Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = electric hydrogen charging integrated station

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 1698 KiB  
Article
Green Energy Fuelling Stations in Road Transport: Poland in the European and Global Context
by Tomasz Neumann
Energies 2025, 18(15), 4110; https://doi.org/10.3390/en18154110 - 2 Aug 2025
Viewed by 168
Abstract
The transition to green energy in the transport sector is becoming a priority in the context of global climate challenges and the European Green Deal. This paper investigates the development of alternative fuelling stations, particularly electric vehicle (EV) charging infrastructure and hydrogen stations, [...] Read more.
The transition to green energy in the transport sector is becoming a priority in the context of global climate challenges and the European Green Deal. This paper investigates the development of alternative fuelling stations, particularly electric vehicle (EV) charging infrastructure and hydrogen stations, across EU countries with a focus on Poland. It combines a policy and technology overview with a quantitative scientific analysis, offering a multidimensional perspective on green infrastructure deployment. A Pearson correlation analysis reveals significant links between charging station density and both GDP per capita and the share of renewable energy. The study introduces an original Infrastructure Accessibility Index (IAI) to compare infrastructure availability across EU member states and models Poland’s EV charging station demand up to 2030 under multiple growth scenarios. Furthermore, the article provides a comprehensive overview of biofuels, including first-, second-, and third-generation technologies, and highlights recent advances in hydrogen and renewable electricity integration. Emphasis is placed on life cycle considerations, energy source sustainability, and economic implications. The findings support policy development toward zero-emission mobility and the decarbonisation of transport systems, offering recommendations for infrastructure expansion and energy diversification strategies. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

32 pages, 5065 KiB  
Article
Decarbonization of Long-Haul Heavy-Duty Truck Transport: Technologies, Life Cycle Emissions, and Costs
by Anne Magdalene Syré and Dietmar Göhlich
World Electr. Veh. J. 2025, 16(2), 76; https://doi.org/10.3390/wevj16020076 - 5 Feb 2025
Cited by 4 | Viewed by 2940
Abstract
Decarbonizing long-haul, heavy-duty transport in Europe focuses on battery-electric trucks with high-power chargers or electric road systems and fuel-cell-electric vehicles with hydrogen refueling stations. We present a comparative life cycle assessment and total cost of ownership analysis of these technologies for 20% of [...] Read more.
Decarbonizing long-haul, heavy-duty transport in Europe focuses on battery-electric trucks with high-power chargers or electric road systems and fuel-cell-electric vehicles with hydrogen refueling stations. We present a comparative life cycle assessment and total cost of ownership analysis of these technologies for 20% of Germany’s heavy-duty, long-haul transport alongside internal combustion engine vehicles. The results show that fuel cell vehicles with on-site hydrogen have the highest life cycle emissions (65 Mt CO2e), followed by internal combustion engine vehicles (55 Mt CO2e). Battery-electric vehicles using electric road systems achieve the lowest emissions (21 Mt CO2e) and the lowest costs (EUR 45 billion). In contrast, fuel cell vehicles with on-site hydrogen have the highest costs (EUR 69 billion). Operational costs dominate total expenses, making them a compelling target for subsidies. The choice between battery and fuel cell technologies depends on the ratio of vehicles to infrastructure, transport performance, and range. Fuel cell trucks are better suited for remote areas due to their longer range, while integrating electric road systems with high-power charging could offer synergies. Recent advancements in battery and fuel cell durability further highlight the potential of both technologies in heavy-duty transport. This study provides insights for policymakers and industry stakeholders in the shift towards sustainable transport. The greenhouse gas emission savings from adopting battery-electric trucks are 54% in our high-power charging scenario and 62% in the electric road system scenario in comparison to the reference scenario with diesel trucks. Full article
Show Figures

Figure 1

20 pages, 4105 KiB  
Article
Opportunities and Challenges of Fuel Cell Electric Vehicle-to-Grid (V2G) Integration
by Tingke Fang, Annette von Jouanne, Emmanuel Agamloh and Alex Yokochi
Energies 2024, 17(22), 5646; https://doi.org/10.3390/en17225646 - 12 Nov 2024
Cited by 7 | Viewed by 2232
Abstract
This paper presents an overview of the status and prospects of fuel cell electric vehicles (FC-EVs) for grid integration. In recent years, renewable energy has been explored on every front to extend the use of fossil fuels. Advanced technologies involving wind and solar [...] Read more.
This paper presents an overview of the status and prospects of fuel cell electric vehicles (FC-EVs) for grid integration. In recent years, renewable energy has been explored on every front to extend the use of fossil fuels. Advanced technologies involving wind and solar energy, electric vehicles, and vehicle-to-everything (V2X) are becoming more popular for grid support. With recent developments in solid oxide fuel cell electric vehicles (SOFC-EVs), a more flexible fuel option than traditional proton-exchange membrane fuel cell electric vehicles (PEMFC-EVs), the potential for vehicle-to-grid (V2G)’s implementation is promising. Specifically, SOFC-EVs can utilize renewable biofuels or natural gas and, thus, they are not limited to pure hydrogen fuel only. This opens the opportunity for V2G’s implementation by using biofuels or readily piped natural gas at home or at charging stations. This review paper will discuss current V2G technologies and, importantly, compare battery electric vehicles (BEVs) to SOFC-EVs for V2G’s implementation and their impacts. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

24 pages, 9184 KiB  
Article
Biomass-Driven Polygeneration Coupled to Power-to-X: An Energy and Economic Comparison Between On-Site Electric Vehicle Charging and Hydrogen Production
by Simona Di Fraia, Rafał Figaj, Musannif Shah and Laura Vanoli
Energies 2024, 17(21), 5479; https://doi.org/10.3390/en17215479 - 1 Nov 2024
Viewed by 1350
Abstract
The power-to-X strategy for passenger car applications offers a viable solution for using the surplus electrical power from renewable energy sources instead of exporting it to the grid. The innovative system proposed in this study allocates surplus electrical power from a building-integrated biomass-based [...] Read more.
The power-to-X strategy for passenger car applications offers a viable solution for using the surplus electrical power from renewable energy sources instead of exporting it to the grid. The innovative system proposed in this study allocates surplus electrical power from a building-integrated biomass-based Combined Cooling Heating and Power (CCHP) system to on-site applications and evaluates the energetic and economic benefits. The system comprises two key components: a 50 kW electric vehicle (EV) charging station for EVs and a 50 kW alkaline electrolyzer system for on-site hydrogen production, which is later dispensed to fuel cell electric vehicles (FCEVs). The primary goal is to decrease the surplus of electricity exports while simultaneously encouraging sustainable transportation. The system’s economic viability is assessed through two scenarios of fuel (e.g., biomass) supply costs (e.g., with and without fuel market costs) and compared to the conventional approach of exporting the excess power. The key findings of this work include a substantial reduction in surplus electricity exports, with only 3.7% allocated for EV charging and 31.5% for hydrogen production. The simple payback period (SPB) is notably reduced, enhancing economic viability. Sensitivity analysis identifies the optimal hydrogen system, featuring a 120 kW electrolyzer and a 37 kg daily hydrogen demand. The results underscore the importance of prioritizing self-consumed energy over exports to the national grid, thereby supporting integrated renewable energy solutions that enhance local energy utilization and promote sustainable transportation initiatives. Full article
(This article belongs to the Special Issue Clean and Efficient Use of Energy: 2nd Edition)
Show Figures

Figure 1

28 pages, 5486 KiB  
Article
Solar–Hydrogen-Storage Integrated Electric Vehicle Charging Stations with Demand-Side Management and Social Welfare Maximization
by Lijia Duan, Gareth Taylor and Chun Sing Lai
World Electr. Veh. J. 2024, 15(8), 337; https://doi.org/10.3390/wevj15080337 - 27 Jul 2024
Cited by 5 | Viewed by 1829
Abstract
The reliable operation of a power system requires a real-time balance between supply and demand. However, it is difficult to achieve this balance solely by relying on supply-side regulation. Therefore, it is necessary to cooperate with effective demand-side management, which is a key [...] Read more.
The reliable operation of a power system requires a real-time balance between supply and demand. However, it is difficult to achieve this balance solely by relying on supply-side regulation. Therefore, it is necessary to cooperate with effective demand-side management, which is a key strategy within smart grid systems, encouraging end-users to actively engage and optimize their electricity usage. This paper proposes a novel bi-level optimization model for integrating solar, hydrogen, and battery storage systems with charging stations (SHS-EVCSs) to maximize social welfare. The first level employs a non-cooperative game theory model for each individual EVCS to minimize capital and operational costs. The second level uses a cooperative game framework with an internal management system to optimize energy transactions among multiple EVCSs while considering EV owners’ economic interests. A Markov decision process models uncertainties in EV charging times, and Monte Carlo simulations predict charging demand. Real-time electricity pricing based on the dual theory enables demand-side management strategies like peak shaving and valley filling. Case studies demonstrate the model’s effectiveness in reducing peak loads, balancing energy utilization, and enhancing overall system efficiency and sustainability through optimized renewable integration, energy storage, EV charging coordination, social welfare maximization, and cost minimization. The proposed approach offers a promising pathway toward sustainable energy infrastructure by harmonizing renewable sources, storage technologies, EV charging demands, and societal benefits. Full article
Show Figures

Figure 1

17 pages, 8648 KiB  
Article
Development of a Hydrogen Fuel Cell Prototype Vehicle Supported by Artificial Intelligence for Green Urban Transport
by Krisztián Kun, Lóránt Szabó, Erika Varga and Dávid István Kis
Energies 2024, 17(7), 1519; https://doi.org/10.3390/en17071519 - 22 Mar 2024
Cited by 7 | Viewed by 3215
Abstract
In the automotive sector, the zero emissions area has been dominated by battery electric vehicles. However, prospective users cite charging times, large batteries, and the deployment of charging stations as a counter-argument. Hydrogen will offer a solution to these areas, in the future. [...] Read more.
In the automotive sector, the zero emissions area has been dominated by battery electric vehicles. However, prospective users cite charging times, large batteries, and the deployment of charging stations as a counter-argument. Hydrogen will offer a solution to these areas, in the future. This research focuses on the development of a prototype three-wheeled vehicle that is named Neumann H2. It integrates state-of-the-art energy storage systems, demonstrating the benefits of solar-, battery-, and hydrogen-powered drives. Of crucial importance for the R&D platform is the system’s ability to record its internal states in a time-synchronous format, providing valuable data for researchers and developers. Given that the platform is equipped with the ROS2 Open-Source interface, the data are recorded in a standardized format. Energy management is supported by artificial intelligence of the “Reinforcement Learning” type, which selects the optimal energy source for operation based on different layers of high-fidelity maps. In addition to powertrain control, the vehicle also uses artificial intelligence to detect the environment. The vehicle’s environment-sensing system is essentially designed to detect, distinguish, and select environmental elements through image segmentation using camera images and then to provide feedback to the user via displays. Full article
Show Figures

Figure 1

26 pages, 7089 KiB  
Study Protocol
Site Selection and Capacity Determination of Electric Hydrogen Charging Integrated Station Based on Voronoi Diagram and Particle Swarm Algorithm
by Xueqin Tian, Heng Yang, Yangyang Ge and Tiejiang Yuan
Energies 2024, 17(2), 418; https://doi.org/10.3390/en17020418 - 15 Jan 2024
Cited by 2 | Viewed by 1429
Abstract
In response to challenges in constructing charging and hydrogen refueling facilities during the transition from conventional fuel vehicles to electric and hydrogen fuel cell vehicles, this paper introduces an innovative method for siting and capacity determination of Electric Hydrogen Charging Integrated Stations (EHCIS). [...] Read more.
In response to challenges in constructing charging and hydrogen refueling facilities during the transition from conventional fuel vehicles to electric and hydrogen fuel cell vehicles, this paper introduces an innovative method for siting and capacity determination of Electric Hydrogen Charging Integrated Stations (EHCIS). In emphasizing the calculation of vehicle charging and hydrogen refueling demands, the proposed approach employs the Voronoi diagram and the particle swarm algorithm. Initially, Origin–Destination (OD) pairs represent car starting and endpoints, portraying travel demands. Utilizing the traffic network model, Dijkstra’s algorithm determines the shortest path for new energy vehicles, with the Monte Carlo simulation obtaining electric hydrogen energy demands. Subsequently, the Voronoi diagram categorizes the service scope of EHCIS, determining the equipment capacity while considering charging and refueling capabilities. Furthermore, the Voronoi diagram is employed to delineate the EHCIS service scope, determine the equipment capacity, and consider distance constraints, enhancing the rationality of site and service scope divisions. Finally, a dynamic optimal current model framework based on second-order cone relaxation is established for distribution networks. This framework plans each element of the active distribution network, ensuring safe and stable operation upon connection to EHCIS. To minimize the total social cost of EHCIS and address the constraints related to charging equipment and hydrogen production, a siting and capacity model is developed and solved using a particle swarm algorithm. Simulation planning in Sioux Falls city and the IEEE33 network validates the effectiveness and feasibility of the proposed method, ensuring stable power grid operation while meeting automotive energy demands. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

23 pages, 4795 KiB  
Article
Multi-Objective Optimization for Solar-Hydrogen-Battery-Integrated Electric Vehicle Charging Stations with Energy Exchange
by Lijia Duan, Zekun Guo, Gareth Taylor and Chun Sing Lai
Electronics 2023, 12(19), 4149; https://doi.org/10.3390/electronics12194149 - 5 Oct 2023
Cited by 8 | Viewed by 2542
Abstract
The importance of electric vehicle charging stations (EVCS) is increasing as electric vehicles (EV) become more widely used. EVCS with multiple low-carbon energy sources can promote sustainable energy development. This paper presents an optimization methodology for direct energy exchange between multi-geographic dispersed EVCSs [...] Read more.
The importance of electric vehicle charging stations (EVCS) is increasing as electric vehicles (EV) become more widely used. EVCS with multiple low-carbon energy sources can promote sustainable energy development. This paper presents an optimization methodology for direct energy exchange between multi-geographic dispersed EVCSs in London, UK. The charging stations (CSs) incorporate solar panels, hydrogen, battery energy storage systems, and grids to support their operations. EVs are used to allow the energy exchange of charging stations. The objective function of the solar-hydrogen-battery storage electric vehicle charging station (SHS-EVCS) includes the minimization of both capital and operation and maintenance (O&M) costs, as well as the reduction in greenhouse gas emissions. The system constraints encompass the power output limits of individual components and the need to maintain a power balance between the SHS-EVCSs and the EV charging demand. To evaluate and compare the proposed SHS-EVCSs, two multi-objective optimization algorithms, namely the Non-dominated Sorting Genetic Algorithm (NSGA-II) and the Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D), are employed. The findings indicate that NSGA-II outperforms MOEA/D in terms of achieving higher-quality solutions. During the optimization process, various factors are considered, including the sizing of solar panels and hydrogen storage tanks, the capacity of electric vehicle chargers, and the volume of energy exchanged between the two stations. The application of the optimized SHS-EVCSs results in substantial cost savings, thereby emphasizing the practical benefits of the proposed approach. Full article
Show Figures

Figure 1

31 pages, 6578 KiB  
Article
Modelling and Allocation of Hydrogen-Fuel-Cell-Based Distributed Generation to Mitigate Electric Vehicle Charging Station Impact and Reliability Analysis on Electrical Distribution Systems
by Thangaraj Yuvaraj, Thirukoilur Dhandapani Suresh, Arokiasamy Ananthi Christy, Thanikanti Sudhakar Babu and Benedetto Nastasi
Energies 2023, 16(19), 6869; https://doi.org/10.3390/en16196869 - 28 Sep 2023
Cited by 22 | Viewed by 2324
Abstract
The research presented in this article aims at the modelling and optimization of hydrogen-fuel-cell-based distributed generation (HFC-DG) to minimize the effect of electric vehicle charging stations (EVCSs) in a radial distribution system (RDS). The key objective of this work is to address various [...] Read more.
The research presented in this article aims at the modelling and optimization of hydrogen-fuel-cell-based distributed generation (HFC-DG) to minimize the effect of electric vehicle charging stations (EVCSs) in a radial distribution system (RDS). The key objective of this work is to address various challenges that arise from the integration of EVCSs, including increased power demand, voltage fluctuations, and voltage stability. To accomplish this objective, the study utilizes a novel spotted hyena optimizer algorithm (SHOA) to simultaneously optimize the placement of HFC-DG units and EVCSs. The main goal is to mitigate real power loss resulting from the additional power demand of EVCSs in the IEEE 33-bus RDS. Furthermore, the research also investigates the influence of HFC-DG and EVCSs on the reliability of the power system. Reliability is crucial for all stakeholders, particularly electricity consumers. Therefore, the study thoroughly examines how the integration of HFC-DG and EVCSs influences system reliability. The optimized solutions obtained from the SHOA and other algorithms are carefully analyzed to assess their effectiveness in minimizing power loss and improving reliability indices. Comparative analysis is conducted with varying load factors to estimate the performance of the presented optimization approach. The results prove the benefits of the optimization methodology in terms of reducing power loss and improvising the reliability of the RDS. By utilizing HFC-DG and EVCSs, optimized through the SHOA and other algorithms, the research contributes to mitigating power loss caused by EVCS power demand and improving overall system reliability. Overall, this research addresses the challenges associated with integrating EVCSs into distribution systems and proposes a novel optimization approach using HFC-DG. The findings highlight the potential benefits of this approach in terms of minimizing power loss, enhancing reliability, and optimizing distribution system operations in the context of increasing EV adoption. Full article
(This article belongs to the Special Issue Advanced Research on Fuel Cells and Hydrogen Energy Conversion)
Show Figures

Figure 1

24 pages, 8521 KiB  
Article
Nuclear-Renewable Hybrid Energy System with Load Following for Fast Charging Stations
by Otavio Lopes Alves Esteves and Hossam A. Gabbar
Energies 2023, 16(10), 4151; https://doi.org/10.3390/en16104151 - 17 May 2023
Cited by 10 | Viewed by 2641
Abstract
The transportation sector is a significant source of greenhouse gas emissions. Electric vehicles (EVs) have gained popularity as a solution to reduce emissions, but the high load of charging stations poses a challenge to the power grid. Nuclear-Renewable Hybrid Energy Systems (N-RHES) present [...] Read more.
The transportation sector is a significant source of greenhouse gas emissions. Electric vehicles (EVs) have gained popularity as a solution to reduce emissions, but the high load of charging stations poses a challenge to the power grid. Nuclear-Renewable Hybrid Energy Systems (N-RHES) present a promising alternative to support fast charging stations, reduce grid dependency, and decrease emissions. However, the intermittent problem of renewable energy sources (RESs) limits their application, and the synergies among different technologies have not been fully exploited. This paper proposes a predictive and adaptive control strategy to optimize the energy management of N-RHES for fast charging stations, considering the integration of nuclear, photovoltaics, and wind turbine energy with a hydrogen storage fuel cell system. The proposed dynamic model of a fast-charging station predicts electricity consumption behavior during charging processes, generating probabilistic forecasting of electricity consumption time-series profiling. Key performance indicators and sensitivity analyses illustrate the practicability of the suggested system, which offers a comprehensive solution to provide reliable, sustainable, and low-emission energy to fast-charging stations while reducing emissions and dependency on the power grid. Full article
(This article belongs to the Special Issue Nuclear Engineering and Technology)
Show Figures

Figure 1

19 pages, 4052 KiB  
Article
An Optimization-Based Model for A Hybrid Photovoltaic-Hydrogen Storage System for Agricultural Operations in Saudi Arabia
by Awsan Mohammed
Processes 2023, 11(5), 1371; https://doi.org/10.3390/pr11051371 - 30 Apr 2023
Cited by 16 | Viewed by 3405
Abstract
Renewable energy technologies and resources, particularly solar photovoltaic systems, provide cost-effective and environmentally friendly solutions for meeting the demand for electricity. The design of such systems is a critical task, as it has a significant impact on the overall cost of the system. [...] Read more.
Renewable energy technologies and resources, particularly solar photovoltaic systems, provide cost-effective and environmentally friendly solutions for meeting the demand for electricity. The design of such systems is a critical task, as it has a significant impact on the overall cost of the system. In this paper, a mixed-integer linear programming-based model is proposed for designing an integrated photovoltaic-hydrogen renewable energy system to minimize total life costs for one of Saudi Arabia’s most important fields, a greenhouse farm. The aim of the proposed system is to determine the number of photovoltaic (PV) modules, the amount of hydrogen accumulated over time, and the number of hydrogen tanks. In addition, binary decision variables are used to describe either-or decisions on hydrogen tank charging and discharging. To solve the developed model, an exact approach embedded in the general algebraic modeling System (GAMS) software was utilized. The model was validated using a farm consisting of 20 greenhouses, a worker-housing area, and a water desalination station with hourly energy demand. The findings revealed that 1094 PV panels and 1554 hydrogen storage tanks are required to meet the farm’s load demand. In addition, the results indicated that the annual energy cost is $228,234, with a levelized cost of energy (LCOE) of 0.12 $/kWh. On the other hand, the proposed model reduced the carbon dioxide emissions to 882 tons per year. These findings demonstrated the viability of integrating an electrolyzer, fuel cell, and hydrogen tank storage with a renewable energy system; nevertheless, the cost of energy produced remains high due to the high capital cost. Moreover, the findings indicated that hydrogen technology can be used as an energy storage solution when the production of renewable energy systems is variable, as well as in other applications, such as the industrial, residential, and transportation sectors. Furthermore, the results revealed the feasibility of employing renewable energy as a source of energy for agricultural operations. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

12 pages, 3243 KiB  
Article
Optimal Configuration of the Integrated Charging Station for PV and Hydrogen Storage
by Min Wang, Xiaobin Dong and Youchun Zhai
Energies 2021, 14(21), 7087; https://doi.org/10.3390/en14217087 - 29 Oct 2021
Cited by 19 | Viewed by 2866
Abstract
This paper designs the integrated charging station of PV and hydrogen storage based on the charging station. The energy storage system includes hydrogen energy storage for hydrogen production, and the charging station can provide services for electric vehicles and hydrogen vehicles at the [...] Read more.
This paper designs the integrated charging station of PV and hydrogen storage based on the charging station. The energy storage system includes hydrogen energy storage for hydrogen production, and the charging station can provide services for electric vehicles and hydrogen vehicles at the same time. To improve the independent energy supply capacity of the hybrid charging station and reduce the cost, the components are reasonably configured. To minimize the configuration cost of the integrated charging station and the proportion of power purchase to the demand of the charging station, the energy flow strategy of the integrated charging station is designed, and the optimal configuration model of optical storage capacity is constructed. The NSGA-II algorithm optimizes the non-inferior Pareto solution set, and a fuzzy comprehensive evaluation evaluates the optimal configuration. Full article
Show Figures

Figure 1

15 pages, 4073 KiB  
Article
Technical and Economic Analysis of One-Stop Charging Stations for Battery and Fuel Cell EV with Renewable Energy Sources
by Saumya Bansal, Yi Zong, Shi You, Lucian Mihet-Popa and Jinsheng Xiao
Energies 2020, 13(11), 2855; https://doi.org/10.3390/en13112855 - 3 Jun 2020
Cited by 44 | Viewed by 5044
Abstract
Currently, most of the vehicles make use of fossil fuels for operations, resulting in one of the largest sources of carbon dioxide emissions. The need to cut our dependency on these fossil fuels has led to an increased use of renewable energy sources [...] Read more.
Currently, most of the vehicles make use of fossil fuels for operations, resulting in one of the largest sources of carbon dioxide emissions. The need to cut our dependency on these fossil fuels has led to an increased use of renewable energy sources (RESs) for mobility purposes. A technical and economic analysis of a one-stop charging station for battery electric vehicles (BEV) and fuel cell electric vehicles (FCEV) is investigated in this paper. The hybrid optimization model for electric renewables (HOMER) software and the heavy-duty refueling station analysis model (HDRSAM) are used to conduct the case study for a one-stop charging station at Technical University of Denmark (DTU)-Risø campus. Using HOMER, a total of 42 charging station scenarios are analyzed by considering two systems (a grid-connected system and an off-grid connected system). For each system three different charging station designs (design A-hydrogen load; design B-an electrical load, and design C-an integrated system consisting of both hydrogen and electrical load) are set up for analysis. Furthermore, seven potential wind turbines with different capacity are selected from HOMER database for each system. Using HDRSAM, a total 18 scenarios are analyzed with variation in hydrogen delivery option, production volume, hydrogen dispensing option and hydrogen dispensing option. The optimal solution from HOMER for a lifespan of twenty-five years is integrated into design C with the grid-connected system whose cost was $986,065. For HDRSAM, the optimal solution design consists of tube trailer as hydrogen delivery with cascade dispensing option at 350 bar together with high production volume and the cost of the system was $452,148. The results from the two simulation tools are integrated and the overall cost of the one-stop charging station is achieved which was $2,833,465. The analysis demonstrated that the one-stop charging station with a grid connection is able to fulfil the charging demand cost-effectively and environmentally friendly for an integrated energy system with RESs in the investigated locations. Full article
Show Figures

Figure 1

17 pages, 3733 KiB  
Article
Energy Management and Switching Control of PHEV Charging Stations in a Hybrid Smart Micro-Grid System
by Tariq Kamal, Murat Karabacak, Syed Zulqadar Hassan, Luis M. Fernández-Ramírez, Muhammad Hussnain Riaz, Muhammad Tanveer Riaz, Muhammad Abbas Khan and Laiq Khan
Electronics 2018, 7(9), 156; https://doi.org/10.3390/electronics7090156 - 22 Aug 2018
Cited by 32 | Viewed by 7688
Abstract
In this study, the energy management and switching control of plug-in hybrid electric vehicles (PHEVs) in a hybrid smart micro-grid system was designed. The charging station in this research consists of real market PHEVs of different companies with different sizes. The rate of [...] Read more.
In this study, the energy management and switching control of plug-in hybrid electric vehicles (PHEVs) in a hybrid smart micro-grid system was designed. The charging station in this research consists of real market PHEVs of different companies with different sizes. The rate of charging of PHEVs is managed via switching control to receive maximum benefits from renewable energy sources and reduce the consumption of electricity from the grid. To support the optimum utilization of sustainable power, charging time and network stability, seven scenarios were developed for different interaction among the proposed micro-grid system and PHEVs. The proposed hybrid smart micro-grid system consists of three renewable energy sources: photovoltaic (PV) array controlled via an intelligent fuzzy control maximum power point subsystem, a fuel cell stack and a microturbine set controlled by proportional integral differential/proportional integral subsystems. A hybrid energy storage system (super-capacitor, battery storage bank and hydrogen) and residential load are also included in the proposed architecture. The hybrid smart micro-grid system is checked in terms of voltage regulation, frequency deviation and total harmonic distortion (THD). It was found that these are in limits according to the international standards. The simulations verify the feasibility of the proposed system and fulfill the requirement of vehicle-to-grid and grid-to-vehicle operations in a smart grid environment. Full article
(This article belongs to the Special Issue Applications of Power Electronics)
Show Figures

Figure 1

Back to TopTop