Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = eddy-resolving numerical simulations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 8901 KB  
Article
Aerodynamic Performance of a Natural Laminar Flow Swept-Back Wing for Low-Speed UAVs Under Take Off/Landing Flight Conditions and Atmospheric Turbulence
by Nikolaos K. Lampropoulos, Ioannis E. Sarris, Spyridon Antoniou, Odysseas Ziogas, Pericles Panagiotou and Kyros Yakinthos
Aerospace 2025, 12(10), 934; https://doi.org/10.3390/aerospace12100934 - 16 Oct 2025
Viewed by 125
Abstract
The topic of the present study is the aerodynamic performance of a Natural Laminar Flow (NLF) wing for UAVs at low speed. The basis is a thoroughly tested NLF airfoil in the wind tunnel of NASA which is well-customized for light aircrafts. The [...] Read more.
The topic of the present study is the aerodynamic performance of a Natural Laminar Flow (NLF) wing for UAVs at low speed. The basis is a thoroughly tested NLF airfoil in the wind tunnel of NASA which is well-customized for light aircrafts. The aim of this work is the numerical verification that a typical wing design (tapered with moderate aspect ratio and wash-out), being constructed out of aerodynamically highly efficient NLF airfoils during cruise, can deliver high aerodynamic loading under minimal freestream turbulence as well as realistic atmospheric conditions of intermediate turbulence. Thus, high mission flexibility is achieved, e.g., short take off/landing capabilities on the deck of ship where moderate air turbulence is prevalent. Special attention is paid to the effect of the Wing Tip Vortex (WTV) under minimal inflow turbulence regimes. The flight conditions are take off or landing at moderate Reynolds number, i.e., one to two millions. The numerical simulation is based on an open source CFD code and parallel processing on a High Performance Computing (HPC) platform. The aim is the identification of both mean flow and turbulent structures around the wing and subsequently the formation of the wing tip vortex. Due to the purely three-dimensional character of the flow, the turbulence is resolved with advanced modeling, i.e., the Improved Delayed Detached Eddy Simulation (IDDES) which is well-customized to switch modes between Delayed Detached Eddy Simulation (DDES) and Wall-Modeled Large Eddy Simulation (WMLES), thus increasing the accuracy in the shear layer regions, the tip vortex and the wake, while at the same time keeping the computational cost at reasonable levels. IDDES also has the capability to resolve the transition of the boundary layer from laminar to turbulent, at least with engineering accuracy; thus, it serves as a high-fidelity turbulence model in this work. The study comprises an initial benchmarking of the code against wind tunnel measurements of the airfoil and verifies the adequacy of mesh density that is used for the simulation around the wing. Subsequently, the wing is positioned at near-stall conditions so that the aerodynamic loading, the kinematics of the flow and the turbulence regime in the wing vicinity, the wake and far downstream can be estimated. In terms of the kinematics of the WTV, a thorough examination is attempted which comprises its inception, i.e., the detachment of the boundary layer on the cut-off wing tip, the roll-up of the shear layer to form the wake and the motion of the wake downstream. Moreover, the effect of inflow turbulence of moderate intensity is investigated that verifies the bibliography with regard to the performance degradation of static airfoils in a turbulent atmospheric regime. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

25 pages, 29369 KB  
Article
Assessment of a Cost-Effective Multi-Fidelity Conjugate Heat Transfer Approach for Metal Temperature Prediction of DLN Gas Turbine Combustor Liners
by Gianmarco Lemmi, Stefano Gori, Giovanni Riccio and Antonio Andreini
Energies 2025, 18(18), 4877; https://doi.org/10.3390/en18184877 - 13 Sep 2025
Viewed by 430
Abstract
Over the last decades, Computational Fluid Dynamics (CFD) has become a fundamental tool for the design of gas turbine combustors, partly making up for the costs and duration issues related to the experimental tests involving high-pressure reactive processes. Nevertheless, high-fidelity simulations of reactive [...] Read more.
Over the last decades, Computational Fluid Dynamics (CFD) has become a fundamental tool for the design of gas turbine combustors, partly making up for the costs and duration issues related to the experimental tests involving high-pressure reactive processes. Nevertheless, high-fidelity simulations of reactive flows remain computationally expensive, particularly for conjugate heat transfer (CHT) analyses aimed at predicting liner metal temperatures and characterising wall heat losses. This work investigates the robustness of a cost-effective numerical setup for CHT simulations, focusing on the prediction of cold-side thermal loads in industrial combustor liners under realistic operating conditions. The proposed approach is tested using both Reynolds-Averaged Navier–Stokes (RANS) and unsteady Stress-Blended Eddy Simulation (SBES) turbulence models for the combustor flame tube, coupled via a time desynchronisation strategy with transient heat conduction in the solid domain. Cold-side heat transfer is modelled using a 1D correlation-based tool, runtime coupled with the CHT simulation to account for cooling-induced thermal loads without explicitly resolving complex cooling passages. The methodology is applied to a single periodic sector of the NovaLTTM16 annular combustor, developed by Baker Hughes and operating under high-pressure conditions with natural gas. Validation against experimental data demonstrates the methodology’s ability to predict liner metal temperatures accurately, account for modifications in cooling geometries, and support design-phase evaluations efficiently. Overall, the proposed approach offers a robust trade-off between computational cost and predictive accuracy, making it suitable for practical engineering applications. Full article
Show Figures

Graphical abstract

17 pages, 8580 KB  
Article
Assessment of Large-Eddy Simulations to Simulate a High-Speed Low-Pressure Turbine Cascade
by Florent Duchaine and Xavier Delon
Int. J. Turbomach. Propuls. Power 2025, 10(3), 21; https://doi.org/10.3390/ijtpp10030021 - 7 Aug 2025
Viewed by 599
Abstract
The development of compact high-speed low-pressure turbines with high efficiencies requires the characterization of the secondary flow structures and the interaction of cavity purge and leakage flows with the mainstream. During the SPLEEN project funded by the European Union’s Horizon 2020, the von [...] Read more.
The development of compact high-speed low-pressure turbines with high efficiencies requires the characterization of the secondary flow structures and the interaction of cavity purge and leakage flows with the mainstream. During the SPLEEN project funded by the European Union’s Horizon 2020, the von Karman Institute and Safran Aircraft Engines performed detailed measurements of low-pressure turbines in engine-realistic conditions (i.e., low Reynolds and high exit Mach numbers considering background turbulence, wakes, row interactions, and leakages). The SPLEEN project is thus a fundamental contribution to the progress of high-speed low-pressure turbines by delivering unique experimental databases, essential to characterize the time-resolved 3D turbine flow, and new critical knowledge to mature the design of 3D technological effects. Being able to simulate the flow and associated losses in such a configuration is both challenging and of paramount importance to help the understanding of the flow physics complementing experimental measurements. This paper focuses on the high-fidelity numerical simulation of one of the SPLEEN configuration consisting of a linear blade cascade. The objective is to provide a validated numerical setup in terms of computational domain, boundary conditions, mesh resolution and numerical scheme to reproduce the experimental results. By mean of wall-resolved large-eddy simulations, the design point characterized by an exit Mach number of 0.9 and an exit Reynolds number of 70,000 with a turbulence level of 2.4% is investigated for the baseline configuration without purge and without wake generator. The results show that the considered computational domain and the associated inlet total pressure profile play a critical role on the development of secondary flows. The isentropic Mach number distribution around the blade is shown to be robust to the mesh and numerical scheme. The development of the wake and secondary flow fields are drastically influenced by the mesh resolution and numerical scheme, impacting the resulting losses. Full article
Show Figures

Figure 1

22 pages, 5672 KB  
Article
A Comparative Study of RANS and PANS Turbulence Models for Flow Characterization Around the Joubert BB2 Submarine
by Changhun Lee, Hyeri Lee and Woochan Seok
J. Mar. Sci. Eng. 2025, 13(6), 1088; https://doi.org/10.3390/jmse13061088 - 29 May 2025
Viewed by 904
Abstract
This study presents a comparative numerical investigation of Reynolds-averaged Navier–Stokes (RANS) and partially averaged Navier–Stokes (PANS) turbulence models applied to the Joubert BB2 submarine geometry under steady, calm-water conditions. To assess the influence of turbulence resolution and grid density on hydrodynamic performance prediction, [...] Read more.
This study presents a comparative numerical investigation of Reynolds-averaged Navier–Stokes (RANS) and partially averaged Navier–Stokes (PANS) turbulence models applied to the Joubert BB2 submarine geometry under steady, calm-water conditions. To assess the influence of turbulence resolution and grid density on hydrodynamic performance prediction, simulations were conducted using three mesh resolutions—coarse, medium, and fine—based on unstructured hexahedral grids. The results were validated against international benchmark data, with emphasis placed on total resistance, pressure and shear stress distributions, wake development, and vortex structure. The PANS model consistently outperformed RANS in accurately predicting total resistance and resolving wake asymmetry, especially at medium grid resolution, due to its ability to partially resolve turbulence without full reliance on eddy viscosity assumptions. It demonstrated superior capability in capturing coherent vortex structures and preserving axial momentum in the stern region, resulting in more realistic surface pressure recovery and delayed boundary layer separation. Cross-sectional and circumferential velocity distributions in the propeller plane further highlighted PANS’s enhanced turbulence fidelity, which is essential for downstream propeller performance evaluation. Overall, the findings support the suitability of the PANS model as a practical and computationally efficient alternative to RANS for high-fidelity submarine flow simulations, particularly in wake-sensitive applications where LES remains computationally prohibitive. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

24 pages, 22764 KB  
Article
The TSformer: A Non-Autoregressive Spatio-Temporal Transformers for 30-Day Ocean Eddy-Resolving Forecasting
by Guosong Wang, Min Hou, Mingyue Qin, Xinrong Wu, Zhigang Gao, Guofang Chao and Xiaoshuang Zhang
J. Mar. Sci. Eng. 2025, 13(5), 966; https://doi.org/10.3390/jmse13050966 - 16 May 2025
Viewed by 1204
Abstract
Ocean forecasting is critical for various applications and is essential for understanding air–sea interactions, which contribute to mitigating the impacts of extreme events. While data-driven forecasting models have demonstrated considerable potential and speed, they often primarily focus on spatial variations while neglecting temporal [...] Read more.
Ocean forecasting is critical for various applications and is essential for understanding air–sea interactions, which contribute to mitigating the impacts of extreme events. While data-driven forecasting models have demonstrated considerable potential and speed, they often primarily focus on spatial variations while neglecting temporal dynamics. This paper presents the TSformer, a novel non-autoregressive spatio-temporal transformer designed for medium-range ocean eddy-resolving forecasting, enabling forecasts of up to 30 days in advance. We introduce an innovative hierarchical U-Net encoder–decoder architecture based on 3D Swin Transformer blocks, which extends the scope of local attention computation from spatial to spatio-temporal contexts to reduce accumulation errors. The TSformer is trained on 28 years of homogeneous, high-dimensional 3D ocean reanalysis datasets, supplemented by three 2D remote sensing datasets for surface forcing. Based on the near-real-time operational forecast results from 2023, comparative performance assessments against in situ profiles and satellite observation data indicate that the TSformer exhibits forecast performance comparable to leading numerical ocean forecasting models while being orders of magnitude faster. Unlike autoregressive models, the TSformer maintains 3D consistency in physical motion, ensuring long-term coherence and stability. Furthermore, the TSformer model, which incorporates surface auxiliary observational data, effectively simulates the vertical cooling and mixing effects induced by Super Typhoon Saola. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 1247 KB  
Article
Effects of Discretization of Smagorinsky–Lilly Subgrid Scale Model on Large-Eddy Simulation of Stable Boundary Layers
by Jonas Banhos and Georgios Matheou
Atmosphere 2025, 16(3), 310; https://doi.org/10.3390/atmos16030310 - 7 Mar 2025
Viewed by 910
Abstract
Large-eddy simulation (LES) models are sensitive to numerical discretization because of the large fraction of resolved turbulent energy (>80%) and the strong non-linear interactions between resolved-scale fields with the turbulence subgrid scale (SGS) model. The effects of the Smagorinsky–Lilly [...] Read more.
Large-eddy simulation (LES) models are sensitive to numerical discretization because of the large fraction of resolved turbulent energy (>80%) and the strong non-linear interactions between resolved-scale fields with the turbulence subgrid scale (SGS) model. The effects of the Smagorinsky–Lilly SGS model discretization are investigated. Three finite difference schemes are compared. Second-, fourth-, and sixth-order centered difference schemes are used to approximate the spatial derivatives of the SGS model. In the LES of homogeneous isotropic turbulence (HIT), including (non-isotropic) turbulent mixing of a passive scalar, no differences are observed with respect to the SGS model discretization. The HIT LES results are validated against a direct numerical simulation, which resolves all flow scales and does not include an SGS model. In the LES of a moderately stable atmospheric boundary layer, the LES results depend on the SGS discretization for coarse grid resolutions. The second-order scheme performs better at coarse resolutions compared to higher-order schemes. Overall, it is found that higher-order discretizations of the Smagorinsky–Lilly model are not beneficial compared to the second-order scheme. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

11 pages, 746 KB  
Article
Hydroacoustic Simulation of a Reτ = 180 Channel Flow
by Renato Montillo
Water 2025, 17(4), 553; https://doi.org/10.3390/w17040553 - 14 Feb 2025
Viewed by 686
Abstract
This study presents a numerical methodology for analyzing hydroacoustic noise generation and its propagation in a homogeneous domain using Lighthill’s analogy, the finite volume method, and hybrid-Higdon boundary conditions. The approach consists of three key steps: performing an eddy-resolving Large Eddy Simulation to [...] Read more.
This study presents a numerical methodology for analyzing hydroacoustic noise generation and its propagation in a homogeneous domain using Lighthill’s analogy, the finite volume method, and hybrid-Higdon boundary conditions. The approach consists of three key steps: performing an eddy-resolving Large Eddy Simulation to capture the unsteady fluid dynamics, extracting the turbulent field to compute the acoustic source term via Lighthill’s analogy, and solving a homogeneous wave equation to propagate the noise in an open domain. The methodology is applied to a turbulent plane channel flow, simulating the acoustic field for a fluid with water-like density at a Mach number of 0.1. The results reveal the spatial distribution of the acoustic pressure, highlighting the dominant noise sources and their spectral characteristics. The acoustic domain extends beyond the turbulent region, enabling the study of pressure propagation outside the flow. The findings demonstrate that noise generation is strongly linked to turbulent structures near the walls, with significant acoustic radiation occurring in the low-wavenumber range. This framework provides a powerful tool for modeling noise propagation in marine and industrial applications, offering insights into turbulence-induced sound in underwater environments. Future work could extend the approach to more complex geometries, higher Reynolds numbers, and heterogeneous domains, further advancing its applicability to real-world acoustic challenges. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

35 pages, 6742 KB  
Article
Evaluation of Third-Order Weighted Essentially Non-Oscillatory Scheme Within Implicit Large Eddy Simulation Framework Using OpenFOAM
by Zhuoneng Li and Zeeshan A. Rana
Aerospace 2025, 12(2), 108; https://doi.org/10.3390/aerospace12020108 - 31 Jan 2025
Cited by 1 | Viewed by 1269
Abstract
The current study investigates the performance of implicit Large Eddy Simulation (iLES) incorporating an unstructured third-order Weighted Essentially Non-Oscillatory (WENO) reconstruction method, alongside conventional Large Eddy Simulation (LES) using the Wall-Adapting Local Eddy Viscosity (WALE) model, for wall-bounded flows. Specifically, iLES is applied [...] Read more.
The current study investigates the performance of implicit Large Eddy Simulation (iLES) incorporating an unstructured third-order Weighted Essentially Non-Oscillatory (WENO) reconstruction method, alongside conventional Large Eddy Simulation (LES) using the Wall-Adapting Local Eddy Viscosity (WALE) model, for wall-bounded flows. Specifically, iLES is applied to the flow around a NACA0012 airfoil at a Reynolds number which involves key flow phenomena such as laminar separation, transition to turbulence, and flow reattachment. Simulations are conducted using the open-source computational fluid dynamics package OpenFOAM, with a second-order implicit Euler scheme for time integration and the Pressure-Implicit Splitting Operator (PISO) algorithm for pressure–velocity coupling. The results are compared against direct numerical simulation (DNS) for the same flow conditions. Key metrics, including the pressure coefficient and reattached turbulent velocity profiles, show excellent agreement between the iLES and DNS reference results. However, both iLES and LES predict a thinner separation bubble in the transitional flow region then DNS. Notably, the iLES approach achieved a 35% reduction in mesh resolution relative to wall-resolving LES, and a 70% reduction relative to DNS, while maintaining satisfactory accuracy. The study also captures detailed instantaneous flow evolution on the airfoil’s upper surface, with evidence suggesting that three-dimensional disturbances arise from interactions between separating boundary layers near the trailing edge. Full article
(This article belongs to the Special Issue Fluid Flow Mechanics (4th Edition))
Show Figures

Figure 1

21 pages, 11202 KB  
Article
Simulation of Flow Around a Finite Rectangular Prism: Influence of Mesh, Model, and Subgrid Length Scale
by Xutong Zhang, Maxime Savoie, Mark K. Quinn, Ben Parslew and Alistair Revell
Entropy 2025, 27(1), 65; https://doi.org/10.3390/e27010065 - 13 Jan 2025
Cited by 1 | Viewed by 1484
Abstract
This study investigates the flow field around a finite rectangular prism using both experimental and computational methods, with a particular focus on the influence of the turbulence approach adopted, the mesh resolution employed, and different subgrid length scales. Ten turbulence modelling and simulation [...] Read more.
This study investigates the flow field around a finite rectangular prism using both experimental and computational methods, with a particular focus on the influence of the turbulence approach adopted, the mesh resolution employed, and different subgrid length scales. Ten turbulence modelling and simulation approaches, including both ‘scale-modelling’ Reynolds-Averaged Navier–Stokes (RANS) models and ‘scale-resolving’ Delayed Detached Eddy Simulation (DDES), were tested across six different mesh resolutions. A case with sharp corners allows the location of the flow separation to be fixed, which facilitates a focus on the separated flow region and, in this instance, the three-dimensional interaction of three such regions. The case, therefore, readily enables an assessment of the ‘grey-area’ issue, whereby some DDES methods demonstrate delayed activation of the scale-resolving model, impacting the size of flow recirculation. Experimental measurements were shown to agree well with reference data for the same geometry, after which particle image velocimetry (PIV) data were gathered to extend the reference dataset. Numerical predictions from the RANS models were generally quite reasonable but did not show improvement with further refinement, as one would expect, whereas DDES clearly demonstrated continuous improvement in predictive accuracy with progressive mesh refinement. The shear-layer-adapted (SLA) subgrid length scale (ΔSLA) displayed consistently superior performance compared to the more widely used length scale based on local cell volume, particularly for moderate mesh resolutions commonly employed in industrial settings with limited resources. In general, front-body separation and reattachment exhibited greater sensitivity to mesh refinement than wake resolution. Finally, in order to correlate the observed DDES mesh requirements with the observations from the converged RANS solutions, an approximation for the Taylor microscale was explored as a potential tool for mesh sizing. Full article
Show Figures

Figure 1

20 pages, 3282 KB  
Article
A Near-Wall Methodology for Large-Eddy Simulation Based on Dynamic Hybrid RANS-LES
by Michael Tullis and D. Keith Walters
Entropy 2024, 26(12), 1095; https://doi.org/10.3390/e26121095 - 14 Dec 2024
Cited by 1 | Viewed by 1253
Abstract
Attempts to mitigate the computational cost of fully resolved large-eddy simulation (LES) in the near-wall region include both the hybrid Reynolds-averaged Navier–Stokes/LES (HRL) and wall-modeled LES (WMLES) approaches. This paper presents an LES wall treatment method that combines key attributes of the two, [...] Read more.
Attempts to mitigate the computational cost of fully resolved large-eddy simulation (LES) in the near-wall region include both the hybrid Reynolds-averaged Navier–Stokes/LES (HRL) and wall-modeled LES (WMLES) approaches. This paper presents an LES wall treatment method that combines key attributes of the two, in which the boundary layer mesh is sized in the streamwise and spanwise directions comparable to WMLES, and the wall-normal mesh is comparable to a RANS simulation without wall functions. A mixing length model is used to prescribe an eddy viscosity in the near-wall region, with the mixing length scale limited based on local mesh size. The RANS and LES regions are smoothly blended using the dynamic hybrid RANS-LES (DHRL) framework. The results are presented for the turbulent channel flow at two Reynolds numbers, and comparison to the DNS results shows that the mean and fluctuating quantities are reasonably well predicted with no apparent log-layer mismatch. A detailed near-wall meshing strategy for the proposed method is presented, and estimates indicate that it can be implemented with approximately twice the number of grid points as traditional WMLES, while avoiding the difficulties associated with analytical or numerical wall functions and modified wall boundary conditions. Full article
Show Figures

Figure 1

20 pages, 8620 KB  
Article
Evaporation Dynamics and Dosimetry Methods in Numerically Assessing MDI Performance in Pulmonary Drug Delivery
by Mohamed Talaat, Xiuhua Si and Jinxiang Xi
Fluids 2024, 9(12), 286; https://doi.org/10.3390/fluids9120286 - 5 Dec 2024
Cited by 2 | Viewed by 1454
Abstract
Metered dose inhalers (MDIs) play a crucial role in managing respiratory diseases, but their effectiveness depends on whether the intended dose is delivered to the target, which can be influenced by various factors. Accurate assessment of MDI performance is crucial for optimizing MDI [...] Read more.
Metered dose inhalers (MDIs) play a crucial role in managing respiratory diseases, but their effectiveness depends on whether the intended dose is delivered to the target, which can be influenced by various factors. Accurate assessment of MDI performance is crucial for optimizing MDI delivery and ensuring drug efficacy. This study numerically examined the role of evaporation dynamics and dosimetry methods in assessing the efficiency of MDI delivery to different regions in a mouth–lung model extending to the eleventh generation (G11) of lung bifurcations. The experimentally determined spray exit speed, applied dose, and droplet size distribution were implemented as the initial/boundary conditions. Large eddy simulations (LES) were used to resolve the transient inhalation flows, and a chemical species model was applied to simulate vapor and temperature variations in the airflow. A multi-component model was used to consider the heat and mass transfer between the droplets and the airflow. The model was validated against literature data and applied to evaluate the impact of evaporation on pulmonary drug delivery using MDI, in comparison to inert particles. Three methods were used to quantify deposition, which were based on the droplet count, the droplet mass, and the drug carried by the droplets. The results demonstrate that evaporation notably alters the spray droplet size distribution and subsequent deposition patterns. Compared to inert particles, evaporation led to significantly more droplets ranging from 1–5 µm entering the pulmonary region. For a given region, large discrepancies were observed in the deposition fraction (DF) using different dosimetry methods. In the lower lung, the count-based DF (33.9%) and mass-based DF (2.4%) differed by more than one order of magnitude, while the drug-based DF fell between them (20.5%). This large difference highlights the need to include evaporation in predictive dosimetry, as well as to use the appropriate method to quantify the delivery efficiency of evaporating droplets. Full article
(This article belongs to the Special Issue Respiratory Flows)
Show Figures

Figure 1

18 pages, 13617 KB  
Article
Observation and Numerical Simulation of Cross-Mountain Airflow at the Hong Kong International Airport from Range Height Indicator Scans of Radar and LIDAR
by Ying Wa Chan, Kai Wai Lo, Ping Cheung, Pak Wai Chan and Kai Kwong Lai
Atmosphere 2024, 15(11), 1391; https://doi.org/10.3390/atmos15111391 - 19 Nov 2024
Cited by 2 | Viewed by 1309
Abstract
Apart from headwind changes, crosswind changes may be hazardous to aircraft operation. This paper presents two cases of recently observed crosswind changes from the range height indicator scans of ground-based remote sensing meteorological equipment, namely an X-band microwave radar and a short-range LIDAR. [...] Read more.
Apart from headwind changes, crosswind changes may be hazardous to aircraft operation. This paper presents two cases of recently observed crosswind changes from the range height indicator scans of ground-based remote sensing meteorological equipment, namely an X-band microwave radar and a short-range LIDAR. Both instruments have a range resolution down to around 30 m, allowing the study of fine-scale details of the vertical profiles of cross-mountain airflow at the Hong Kong International Airport. Rapidly evolving winds have been observed by the equipment in tropical cyclone situations, revealing high levels of turbulence and vertically propagating waves. The eddy dissipation rate derived from radar spectrum width indicated severe turbulence, with values exceeding 0.5 m2/3 s−1. In order to study the feasibility of predicting such disturbed airflow, a mesoscale meteorological model and a computational fluid dynamics model with high spatial resolution are used in this paper. It is found that the mesoscale meteorological model alone is sufficient to capture some rapidly evolving airflow features, including the turbulence level, the waves, and the rapidly changing wind speeds. However, the presence of reverse flow could only be reproduced with the use of a building-resolving computational fluid dynamics model. This paper aims at providing a reference for airports to consider the feasibility of performing high-resolution numerical simulations of rapidly evolving airflow to alert the pilots in advance for airports in complex terrains and the setup of buildings. Full article
(This article belongs to the Special Issue Tropical Cyclones: Observations and Prediction (2nd Edition))
Show Figures

Figure 1

20 pages, 10761 KB  
Article
Numerical Methods Comparison of Shock-Induced Separation on Transonic Axisymmetric Hump
by Miao Zhang, Zhuoyue Tian, Songxiang Tang, Ziyan Wei and Jie Li
Appl. Sci. 2024, 14(22), 10234; https://doi.org/10.3390/app142210234 - 7 Nov 2024
Viewed by 1092
Abstract
A transonic hump with a Mach number (M∞) of 0.875 was utilized to compare the prediction capabilities of RANS, URANS, IDDES, and IDDES-SLA for shock-induced separation. The results matched the experimental data concerning pressure, friction coefficients, velocity distribution, and other parameters. The improved [...] Read more.
A transonic hump with a Mach number (M∞) of 0.875 was utilized to compare the prediction capabilities of RANS, URANS, IDDES, and IDDES-SLA for shock-induced separation. The results matched the experimental data concerning pressure, friction coefficients, velocity distribution, and other parameters. The improved delayed detached eddy simulation with a modified sub-grid scale (IDDES-SLA) method performed the best amongst tested numerical methods, demonstrating differences of 1.3% and 4.1% from the experimental results for separation and reattachment locations, respectively. The primary difference between IDDES and IDDES-SLA is reflected in detailed data, such as velocity and high-frequency characteristics, although both methods exhibit similar simulation capabilities for the main structural features of the flow field. The POD and PSD analyses of the flow field results demonstrated that the IDDES-SLA method was more capable of resolving higher modes of flow field. Full article
Show Figures

Figure 1

30 pages, 13792 KB  
Review
Modelling and Simulation of Effusion Cooling—A Review of Recent Progress
by Hao Xia, Xiaosheng Chen and Christopher D. Ellis
Energies 2024, 17(17), 4480; https://doi.org/10.3390/en17174480 - 6 Sep 2024
Cited by 2 | Viewed by 2524
Abstract
Effusion cooling is often regarded as one of the critical techniques to protect solid surfaces from exposure to extremely hot environments, such as inside a combustion chamber where temperature can well exceed the metal melting point. Designing such efficient cooling features relies on [...] Read more.
Effusion cooling is often regarded as one of the critical techniques to protect solid surfaces from exposure to extremely hot environments, such as inside a combustion chamber where temperature can well exceed the metal melting point. Designing such efficient cooling features relies on thorough understanding of the underlying flow physics for the given engineering scenarios, where physical testing may not be feasible or even possible. Inevitably, under these circumstances, modelling and numerical simulation become the primary predictive tools. This review aims to give a broad coverage of the numerical methods for effusion cooling, ranging from the empirical models (often based on first principles and conservation laws) for solving the Reynolds-Averaged Navier–Stokes (RANS) equations to higher-fidelity methods such as Large-Eddy Simulation (LES) and hybrid RANS-LES, including Detached-Eddy Simulation (DES). We also highlight the latest progress in machine learning-aided and data-driven RANS approaches, which have gained a lot of momentum recently. They, in turn, take advantage of the higher-fidelity eddy-resolving datasets performed by, for example, LES or DES. The main examples of this review are focused on the applications primarily related to internal flows of gas turbine engines. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

22 pages, 3406 KB  
Article
Short Review of Current Numerical Developments in Meteorological Modelling
by Jürgen Steppeler
Atmosphere 2024, 15(7), 830; https://doi.org/10.3390/atmos15070830 - 10 Jul 2024
Viewed by 1067
Abstract
This paper reviews current numerical developments for atmospheric modelling. Numerical atmospheric modelling now looks back to a history of about 70 years after the first successful numerical prediction. Currently, we face new challenges, such as variable and adaptive resolution and ultra-highly resolving global [...] Read more.
This paper reviews current numerical developments for atmospheric modelling. Numerical atmospheric modelling now looks back to a history of about 70 years after the first successful numerical prediction. Currently, we face new challenges, such as variable and adaptive resolution and ultra-highly resolving global models of 1 km grid length. Large eddy simulation (LES), special applications like the numerical prediction of pollution and atmospheric contaminants belong to the current challenges of numerical developments. While pollution prediction is a standard part of numerical modelling in case of accidents, models currently being developed aim at modelling pollution at all scales from the global to the micro scale. The methods discussed in this paper are spectral elements and other versions of Local-Galerkin (L-Galerkin) methods. Classic numerical methods are also included in the presentation. For example, the rather popular second-order Arakawa C-grid method can be shown to result as a special case of an L-Galerkin method using low-order basis functions. Therefore, developments for Galerkin methods also apply to this classic C-grid method, and this is included in this paper. The new generation of highly parallel computers requires new numerical methods, as some of the classic methods are not well suited for a high degree of parallel computing. It will be shown that some numerical inaccuracies need to be resolved and this indicates a potential for improved results by going to a new generation of numerical methods. The methods considered here are mostly derived from basis functions. Such methods are known under the names of Galerkin, spectral, spectral element, finite element or L-Galerkin methods. Some of these new methods are already used in realistic models. The spectral method, though highly used in the 1990s, is currently replaced by the mentioned local L-Galerkin methods. All methods presented in this review have been tested in idealized numerical situations, the so-called toy models. Waypoints on the way to realistic models and their mathematical problems will be pointed out. Practical problems of informatics will be highlighted. Numerical error traps of some current numerical approaches will be pointed out. These are errors not occurring with highly idealized toy models. Such errors appear when the test situation becomes more realistic. For example, many tests are for regular resolution and results can become worse when the grid becomes irregular. On the sphere no regular grids exist, except for the five derived from Platonic solids. Practical problems beyond mathematics on the way to realistic applications will also be considered. A rather interesting and convenient development is the general availability of computer power. For example, the computational power available on a normal personal computer is comparable to that of a supercomputer in 2005. This means that interesting developments, such as the small sphere atmosphere with a resolution of 1 km and a spherical circumference between 180 and 360 km are available to the normal owner of a personal computer (PC). Besides the mathematical problems of new approaches, we will also consider the informatics challenges of using the new generation of models on mainframe computers and PCs. Full article
(This article belongs to the Special Issue Geometry in Meteorology and Climatology)
Show Figures

Figure 1

Back to TopTop