogen Storage Properties of MgXH3 (X = Cr, Mn, Fe, Co, Ni, Cu) Perovskite Hydrides
by Ayoub Koufi, Younes Ziat and Hamza Belkhanchi
Hydrogen 2025, 6(4), 106; https://doi.org/10.3390/hydrogen6040106 - 11 Nov 2025
Abstract
This paper is based on the BoltzTrap package implemented in the Wien2k code to theoretically analyze and predict the structural, electronic, thermoelectric, and hydrogen storage properties of MgXH3 hydride perovskites (X = Cr, Mn, Fe, Co, Ni, and Cu). The [...] Read more.
This paper is based on the BoltzTrap package implemented in the Wien2k code to theoretically analyze and predict the structural, electronic, thermoelectric, and hydrogen storage properties of MgXH3 hydride perovskites (X = Cr, Mn, Fe, Co, Ni, and Cu). The study explores the dual functional potential of these compounds, highlighting how their hydrogen storage capability relates to their temperature-dependent thermoelectric performance. Analysis of band structures and densities of electronic states (DOS) reveals that all the compounds studied exhibit metallic behavior, characterized by an overlap between the valence band and the conduction band, indicating a zero electronic gap. Thermal properties show great variability depending on the transition metal involved. In particular, electrical conductivity and thermal conductivity evolve differently with temperature, directly influencing the figure of merit (Zt) of thermoelectric materials. The results suggest that although most MgXH3 compounds are not promising candidates for thermoelectric applications due to their high thermal conductivity and low density of states near the EF, MgNiH3 and MgCuH3 stand out with attractive thermoelectric potential. These properties make them attractive for energy conversion, waste heat recovery and solid-state cooling applications. This theoretical study highlights the potential of magnesium-based perovskite hydrides in energy conversion technologies, including thermoelectricity and hydrogen storage. Full article
(This article belongs to the Special Issue Advances in Solid-State Hydrogen and Energy Storage)
Show Figures

Figure 1

19 pages, 1602 KB  
Article
Joint Optimization Scheduling of Electric Vehicles and Electro–Olefin–Hydrogen Electromagnetic Energy Supply Device for Wind–Solar Integration
by Shumin Sun, Chenglong Wang, Yan Cheng, Shibo Wang, Chengfu Wang, Xianwen Lu, Liqun Sun, Guangqi Zhou and Nan Wang
Energies 2025, 18(22), 5911; https://doi.org/10.3390/en18225911 - 10 Nov 2025
Abstract
In northern China, the long winter heating period is accompanied by severe wind curtailment. To address this issue, a joint optimization scheduling strategy of electric vehicles (EVs) and electro–olefin–hydrogen electromagnetic energy supply device (EHED) is proposed to promote deep wind–solar integration. Firstly, the [...] Read more.
In northern China, the long winter heating period is accompanied by severe wind curtailment. To address this issue, a joint optimization scheduling strategy of electric vehicles (EVs) and electro–olefin–hydrogen electromagnetic energy supply device (EHED) is proposed to promote deep wind–solar integration. Firstly, the feasibility analysis of EVs participating in scheduling is conducted, and the operation models of dispatchable EVs and thermal energy storage EHEDs within the scheduling period are established. Secondly, a control strategy for the joint optimization scheduling of wind–solar farms, EVs, EHEDs, and power grid is constructed. Then, an economic dispatch model for joint optimization of EVs and EHEDs is established to minimize the system operation cost within the scheduling period, and the deep wind–solar integration of the joint optimization model is studied by considering EVs under different demand responses. Finally, the proposed model is solved by CPLEX solver. The simulation results show that the established joint optimization economic dispatch model of EV-EHEDs can improve the enthusiasm of dispatchable EVs to participate in deep wind–solar integration, reduce wind curtailment power, and decrease the overall system operation cost. Full article
(This article belongs to the Special Issue Advances in Green Hydrogen and Green Ammonia)
Show Figures

Figure 1

44 pages, 6407 KB  
Article
How Heat-Powered Heat Pumps Could Reduce the Need for Grid-Scale Energy Storage
by Bruno Cardenas, Seamus D. Garvey, Zahra Baniamerian and Ramin Mehdipour
Energies 2025, 18(22), 5887; https://doi.org/10.3390/en18225887 - 8 Nov 2025
Viewed by 206
Abstract
This paper explores how the deployment of “High-Performance Heat-Powered Heat Pumps” (HP3s)—a novel heating technology—could help meet the domestic heating demand in the UK and reduce how much grid-scale energy storage is needed in comparison to a scenario where electrical heat [...] Read more.
This paper explores how the deployment of “High-Performance Heat-Powered Heat Pumps” (HP3s)—a novel heating technology—could help meet the domestic heating demand in the UK and reduce how much grid-scale energy storage is needed in comparison to a scenario where electrical heat pumps fully supply the heating demand. HP3 systems can produce electricity, which can partially alleviate the stress caused by electrical heat pumps. A parametric analysis focusing on two variables, the penetration of HP3 systems (H) and the amount of electricity exported (Ɛ), is presented. For every combination of H and Ɛ, the electricity system is optimized to minimize the cost of electricity. Three parameters define the electricity system: the generation mix, the energy storage mix and the amount of over-generation. The cost of electricity is at its highest when electrical heat pumps supply all demand. This reduces as the penetration of HP3 systems increases due to a reduction in the need for energy storage. When HP3 systems supply 100% of the heating demand, the total cost of electricity and the storage capacity needed are 6% and 50% lower, respectively, compared to a scenario where electrical heat pumps are in 100% of residences. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

20 pages, 3073 KB  
Article
Estimation of the Potential for Green Hydrogen Production from Untapped Renewable Energy Sources in Spain in 2024
by Juan Pous Cabello, Maksym Mykhei, Dimitrios Pantelakis, Isabel Amez, Marcela Taušová and Peter Tauš
Appl. Sci. 2025, 15(22), 11873; https://doi.org/10.3390/app152211873 - 7 Nov 2025
Viewed by 137
Abstract
The increasing integration of renewable energy sources (RES) in Spain is leading to substantial amounts of surplus electricity, presenting a strategic opportunity for green hydrogen production as a key enabler of energy storage and decarbonisation. This study quantifies this untapped potential for 2024. [...] Read more.
The increasing integration of renewable energy sources (RES) in Spain is leading to substantial amounts of surplus electricity, presenting a strategic opportunity for green hydrogen production as a key enabler of energy storage and decarbonisation. This study quantifies this untapped potential for 2024. Based on the difference between installed renewable capacity and actual generation, an economically viable surplus of 18,419 GWh was identified within an optimal 10-h operating window. The hydrogen production potential was modelled for three electrolysis technologies—Alkaline (AEL), Proton Exchange Membrane (PEM) and Anion Exchange Membrane (AEM)—using total energy consumption values of 57.40, 65.55 and 59.95 MWh/t H2, respectively, including auxiliary systems. The estimated annual hydrogen production ranges from 280,999 t (PEM) to 320,897 t (AEL), with AEM yielding an intermediate value of 307,247 t. The analysis reveals a strong regional concentration, with more than 63% of the potential located in Castile and León, Andalusia, Castile-La Mancha and Extremadura. While this range represents an upper technical limit, it highlights the significant opportunity to valorise surplus renewable energy, contingent on targeted investment and a supportive regulatory framework. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

19 pages, 1087 KB  
Article
Evaluating Greenhouse Gas Reduction Efficiency Through Hydrogen Ecosystem Implementation from a Life-Cycle Perspective
by Jaeyoung Lee, Sun Bin Kim, Inhong Jung, Seleen Lee and Yong Woo Hwang
Sustainability 2025, 17(22), 9944; https://doi.org/10.3390/su17229944 - 7 Nov 2025
Viewed by 226
Abstract
With growing global demand for sustainable decarbonization, hydrogen energy systems have emerged as a key pillar in achieving carbon neutrality. This study assesses the greenhouse gas (GHG) reduction efficiency of Republic of Korea’s hydrogen ecosystem from a life-cycle perspective, focusing on production and [...] Read more.
With growing global demand for sustainable decarbonization, hydrogen energy systems have emerged as a key pillar in achieving carbon neutrality. This study assesses the greenhouse gas (GHG) reduction efficiency of Republic of Korea’s hydrogen ecosystem from a life-cycle perspective, focusing on production and utilization stages. Using empirical data—including the national hydrogen supply structure, fuel cell electric vehicle (FCEV) deployment, and hydrogen power generation records, the analysis compares hydrogen-based systems with conventional fossil fuel systems. Results show that current hydrogen production methods, mainly by-product and reforming-based hydrogen, emit an average of 6.31 kg CO2-eq per kg H2, providing modest GHG benefits over low-carbon fossil fuels but enabling up to a 77% reduction when replacing high-emission sources like anthracite. In the utilization phase, grey hydrogen-fueled stationary fuel cells emit more GHGs than the national grid. By contrast, FCEVs demonstrate a 58.2% GHG reduction compared to internal combustion vehicles, with regional variability. Importantly, this study omits the distribution phase (storage and transport) due to data heterogeneity and a lack of reliable datasets, which limits the comprehensiveness of the LCA. Future research should incorporate sensitivity or scenario-based analyses such as comparisons between pipeline transport and liquefied hydrogen transport to better capture distribution-phase impacts. The study concludes that the environmental benefit of hydrogen systems is highly dependent on production pathways, end-use sectors, and regional conditions. Strategic deployment of green hydrogen, regional optimization, and the explicit integration of distribution and storage in future assessments are essential to enhancing hydrogen’s contribution to national carbon neutrality goals. Full article
Show Figures

Figure 1

31 pages, 6989 KB  
Article
Feasibility and Sensitivity Analysis of an Off-Grid PV/Wind Hybrid Energy System Integrated with Green Hydrogen Production: A Case Study of Algeria
by Ayoub Boutaghane, Mounir Aksas, Djafar Chabane and Nadhir Lebaal
Hydrogen 2025, 6(4), 103; https://doi.org/10.3390/hydrogen6040103 - 6 Nov 2025
Viewed by 277
Abstract
Algeria’s transition toward sustainable energy requires the exploitation of its abundant solar and wind resources for green hydrogen production. This study assesses the techno-economic feasibility of an off-grid PV/wind hybrid system integrated with a hydrogen subsystem (electrolyzer, fuel cell, and hydrogen storage) to [...] Read more.
Algeria’s transition toward sustainable energy requires the exploitation of its abundant solar and wind resources for green hydrogen production. This study assesses the techno-economic feasibility of an off-grid PV/wind hybrid system integrated with a hydrogen subsystem (electrolyzer, fuel cell, and hydrogen storage) to supply both electricity and hydrogen to decentralized sites in Algeria. Using HOMER Pro, five representative Algerian regions were analyzed, accounting for variations in solar irradiation, wind speed, and groundwater availability. A deferrable water-extraction and treatment load was incorporated to model the water requirements of the electrolyzer. In addition, a comprehensive sensitivity analysis was conducted on solar irradiation, wind speed, and the capital costs of PV panels and wind turbines to capture the effects of renewable resource and investment cost fluctuations. The results indicate significant regional variation, with the levelized cost of energy (LCOE) ranging from 0.514 to 0.868 $/kWh, the levelized cost of hydrogen (LCOH) between 8.31 and 12.4 $/kg, and the net present cost (NPC) between 10.28 M$ and 17.7 M$, demonstrating that all cost metrics are highly sensitive to these variations. Full article
Show Figures

Graphical abstract

44 pages, 8586 KB  
Review
Hybrid Renewable Energy Systems for Off-Grid Electrification: A Comprehensive Review of Storage Technologies, Metaheuristic Optimization Approaches and Key Challenges
by Kamran Taghizad-Tavana, Ali Esmaeel Nezhad, Mehrdad Tarafdar Hagh, Afshin Canani and Ashkan Safari
Eng 2025, 6(11), 309; https://doi.org/10.3390/eng6110309 - 4 Nov 2025
Viewed by 655
Abstract
Hybrid Renewable Energy Systems (HRESs) are a practical solution for providing reliable, low-carbon electricity to off-grid and remote communities. This review examines the role of energy storage within HRESs by systematically comparing electrochemical, mechanical, thermal, and hydrogen-based technologies in terms of technical performance, [...] Read more.
Hybrid Renewable Energy Systems (HRESs) are a practical solution for providing reliable, low-carbon electricity to off-grid and remote communities. This review examines the role of energy storage within HRESs by systematically comparing electrochemical, mechanical, thermal, and hydrogen-based technologies in terms of technical performance, lifecycle cost, operational constraints, and environmental impact. We synthesize findings from implemented off-grid projects across multiple countries to evaluate real-world performance metrics, including renewable fraction, expected energy not supplied (EENS), lifecycle cost, and operation & maintenance burdens. Special attention is given to the emerging role of hydrogen as a long-term and cross-sector energy carrier, addressing its technical, regulatory, and financial barriers to widespread deployment. In addition, the paper reviews real-world implementations of off-grid HRES in various countries, summarizing practical outcomes and lessons for system design and policy. The discussion also includes recent advances in metaheuristic optimization algorithms, which have improved planning efficiency, system reliability, and cost-effectiveness. By combining technological, operational, and policy perspectives, this review identifies current challenges and future directions for developing sustainable, resilient, and economically viable HRES that can accelerate equitable electrification in remote areas. Finally, the review outlines key limitations and future directions, calling for more systematic quantitative studies, long-term field validation of emerging technologies, and the development of intelligent, Artificial Intelligence (AI)-driven energy management systems within broader socio-techno-economic frameworks. Overall, this work offers concise insights to guide researchers and policymakers in advancing the practical deployment of sustainable and resilient HRES. Full article
Show Figures

Figure 1

30 pages, 2719 KB  
Article
The Energy Transition in Colombia: Government Projections and Realistic Scenarios
by Alexis Sagastume Gutiérrez, Juan José Cabello Eras and Daniel David Otero Meza
Clean Technol. 2025, 7(4), 96; https://doi.org/10.3390/cleantechnol7040096 - 4 Nov 2025
Viewed by 490
Abstract
Energy transition is crucial for climate change mitigation and Sustainable Development Goals (SDGs), and has been a key government focus in Colombia since 2022, which must carefully consider its energy roadmap. This study evaluates three potential scenarios for achieving nearly 100% renewable energy [...] Read more.
Energy transition is crucial for climate change mitigation and Sustainable Development Goals (SDGs), and has been a key government focus in Colombia since 2022, which must carefully consider its energy roadmap. This study evaluates three potential scenarios for achieving nearly 100% renewable energy by 2035: replacing fossil fuels with biofuels, using hydrogen for transport and industrial heat, and relying entirely on renewable electricity. This paper discusses these scenarios’ technical, economic, and social challenges, including the need for substantial investments in renewable energy technologies and energy storage systems to replace fossil fuels. The discussion highlights the importance of balancing energy security, environmental concerns, and economic growth while addressing social priorities such as poverty eradication and access to healthcare and education. The results show that while the Colombian government’s energy transition goals are commendable, a rapid energy transition requires 4 to 8 times the government’s projected 34 billion USD investment, making it economically unfeasible. Notably, focusing on wind, photovoltaic, and green hydrogen systems, which need storage, is too costly. Furthermore, replacing fossil fuels in transport is impractical, though increasing biofuel production could partially substitute fossil fuels. Less energy-intensive alternatives like trains and waterway transport should be considered to reduce energy demand and carbon footprint. Full article
Show Figures

Figure 1

22 pages, 3746 KB  
Article
Optimal Dispatch Model for Hybrid Energy Storage in Low-Carbon Integrated Energy Systems
by Zhe Chen, Bingcheng Cen, Jingbo Zhao, Haixin Wu, Hao Wang and Zhixin Fu
Energies 2025, 18(21), 5797; https://doi.org/10.3390/en18215797 - 3 Nov 2025
Viewed by 190
Abstract
Integrated Energy Systems (IESs), which leverage the synergistic coordination of electricity, heat, and gas networks, serve as crucial enablers for a low-carbon transition. Current research predominantly treats energy storage as a subordinate resource in dispatch schemes, failing to simultaneously optimise IES economic efficiency [...] Read more.
Integrated Energy Systems (IESs), which leverage the synergistic coordination of electricity, heat, and gas networks, serve as crucial enablers for a low-carbon transition. Current research predominantly treats energy storage as a subordinate resource in dispatch schemes, failing to simultaneously optimise IES economic efficiency and storage operators’ profit maximisation, thereby overlooking their potential value as independent market entities. To address these limitations, this study establishes an operator-autonomous management framework incorporating electrical, thermal, and hydrogen storage in IESs. We propose a joint optimal dispatch model for hybrid energy storage systems in low-carbon IES operation. The upper-level model minimises total system operation costs for IES operators, while the lower-level model maximises net profits for independent storage operators managing various storage assets. These two levels are interconnected through power, price, and carbon signals. The effectiveness of the proposed model is verified by setting up multiple scenarios, for example analysis. Full article
Show Figures

Figure 1

25 pages, 5439 KB  
Article
Hydrogen Carriers for Renewable Microgrid System Applications
by Dionissios D. Papadias, Rajesh K. Ahluwalia, Jui-Kun Peng, Peter Valdez, Ahmad Tbaileh and Kriston Brooks
Energies 2025, 18(21), 5775; https://doi.org/10.3390/en18215775 - 1 Nov 2025
Viewed by 260
Abstract
Utility-scale energy storage can help improve grid reliability, reduce costs, and promote faster adoption of intermittent sources such as solar and wind. This paper analyzes the technical aspects and economics of standalone microgrids operating on intermittent power combined with hydrogen energy storage. It [...] Read more.
Utility-scale energy storage can help improve grid reliability, reduce costs, and promote faster adoption of intermittent sources such as solar and wind. This paper analyzes the technical aspects and economics of standalone microgrids operating on intermittent power combined with hydrogen energy storage. It explores the feasibility of using dibenzyltoluene (DBT) as a liquid organic hydrogen carrier to absorb excess energy during periods of high supply and polymer electrolyte fuel cells to generate electrical energy during periods of low supply. A comparative analysis is conducted on three power demand scenarios (industrial, residential, and office), in conjunction with three alternative energy sources: solar, wind and wind–solar mix. A mixed system of solar and wind energy can maintain an annual average efficiency above 70%, except for residential power demand, which lowered the efficiency to 67%. A balanced combination of wind and solar power was the most cost-effective option. The current levelized cost of electricity (LCOE) for industrial power demand was estimated to 15 ¢/kWh, and it is projected to decrease to 9 ¢/kWh in the future. For residential power demand, the LCOE was 45% higher due to the demand profile. In comparison, battery storage is significantly more expensive than hydrogen storage, even with future cost projections, increasing the LCOE between 60 and 120 ¢/kWh. Full article
Show Figures

Figure 1

22 pages, 2027 KB  
Article
Energy, Economic and Environmental (3E) Assessment of Wind Powered Electricity Generation with Hydrogen Storage in Vesleskarvet, Antarctica
by Temitope R. Ayodele, Thapelo C. Mosetlhe, Adedayo A. Yusuff and Ayodeji S. O. Ogunjuyigbe
Energies 2025, 18(21), 5748; https://doi.org/10.3390/en18215748 - 31 Oct 2025
Viewed by 154
Abstract
Clean and sustainable electricity could be generated from hydrogen produced from renewable energy resources. This paper performs an assessment of Energy, Economic and Environmental (3E) potentials of hydrogen fuel cells for electricity generation in Vesleskarvet. This site is a remote area located in [...] Read more.
Clean and sustainable electricity could be generated from hydrogen produced from renewable energy resources. This paper performs an assessment of Energy, Economic and Environmental (3E) potentials of hydrogen fuel cells for electricity generation in Vesleskarvet. This site is a remote area located in Antarctica and is being used as the base for South African National Antarctic Programme (SANAE IV). The hydrogen used as feedstock to the fuel cell was generated from the wind energy resource of Vesleskarvet using water electrolysis technique. Four large wind turbines—DE Wind D7, ServionSE MM100, Alstom E110 and Gamesa G128 designated as WT1, WT2, WT3 and WT4, respectively—were selected to determine which of them best matches the wind characteristics of the site for hydrogen production. Key results reveal that the capacity factor of the wind turbines is 62.78%, 58.37%, 63.80% and 57.94%, respectively. WT4 has the best annual hydrogen productions potential of about 307 tons per annum with the cost of electricity of 2.47 USD/kWh and payback period of 5.4 years. The wind turbine will prevent the use of 1.76 × 106 litters of diesel fuel resulting in a reduction of CO2 and CO emission of 4.83 × 106 and 1.37 × 104, respectively. Full article
(This article belongs to the Special Issue Applications of Fuel Cell Systems)
Show Figures

Figure 1

19 pages, 1643 KB  
Article
Production Technology of Blue Hydrogen with Low CO2 Emissions
by Waleed Elhefnawy, Fatma Khalifa Gad, Mohamed Shazly and Medhat A. Nemitallah
Processes 2025, 13(11), 3498; https://doi.org/10.3390/pr13113498 - 31 Oct 2025
Viewed by 383
Abstract
Blue hydrogen technology, generated from natural gas through carbon capture and storage (CCS) technology, is a promising solution to mitigate greenhouse gas emissions and meet the growing demand for clean energy. To improve the sustainability of blue hydrogen, it is crucial to explore [...] Read more.
Blue hydrogen technology, generated from natural gas through carbon capture and storage (CCS) technology, is a promising solution to mitigate greenhouse gas emissions and meet the growing demand for clean energy. To improve the sustainability of blue hydrogen, it is crucial to explore alternative feedstocks, production methods, and improve the efficiency and economics of carbon capture, storage, and utilization strategies. Two established technologies for hydrogen synthesis are Steam Methane Reforming (SMR) and Autothermal Reforming (ATR). The choice between SMR and ATR depends on project specifics, including the infrastructure, energy availability, environmental goals, and economic considerations. ATR-based facilities typically generate hydrogen at a lower cost than SMR-based facilities, except in cases where electricity prices are elevated or the facility has reduced capacity. Both SMR and ATR are methods used for hydrogen production from methane, but ATR offers an advantage in minimizing CO2 emissions per unit of hydrogen generated due to its enhanced energy efficiency and unique process characteristics. ATR provides enhanced utility and flexibility regarding energy sources due to its autothermal characteristics, potentially facilitating integration with renewable energy sources. However, SMR is easier to run but may lack flexibility compared to ATR, necessitating meticulous management. Capital expenditures for SMR and ATR hydrogen reactors are similar at the lower end of the capacity spectrum, but when plant capacity exceeds this threshold, the capital costs of SMR-based hydrogen production surpass those of ATR-based facilities. The less profitably scaled-up SMR relative to the ATR reactor contributes to the cost disparity. Additionally, individual train capacity constraints for SMR, CO2 removal units, and PSA units increase the expenses of the SMR-based hydrogen facility significantly. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

21 pages, 3267 KB  
Article
Hydrogen Strategies Under Uncertainty: Risk-Averse Choices for Green Hydrogen Pathways
by Sara Khodaparasti, Antonio Cosma, Anna Pinnarelli and Maria Elena Bruni
Sustainability 2025, 17(21), 9475; https://doi.org/10.3390/su17219475 - 24 Oct 2025
Viewed by 248
Abstract
The last decade has been characterized by a growing environmental awareness and the rise of climate change concerns. Continuous advancement of renewable energy technologies in this context has taken a central stage on the global agenda, leading to a diverse array of innovations, [...] Read more.
The last decade has been characterized by a growing environmental awareness and the rise of climate change concerns. Continuous advancement of renewable energy technologies in this context has taken a central stage on the global agenda, leading to a diverse array of innovations, ranging from cutting-edge green energy production technologies to advanced energy storage solutions. In this evolving context, ensuring the sustainability of energy systems—through the reduction of carbon emissions, enhancement of energy resilience, and responsible resource integration—has become a primary objective of modern energy planning. The integration of hydrogen technologies for power-to-gas (P2G) and power-to-power (P2P) and energy storage systems is one of the areas where the most remarkable progress is being made. However, real case implementations are lagging behind expectations due to large-scale investments needed, which, under high energy price uncertainty, act as a barrier to widespread adoption. This study proposes a risk-averse approach for sizing an Integrated Hybrid Energy System considering the uncertainty of electricity and gas prices. The problem is formulated as a mixed-integer program and tested on a real-world case study. The analysis sheds light on the value of synergies and innovative solutions that hold the promise of a cleaner, more sustainable future for generations to come. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

Back to TopTop