Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (139)

Search Parameters:
Keywords = edge-finishing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5621 KiB  
Article
Establishing Rational Processing Parameters for Dry Finish-Milling of SLM Ti6Al4V over Metal Removal Rate and Tool Wear
by Sergey V. Panin, Andrey V. Filippov, Mengxu Qi, Zeru Ding, Qingrong Zhang and Zeli Han
Constr. Mater. 2025, 5(3), 53; https://doi.org/10.3390/constrmater5030053 - 5 Aug 2025
Abstract
The study is motivated by the application of dry finish milling for post-build processing of additive Ti6Al4V blanks, since the use of neither lubricant nor coolants has been attracting increasing attention due to its environmental benefits, non-toxicity, and the elimination of the need [...] Read more.
The study is motivated by the application of dry finish milling for post-build processing of additive Ti6Al4V blanks, since the use of neither lubricant nor coolants has been attracting increasing attention due to its environmental benefits, non-toxicity, and the elimination of the need for additional cleaning processes. For end mills, wear patterns were investigated upon finish milling of the SLM Ti6Al4V samples under various machining conditions (by varying the values of radial depth of cut and feed values at a constant level of axial depth of cut and cutting speed). When using all the applied milling modes, the identical tool wear mechanism was revealed. Built-up edges mainly developed on the leading surfaces, increasing the surface roughness on the SLM Ti6Al4V samples but protecting the cutting edges. However, abrasive wear was mainly characteristic of the flank surfaces that accelerated peeling of the protective coatings and increased wear of the end mills. The following milling parameters have been established as being close to rational ones: Vc = 60 m/min, Vf = 400 mm/min, ap = 4 mm, and ae = 0.4 mm. They affected the surface roughness of the SLM Ti6Al4V samples in the following way: max cutting thickness—8 μm; built-up edge at rake surface—50 ± 3 μm; max wear of flank surface—15 ± 1 μm; maximum adherence of workpiece. Mode III provided the maximum MRR value and negligible wear of the end mill, but its main disadvantage was the high average surface roughness on the SLM Ti6Al4V sample. Mode II was characterized by both the lowest average surface roughness and the lowest wear of the end mill, as well as an insufficient MRR value. Since these two modes differed only in their feed rates, their values should be optimized in the range from 200 to 400 mm/min. Full article
(This article belongs to the Special Issue Mineral and Metal Materials in Civil Engineering)
Show Figures

Figure 1

9 pages, 4257 KiB  
Article
Ultrasonic-Assisted Face Turning of C45 Steel: An Experimental Investigation on Surface Integrity
by Thanh-Trung Nguyen
Alloys 2025, 4(3), 13; https://doi.org/10.3390/alloys4030013 - 10 Jul 2025
Viewed by 204
Abstract
This study investigates the effect of ultrasonic vibration applied in the cutting speed direction on surface quality during face turning of C45 steel. The experiments were performed using an ultrasonic generator operating at a frequency of 20 kHz with an amplitude of approximately [...] Read more.
This study investigates the effect of ultrasonic vibration applied in the cutting speed direction on surface quality during face turning of C45 steel. The experiments were performed using an ultrasonic generator operating at a frequency of 20 kHz with an amplitude of approximately 10 µm. The cutting parameters used in the experiments included spindle speeds of 700, 1100, and 1300 rpm, feed rates of 0.1 and 0.15 mm/rev, while the depth of cut was fixed at 0.2 mm. Surface quality was evaluated based on the roughness parameters Ra and Rz, as well as surface topography was observed using a Keyence VHX-7000 digital microscope. The results show that ultrasonic-assisted face turning (UAFT) significantly improves surface finish, particularly in the central region of the workpiece where the cutting speed is lower and built-up edge (BUE) formation is more likely. The lowest Ra value recorded was 0.91 µm, representing a 71% reduction compared to conventional turning (CT). Furthermore, at the highest spindle speed (1300 rpm), the standard deviations of both Ra and Rz were minimal, indicating improved surface consistency due to the suppression of BUE by ultrasonic vibration. Topographical observations further confirmed that UAFT generated regular and periodic surface patterns, in contrast to the irregular textures observed in CT. Full article
Show Figures

Figure 1

19 pages, 11146 KiB  
Article
Effect of Build Orientation on Surface Finish and Hydrodynamic Stability of Inkjet 3D-Printed Microfluidic Channels
by Emanuela Cutuli, Lorena Saitta, Nunzio Tuccitto, Gianluca Cicala and Maide Bucolo
Polymers 2025, 17(13), 1864; https://doi.org/10.3390/polym17131864 - 3 Jul 2025
Viewed by 382
Abstract
This study examined the effect of build orientation on the surface finish of micro-optofludic (MoF) devices fabricated via a polydimethylsiloxane (PDMS)-based 3D-printing primary–secondary fabrication protocol, where an inkjet 3D-printing technique was implemented. The molds (i.e., primaries) for fabricating the MoF devices were 3D-printed [...] Read more.
This study examined the effect of build orientation on the surface finish of micro-optofludic (MoF) devices fabricated via a polydimethylsiloxane (PDMS)-based 3D-printing primary–secondary fabrication protocol, where an inkjet 3D-printing technique was implemented. The molds (i.e., primaries) for fabricating the MoF devices were 3D-printed in two orientations: along XY (Dev-1) and across YX (Dev-2) the printhead direction. Next, the surface finish was characterized using a profilometer to acquire the primary profile of the surface along the microchannel’s edge. The results indicated that the build orientation had a strong influence on the latter, since Dev-1 displayed a tall and narrow Gaussian distribution for a channel width of 398.43 ± 0.29 µm; Dev-2 presented a slightly lower value of 393.74 ± 1.67 µm, characterized by a flat and broader distribution, highlighting greater variability due to more disruptive, orthogonally oriented, and striated patterns. These results were also confirmed by hydrodynamically testing the two MoF devices with an air–water slug flow process. A large experimental study was conducted by analyzing the mean period trend in the slug flow with respect to the imposed flow rate and build orientation. Dev-1 showed greater sensitivity to flow rate changes, attributed to its smoother, more consistent microchannel geometry. The slightly narrower average channel width in Dev-2 contributed to increased flow velocity at the expense of having worse discrimination capability at different flow rates. This study is relevant for optimizing 3D-printing strategies for the fabrication of high-performance microfluidic devices, where precise flow control is essential for applications in biomedical engineering, chemical processing, and lab-on-a-chip systems. These findings highlight the effect of microchannel morphology in tuning a system’s sensitivity to flow rate modulation. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

18 pages, 18792 KiB  
Article
Intelligent Optimization Control of Plate Plan-View Pattern Based on Intermediate Slab Pattern Vision Inspection and BWO-DNN Algorithm
by Zhong Zhao, Chujie Liu, Jiawei Wang, Junyi Luo, Zhiqiang Wang, Zhiqiang Wu, Chunyu He and Zhijie Jiao
Materials 2025, 18(13), 3038; https://doi.org/10.3390/ma18133038 - 26 Jun 2025
Viewed by 281
Abstract
In the production process of plate, the main factors affecting the yield of plate are the crop-cutting and edge losses. It is very important to accurately predict the crop pattern of plates and effectively control the plan-view pattern. In this paper, a detection [...] Read more.
In the production process of plate, the main factors affecting the yield of plate are the crop-cutting and edge losses. It is very important to accurately predict the crop pattern of plates and effectively control the plan-view pattern. In this paper, a detection scheme is proposed to obtain the plan-view pattern of the intermediate slab and finished plate by placing detection devices after the roughing mill and finishing mill, respectively. An image processing algorithm is used to obtain a dataset of the plan-view pattern parameters, and a plan-view pattern prediction and control model for plate is established based on the BWO-DNN (beluga whale optimization–deep neural network) algorithm. The BWO algorithm is used to optimize the hyperparameters in the DNN algorithm to complete the establishment of the intelligent model. In terms of model analysis, goodness of fit (R2) and mean absolute error (MAE) are used as evaluation indicators. The results show that the intelligence model established based on BWO-DNN has good predictive and control performance, realizing intelligent prediction of the crop pattern of plates and parameter optimization of plan-view pattern control. The actual production verification on site shows that the irregular areas of the plate head and tail can be reduced by 17.2% and 22.6%, respectively. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

22 pages, 551 KiB  
Article
Multi-Area, Multi-Service and Multi-Tier Edge-Cloud Continuum Planning
by Anargyros J. Roumeliotis, Efstratios Myritzis, Evangelos Kosmatos, Konstantinos V. Katsaros and Angelos J. Amditis
Sensors 2025, 25(13), 3949; https://doi.org/10.3390/s25133949 - 25 Jun 2025
Viewed by 314
Abstract
This paper presents the optimal planning of multi-area, multi-service, and multi-tier edge–cloud environments. The goal is to evaluate the regional deployment of the compute continuum, i.e., the type and number of processing devices, their pairing with a specific tier and task among different [...] Read more.
This paper presents the optimal planning of multi-area, multi-service, and multi-tier edge–cloud environments. The goal is to evaluate the regional deployment of the compute continuum, i.e., the type and number of processing devices, their pairing with a specific tier and task among different areas subject to processing, rate, and latency requirements. Different offline compute continuum planning approaches are investigated and detailed analysis related to various design choices is depicted. We study one scheme using all tasks at once and two others using smaller task batches. The latter both iterative schemes finish once all task groups have been traversed. Group-based approaches are presented as dealing with potentially excessive execution times for real-world sized problems. Solutions are provided for continuum planning using both direct complex and simpler, faster methods. Results show that processing all tasks simultaneously yields better performance but requires longer execution, while medium-sized batches achieve good performance faster. Thus, the batch-oriented schemes are capable of handling larger problem sizes. Moreover, the task selection strategy in group-based schemes influences the performance. A more detailed analysis is performed in the latter case, and different clustering methods are also considered. Based on our simulations, random selection of tasks in group-based approaches achieves better performance in most cases. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

24 pages, 5439 KiB  
Article
Surface Quality of CNC Face-Milled Maple (Acer pseudoplatanus) and Oak (Quercus robur) Using Two End-Mill Tool Types and Varying Processing Parameters
by Ana-Maria Angelescu, Lidia Gurau and Mihai Ispas
Appl. Sci. 2025, 15(13), 6975; https://doi.org/10.3390/app15136975 - 20 Jun 2025
Viewed by 207
Abstract
Face milling with end-mill tools represents a solution for woodworking applications on small-scale or complex surfaces, but information regarding the surface quality per specific tool type, wood material, and processing parameters is still limited. Therefore, this study examined the surface quality of tangential [...] Read more.
Face milling with end-mill tools represents a solution for woodworking applications on small-scale or complex surfaces, but information regarding the surface quality per specific tool type, wood material, and processing parameters is still limited. Therefore, this study examined the surface quality of tangential oak and maple CNC face-milled with two end-mill tools—straight-edged and helical—for three values of stepover (5, 7, 9 mm) and two cutting depths (1 and 3 mm). The surface quality was analyzed with roughness parameters, roughness profiles, and stereomicroscopic images and was referenced to that of very smooth surfaces obtained by super finishing. The helical end mill caused significant fiber tearing in maple and disrupted vessel outlines, while prominent tool marks such as regular ridges across the grain were noticed in oak. The best surface roughness was obtained in the case of the straight-edged tool and minimum stepover and depth of cut, which came closest to the quality of the shaved surfaces. An increase in the cutting depth generally increased the core surface roughness and fuzziness, for both tools, and this trend increased with an increase in the stepover value. The species-dependent machining quality implies that the selection of tool geometry and process parameters must be tailored per species. Full article
Show Figures

Figure 1

18 pages, 3675 KiB  
Article
Experimental Investigation and Optimization of Tool Life in High-Pressure Jet-Assisted Turning of Inconel 718
by Davorin Kramar and Djordje Cica
Metals 2025, 15(5), 477; https://doi.org/10.3390/met15050477 - 23 Apr 2025
Viewed by 446
Abstract
The application of high-pressure jet-assisted (HPJA) machining can increase tool life during machining, as the cutting fluid penetrates better into the interfaces between the tool and the workpiece. In this work, tool life in semi-finish turning of Inconel 718 with coated carbide tools [...] Read more.
The application of high-pressure jet-assisted (HPJA) machining can increase tool life during machining, as the cutting fluid penetrates better into the interfaces between the tool and the workpiece. In this work, tool life in semi-finish turning of Inconel 718 with coated carbide tools and a high-pressure coolant supply is investigated. In a preliminary experiment, tool life was compared between conventional flooding and HPJA machining. The results show tool life that is more than twice as long with HPJA at higher cutting speeds. In the main experiment, tool life was investigated as a function of various high-pressure-jet parameters (nozzle diameter, distance between the point of impact of the jet and the cutting edge and pressure of the jet) and basic cutting parameters (cutting speed and feed rate). The relationship between the above-mentioned process parameters and tool life was analyzed and modeled using response surface methodology (RSM). Analysis of variance (ANOVA) was performed to evaluate the statistical significance of each process parameter for the response. The results revealed that cutting speed is the most important factor for maximizing tool life, followed by pressure of the jet and feed rate. In addition, optimization using the biogeographic optimization (BBO) algorithm was performed and validated in this study. The results of the confirmation experiments show that the proposed optimization method is very effective and results in approximately 8.4% longer tool life compared to the best trial results. Full article
Show Figures

Graphical abstract

21 pages, 18564 KiB  
Article
Comparative Assessment of Tool Wear and Surface Topography After Superfinish Turning of Inconel 718 with Carbide and Ceramic Inserts
by Piotr Szablewski, Stanisław Legutko, Nicolae Ungureanu, Jana Petru, Krzysztof Smak and Bartłomiej Krawczyk
Appl. Sci. 2025, 15(8), 4265; https://doi.org/10.3390/app15084265 - 12 Apr 2025
Viewed by 566
Abstract
Cutting inserts made of ceramic materials are used in rough machining processes of Inconel 718. This article compares sintered carbide S205 inserts with 6160 ceramic inserts after finish turning of Inconel 718 with a hardness of 45 HRC. The evaluation focused on insert [...] Read more.
Cutting inserts made of ceramic materials are used in rough machining processes of Inconel 718. This article compares sintered carbide S205 inserts with 6160 ceramic inserts after finish turning of Inconel 718 with a hardness of 45 HRC. The evaluation focused on insert wear, surface topography and changes in cutting edge radius. The results show differences in the wear of S205 and 6160 inserts. S205 inserts characterize the formation of buildup on the rake face, while 6160 inserts tend to form buildup on the flank face. Furthermore, ceramic 6160 inserts are more prone to notch wear. Surface topography analysis revealed the formation of individual high peaks on surfaces machined with ceramic inserts. The Sa parameter for all cutting conditions studied did not exceed 0.45 µm. Full article
(This article belongs to the Special Issue Precision Manufacturing Technology)
Show Figures

Figure 1

18 pages, 3218 KiB  
Article
Optimized Machining Parameters for High-Speed Turning Process: A Comparative Study of Dry and Cryo+MQL Techniques
by Nabil Jouini, Jaharah A. Ghani, Saima Yaqoob and Afifah Zakiyyah Juri
Processes 2025, 13(3), 739; https://doi.org/10.3390/pr13030739 - 4 Mar 2025
Viewed by 1275
Abstract
Hard turning is a precision machining process used to cut materials with hardnesses exceeding 45 HRC using single-point tools. It offers an efficient alternative to traditional grinding for finishing operations in manufacturing. This paper explores the machinability of hardened AISI 4340 steel for [...] Read more.
Hard turning is a precision machining process used to cut materials with hardnesses exceeding 45 HRC using single-point tools. It offers an efficient alternative to traditional grinding for finishing operations in manufacturing. This paper explores the machinability of hardened AISI 4340 steel for a hard turning process utilizing dry and cryogenic (Cryo) plus minimum quantity lubrication (MQL) (Cryo+MQL) techniques, focusing on critical machinability aspects such as cutting force, surface roughness, and tool life. The orthogonal dry turning was performed with a cutting speed (V) ranging from 300–400 m/min, a feed rate (f) between 0.05 and 1 mm/rev, and a depth of cut (doc) from 0.1 to 0.3 mm. A statistical analysis of the obtained results revealed that the feed rate was the most influential parameter, contributing 50.69% to the main cutting force and 80.03% to surface roughness. For tool life, cutting speed was identified as the dominant factor, with a contribution rate of 39.73%. Multi-objective optimization using Grey relational analysis (GRA) identified the optimal machining parameters for the hard turning of AISI 4340 alloy steel as V = 300 m/min, f = 0.05 mm/rev, and doc = 0.1 mm. The Cryo+MQL technique was subsequently applied to these parameters, yielding significant improvements, with a 48% reduction in surface roughness and a 184.5% increase in tool life, attributed to enhanced lubrication and cooling efficiency. However, a slight 4.6% increase in cutting force was observed, likely due to surface hardening induced by the low-temperature LN2 cooling. Furthermore, reduced adhesion and tool fracture on the principal cutting edge under Cryo+MQL conditions justify the superior surface quality and extended tool life achieved. This research highlights the industrial relevance of hybrid lubrication in addressing challenges associated with hard turning processes. Full article
Show Figures

Figure 1

15 pages, 8355 KiB  
Article
Data Acquisition and Chatter Recognition Based on Multi-Sensor Signals for Blade Whirling Milling
by Xinyu Li, Riliang Liu and Zhiying Zhu
Machines 2025, 13(3), 206; https://doi.org/10.3390/machines13030206 - 2 Mar 2025
Viewed by 800
Abstract
Bladed components are essential in engines and propulsion systems, but their thin structures, complex geometries, and significant material removal rates during machining make them challenging to manufacture. This study investigates the chatter phenomenon in blade whirling milling, a promising method for improving machining [...] Read more.
Bladed components are essential in engines and propulsion systems, but their thin structures, complex geometries, and significant material removal rates during machining make them challenging to manufacture. This study investigates the chatter phenomenon in blade whirling milling, a promising method for improving machining efficiency. Multi-sensor signals, including vibration and acoustic emission signals, are collected during roughing and finishing machining. Time-domain, frequency-domain, and time-frequency features are extracted, filtered, and fused using principal component analysis (PCA) to retain relevant information while ensuring computational efficiency. The features are then input into an MLGRU-based chatter recognition model, incorporating a self-attention mechanism (SAM) for enhanced performance. The experimental results show that the proposed model achieves an average recognition accuracy of 89.16%, with a response time within 0.4 s, reflecting its effectiveness and timeliness in chatter detection. The findings also validate that the blade edge regions are more prone to chatter, especially during rough machining, due to their lower rigidity and greater sensitivity to external excitations. Full article
(This article belongs to the Special Issue Advances in Noises and Vibrations for Machines)
Show Figures

Figure 1

94 pages, 13734 KiB  
Review
Advancing Textile Waste Recycling: Challenges and Opportunities Across Polymer and Non-Polymer Fiber Types
by Mehrdad Seifali Abbas-Abadi, Brecht Tomme, Bahman Goshayeshi, Oleksii Mynko, Yihan Wang, Sangram Roy, Rohit Kumar, Bhargav Baruah, Karen De Clerck, Steven De Meester, Dagmar R. D’hooge and Kevin M. Van Geem
Polymers 2025, 17(5), 628; https://doi.org/10.3390/polym17050628 - 26 Feb 2025
Cited by 13 | Viewed by 6344
Abstract
The growing environmental impact of textile waste, fueled by the rapid rise in global fiber production, underscores the urgent need for sustainable end-of-life solutions. This review explores cutting-edge pathways for textile waste management, spotlighting innovations that reduce reliance on incineration and landfilling while [...] Read more.
The growing environmental impact of textile waste, fueled by the rapid rise in global fiber production, underscores the urgent need for sustainable end-of-life solutions. This review explores cutting-edge pathways for textile waste management, spotlighting innovations that reduce reliance on incineration and landfilling while driving material circularity. It highlights advancements in collection, sorting, and pretreatment technologies, as well as both established and emerging recycling methods. Smart collection systems utilizing tags and sensors show great promise in streamlining logistics by automating pick-up routes and transactions. For sorting, automated technologies like near-infrared and hyperspectral imaging lead the way in accurate and scalable fiber separation. Automated disassembly techniques are effective at removing problematic elements, though other pretreatments, such as color and finish removal, still need to be customized for specific waste streams. Mechanical fiber recycling is ideal for textiles with strong mechanical properties but has limitations, particularly with blended fabrics, and cannot be repeated endlessly. Polymer recycling—through melting or dissolving waste polymers—produces higher-quality recycled materials but comes with high energy and solvent demands. Chemical recycling, especially solvolysis and pyrolysis, excels at breaking down synthetic polymers like polyester, with the potential to yield virgin-quality monomers. Meanwhile, biological methods, though still in their infancy, show promise for recycling natural fibers like cotton and wool. When other methods are not viable, gasification can be used to convert waste into synthesis gas. The review concludes that the future of sustainable textile recycling hinges on integrating automated sorting systems and advancing solvent-based and chemical recycling technologies. These innovations, supported by eco-design principles, progressive policies, and industry collaboration, are essential to building a resilient, circular textile economy. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Graphical abstract

26 pages, 4923 KiB  
Review
Advancements in Clothing Thermal Comfort for Cold Intolerance
by Amare Abuhay, Melkie Getnet Tadesse, Baye Berhanu, Benny Malengier and Lieva Van Langenhove
Fibers 2025, 13(2), 13; https://doi.org/10.3390/fib13020013 - 31 Jan 2025
Viewed by 2019
Abstract
Due to constantly shifting environmental and personal circumstances, humans have a wide range of thermal comfort needs. Cold intolerance (CI) is a personalized thermoregulation disorder characterized by a persistently cold-feeling problem, regardless of weather conditions. Improvements in clothing thermal comfort can help maintain [...] Read more.
Due to constantly shifting environmental and personal circumstances, humans have a wide range of thermal comfort needs. Cold intolerance (CI) is a personalized thermoregulation disorder characterized by a persistently cold-feeling problem, regardless of weather conditions. Improvements in clothing thermal comfort can help maintain proper insulation levels, hence reducing excess heat loss brought on by thermoregulation disorders since the wearer’s thermal comfort is impacted by controllable environmental and personal factors. Despite extensive research on cold-proof clothing, no studies have examined the current status of cold protective clothing systems when taking individual considerations into account, particularly those who use them and have cold sensitivity. There is a significant study gap in research on cold intolerance discomfort and advancements in appropriate cold protection apparel applied to individuals with thermoregulation disorders. Accordingly, this paper reviews the occurrence and severity of cold intolerance and its comfort challenges. It also addresses recent developments in cold protective clothing design, aimed at opening pathways for further investigation into adopting this cutting-edge technology for cold intolerance wear design. This review also aims to clarify the existing opportunities for enhancing the thermal insulation capabilities and other comfort factors of cold protection apparel, which are conducted during the stages of garment design and clothing material/textile manufacture. A thorough assessment of the research on introducing novel surface finishing methods in the pretreatment section and modifying the structural properties of garment materials at the fiber/yarn or weaving stage is conducted. Furthermore, we systematically discuss the potential design solutions regarding fit and size as well as stitching technologies during garment development for thermal insulation enhancement of cold protective clothing design. Full article
Show Figures

Figure 1

16 pages, 8121 KiB  
Article
Load-Bearing Capacity of Klein’s Ceiling Under Fire Conditions
by Katarzyna Rzeszut and Bartosz Gościński
Buildings 2025, 15(3), 323; https://doi.org/10.3390/buildings15030323 - 22 Jan 2025
Cited by 1 | Viewed by 652
Abstract
The aim of this study was to determine the load-bearing capacity of Klein’s floors under fire conditions using analytical and numerical analyses. Analytical and numerical simulations were performed considering different structural variants of Klein’s floors. A numerical FEM model was developed in Abaqus [...] Read more.
The aim of this study was to determine the load-bearing capacity of Klein’s floors under fire conditions using analytical and numerical analyses. Analytical and numerical simulations were performed considering different structural variants of Klein’s floors. A numerical FEM model was developed in Abaqus to create temperature profiles of the beam-to-beam slabs and steel beams, and the fire load-bearing capacity of Klein’s celling after being exposed to fire for 30, 60, and 120 min was calculated analytically. The analytical method of assessing the fire load-bearing capacity of Klein’s floors uses temperature profiles, which allow for calculations to verify fire resistance in the time domain of different structural variants of Klein’s floors. (1) Introduction: The structural solutions of Klein’s floors are widely known, but no studies in the literature have addressed the mechanics of these elements under fire conditions. Both the beam-to-beam slab and steel beams are sensitive to high temperatures. Providing the required level of fire safety in buildings with Klein’s ceilings is a complex issue that requires detailed analysis. This often involves the assessment of technical and material solutions that are not currently used, and a verification of their fire resistance may be necessary to adapt existing buildings to the presently applicable technical and construction regulations. (2) Methodology: This study was prepared based on domestic and foreign sources, including standards presenting available methods for verifying the fire resistance of Klein’s ceilings in terms of their load-bearing capacity. A calculation scheme was indicated that takes into account the inter-beam slab, treated as a reinforced masonry element subjected to bending, and steel ceiling beams. In addition, this article presents an original method for determining the temperature profiles of individual elements of Klein’s ceilings, based on numerical methods, to determine their reduced values of material properties. The temperature profiles included in this study take into account both different construction variants of Klein’s ceilings and different ways of finishing the lower surface of these ceilings. The presented analytical method of fire load-bearing capacity assessment is supported by a calculation example. (3) Conclusions: The calculation methodology presented in this paper, which is part of the analysis of the fire load-bearing capacity of Klein’s ceilings, allows for a safe estimation of their durability in fire conditions. The presented temperature profiles of individual Klein’s ceiling elements allow for the verification of their fire resistance in terms of load-bearing capacity, in accordance with the literature on the subject. The temperature values of individual Klein’s ceiling elements, presented in the form of a table, depending on the fire duration, indicate that the applied structural solutions of the ceilings have a significant influence on the rate of temperature increase in the partition. Based on the conducted analyses, it was found that steel beams in an unplastered Klein’s ceiling lose their fire load-bearing capacity before the 30 min fire duration, defined by the standard temperature–time curve. The use of gypsum plaster with a thickness of at least 1.5 cm can provide fire resistance of the above elements for up to 120 min of fire duration. It was found that the quality of the plaster is important, influencing its adhesion to the lower surface of the ceiling. The fire resistance of the inter-beam slabs is significantly influenced by the temperature of their reinforcement, which largely depends on the distance of the reinforcement from the lower edge of the slab. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

28 pages, 10890 KiB  
Article
Optimization of Reasonable Finished State for Cable-Stayed Bridge with Steel Box Girder Based on Multiplier Path Following Method
by Jiapeng Shi, Yu Tao, Qingyun Xu, Jie Dai, Jin Di and Fengjiang Qin
Appl. Sci. 2025, 15(2), 937; https://doi.org/10.3390/app15020937 - 18 Jan 2025
Viewed by 934
Abstract
The increasing use of cable-stayed bridges with steel box girders necessitates more sophisticated design approaches, as the diverse environments of bridge locations place higher demands on the design process. Determining a reasonable finished state is a critical aspect of bridge design, yet the [...] Read more.
The increasing use of cable-stayed bridges with steel box girders necessitates more sophisticated design approaches, as the diverse environments of bridge locations place higher demands on the design process. Determining a reasonable finished state is a critical aspect of bridge design, yet the current methods are significantly constrained. A new approach to optimizing the finished state is proposed. This method’s practicality and efficiency are verified through a case study, analyzing how constraints on vertical girder deflection, horizontal pylon displacement, cable forces, and cable force uniformity affect the optimization outcome. The results show that convergence of the mixed-constraint quadratic programming model is achieved within 30 iterations, yielding an optimized finished state that meets the design criteria. The chosen constraint ranges are deemed appropriate, and the optimization method for the construction stage is thus demonstrably feasible and efficient. The multiplier path following optimization algorithm is computationally efficient, exhibiting good convergence and insensitivity to the problem size. Being easy to program, it avoids the arbitrariness of manual cable adjustment, enabling straightforward determination of a reasonable finished state for the cable-stayed bridge with a steel box girder. The vertical displacement of the main girder, the positive and negative bending moments, and the normal stresses at the top and bottom edges, as well as the positive and negative bending moments in the towers, are significantly influenced by the constraint ranges. The horizontal displacement of the pylon roof is significantly affected by the constraint ranges of both the main girder’s vertical displacement and the pylon’s horizontal displacement, while the remaining constraint ranges have a limited impact. Full article
(This article belongs to the Special Issue Structural Health Monitoring in Bridges and Infrastructure)
Show Figures

Figure 1

9 pages, 2824 KiB  
Article
Trueness and Internal Fit of 3D Printed Provisional Veneers: An In Vitro Comparative Study
by Anca-Elena Anghel-Lorinți, Andrei-Bogdan Faur, Raul N. Rotar and Anca Jivănescu
Bioengineering 2024, 11(12), 1204; https://doi.org/10.3390/bioengineering11121204 - 28 Nov 2024
Cited by 1 | Viewed by 1537
Abstract
Dentistry is steadily evolving along the digital pathway at a constant and sure pace. Intraoral scanners (IOSs) started to enhance the precision and trueness of the restorations, making prosthodontics treatment more predictable. The objective of this study was to compare the trueness and [...] Read more.
Dentistry is steadily evolving along the digital pathway at a constant and sure pace. Intraoral scanners (IOSs) started to enhance the precision and trueness of the restorations, making prosthodontics treatment more predictable. The objective of this study was to compare the trueness and internal fit of the printed provisional veneers for 60 preparations with three different types of finish lines. The abutments were scanned with the same intraoral scanner, and the resulting meshes were overlapped and analyzed in metrology software. The comparison was executed using two methods: (1) CAD (computer-aided design) designs vs. scanned veneers and (2) inverted surfaces of the preparations vs. scanned veneers. The butt joint preparation had the best trueness out of the three groups of preparation during both comparison methods, although there was no statistically significant difference between the butt joint and feather edge groups in the CAD design vs. scanned veneers analysis. Also, there was no statistically significant difference between palatal chamfer and feather edge groups in the scanned veneers vs. inverted surfaces of the preparations analysis. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

Back to TopTop