Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (869)

Search Parameters:
Keywords = ecosystem service optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 10343 KB  
Article
Investigating the Impact of Urban Parks on Bird Habitats and Diversity Through Remote Sensing: A Case Study of Chengdu City (China)
by Chenyang Liao, Yumeng Jiang, Mingle Yang, Kexin Feng and Jiazhen Zhang
Land 2025, 14(10), 2086; https://doi.org/10.3390/land14102086 (registering DOI) - 19 Oct 2025
Abstract
Accelerated urbanization has induced marked biodiversity loss in metropolitan regions, with urban parks emerging as critical habitat patches for avian species within intensively developed built environments. As a global pioneer in park city conceptualization, Chengdu (China) has achieved notable advancements in urban green [...] Read more.
Accelerated urbanization has induced marked biodiversity loss in metropolitan regions, with urban parks emerging as critical habitat patches for avian species within intensively developed built environments. As a global pioneer in park city conceptualization, Chengdu (China) has achieved notable advancements in urban green space extent and quality through systematic planning efforts. This investigation examines the avian–habitat relationships in Chengdu’s central urban area (2010–2020) using multispectral remote sensing data, employing the ENVI5.6 (Environment for Visualizing Images) software for spatial analysis, and applying the InVEST3.2.0 (Integrated Valuation of Ecosystem Services and Tradeoffs) model to identify high-quality habitats, evaluate landscape connectivity, and analyze community composition dynamics. Through a correlation analysis of seven environmental characteristic factors with avian biodiversity in 24 urban parks, the impact mechanism of avian habitat functions was explored. On this basis, measures such as optimizing the plant community structure of riverside greenways and road green spaces, expanding small-scale green spaces near parks, and so on are proposed to promote the enhancement of urban park habitat functions and the protection of avian biodiversity. Full article
Show Figures

Figure 1

23 pages, 6511 KB  
Article
An Adaptive Management-Oriented Approach to Spatial Planning for Estuary National Parks: A Case Study of the Yangtze River Estuary, China
by Wanting Peng, Ziyu Zhu, Jia Liu, Yunshan Lin, Qin Zhao, Wenhui Yang, Chengzhao Wu and Wenbo Cai
Water 2025, 17(20), 3002; https://doi.org/10.3390/w17203002 (registering DOI) - 18 Oct 2025
Viewed by 55
Abstract
Estuaries represent quintessential coupled human–natural systems (CHNS) where the dynamic interplay between ecological processes and anthropogenic pressures (e.g., shipping, water use exploitation) challenges conventional static spatial planning approaches. Focusing on the Yangtze River Estuary—a globally significant yet intensely utilized ecosystem—this study develops an [...] Read more.
Estuaries represent quintessential coupled human–natural systems (CHNS) where the dynamic interplay between ecological processes and anthropogenic pressures (e.g., shipping, water use exploitation) challenges conventional static spatial planning approaches. Focusing on the Yangtze River Estuary—a globally significant yet intensely utilized ecosystem—this study develops an adaptive management (AM)-oriented spatial planning framework for estuarine protected areas. Our methodology integrates systematic identification of optimal zones using multi-criteria assessments of biodiversity indicators (e.g., flagship species habitats), ecological metrics (e.g., ecosystem services), and management considerations; delineation of a three-tier adaptive zoning system (Control–Functional–Seasonal) to address spatiotemporal pressures; and dynamic management strategies to mitigate human-environment conflicts. The proposed phased conservation boundary (Phase I: 664.38 km2; Phase II: 1721.94 km2) effectively balances ecological integrity with socio-economic constraints. Spatial–temporal analysis of shipping activities over five years demonstrates minimal operational interference, confirming the framework’s efficacy in reconciling conservation and development priorities. By incorporating ecological feedback mechanisms into spatial planning, this work advances a transferable model for governing contested seascapes, contributing to CHNS theory through practical tools for adaptive, conflict-sensitive conservation. The framework’s implementation in the Yangtze context provides empirical evidence that science-driven, flexible spatial planning can reduce sectoral conflicts while maintaining ecosystem functionality, offering a replicable pathway for sustainable water management of similarly complex human–natural systems worldwide. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

25 pages, 19035 KB  
Article
Revealing Multiscale Characteristics of Ecosystem Service Flows: Application to the Yangtze River Economic Belt
by Yiyang Li, Hongrui Wang, Li Zhang, Yafeng Yang, Ziyang Zhao and Xin Jiang
Land 2025, 14(10), 2076; https://doi.org/10.3390/land14102076 - 17 Oct 2025
Viewed by 142
Abstract
Assessing ecosystem service (ES) supply–demand relationships and identifying their driving forces are essential for ecological security and sustainable ecosystem development. Using ES supply–demand mismatches as a basis, this study characterized the spatiotemporal evolution of ES supply and demand from 2000 to 2023. Additionally, [...] Read more.
Assessing ecosystem service (ES) supply–demand relationships and identifying their driving forces are essential for ecological security and sustainable ecosystem development. Using ES supply–demand mismatches as a basis, this study characterized the spatiotemporal evolution of ES supply and demand from 2000 to 2023. Additionally, a SHAP-informed Stacking Bayesian optimization model was employed to identify key drivers of supply–demand imbalances. Building on this, threshold-aware spatial optimization of ecosystem service flows was performed using an improved minimum-cost algorithm within an NSGA-II multi-objective framework. The results showed that: (1) The YREB’s supply–demand balance (SDB) exhibited significant spatial heterogeneity. Water SDB declined with fluctuations, decreasing from 5.343 × 1011 m3 to 4.433 × 1011 m3, whereas carbon SDB shifted from a surplus (+1.514 × 109 t) to a deficit (−1.673 × 109 t) during the study period. Crop SDB rose from 1.361 × 108 to 1.450 × 108 t across the study period. (2) Nighttime light intensity (NLI) was the dominant factor for water SDB and carbon SDB, while cropland area was the key driver for crop SDB. (3) Over 2000–2023, water SDB flow increased from 8.5 × 109 m3 to 1.43 × 1010 m3. Carbon SDB flows more than tripled from 9.576 × 107 tons to 2.89 × 108 tons. Crop SDB flow increased nearly twelvefold over 2000–2023, from 3.3 × 105 t to 3.93 × 106 t. The findings provide scientific support for coordinating ecological conservation and high-quality development across the Yangtze River Economic Belt. Full article
Show Figures

Figure 1

29 pages, 24539 KB  
Article
Constructing an Ecological Security Pattern Coupled with Climate Change and Ecosystem Service Valuation: A Case Study of Yunnan Province
by Yilin Lin, Fengru Liu, Zhiyuan Ma, Junsan Zhao and Han Xue
Sustainability 2025, 17(20), 9193; https://doi.org/10.3390/su17209193 - 16 Oct 2025
Viewed by 157
Abstract
Ecosystem services provide the scientific foundation and optimization objectives for constructing ecological security patterns, and their spatial characteristics directly affect planning decisions such as ecological source identification and corridor layout. However, current methods for constructing ecological security patterns rely excessively on static spatial [...] Read more.
Ecosystem services provide the scientific foundation and optimization objectives for constructing ecological security patterns, and their spatial characteristics directly affect planning decisions such as ecological source identification and corridor layout. However, current methods for constructing ecological security patterns rely excessively on static spatial optimization of landscape structure and ecological processes, while overlooking the dynamic variations in ecosystem service values under climate change. Taking Yunnan Province as a case study, this paper calculates ecosystem service values, analyzes their spatiotemporal variations, and based on ecosystem service value hotspots, applies the MSPA model and circuit theory to identify ecological sources, corridors, pinch points, barrier areas, and improvement areas. On this basis, we construct and optimize the ecological security pattern of Yunnan Province and propose ecological protection strategies. The results show that: (1) From 2000 to 2030, ecosystem service values in Yunnan exhibit significant spatiotemporal heterogeneity. From 2000 to 2020, they first declined and then increased, with aquatic ecosystems contributing the most. Under future climate scenarios, ecosystem service values continue to increase, with the greatest growth under the SSP2-4.5 scenario. The spatial pattern is characterized by higher values in the central region and lower values in the eastern and western areas. (2) In 2020, 56 ecological sources were identified; under the SSP1-1.9 scenario, 61 were identified, while 57 were identified under both SSP2-4.5 and SSP5-8.5 scenarios. These sources are mainly distributed in northwestern Yunnan and the Nujiang and Lancang River basins, presenting a “more in the west, fewer in the east” pattern. (3) In 2020, 132 ecological corridors and 74 pinch points were identified. By 2030, under SSP1-1.9, there are 149 corridors and 84 pinch points; under SSP2-4.5, 135 corridors and 55 pinch points; and under SSP5-8.5, 134 corridors and 60 pinch points. (4) By integrating results across multiple scenarios, an ecological security pattern characterized as “three screens, two zones, six corridors, and multiple points” is constructed. Based on regional ecological background characteristics, differentiated strategies for ecological security protection of territorial space are proposed. This study provides a scientific reference for the synergistic optimization of ecosystem services and ecological security patterns under climate change. Full article
Show Figures

Figure 1

24 pages, 5147 KB  
Article
Potential Distribution and Response to Climate Change in Puccinellia tenuiflora in China Projected Using Optimized MaxEnt Model
by Hao Yang, Xiaoting Wei, Manyin Zhang and Jinxin Zhang
Biology 2025, 14(10), 1426; https://doi.org/10.3390/biology14101426 - 16 Oct 2025
Viewed by 209
Abstract
Global climate change is accelerating and human pressures are intensifying, exerting profound impacts on biodiversity and ecosystem service functions. The accurate prediction of species distributions has thus become a critical research direction in ecological conservation and restoration. This study selected Puccinellia tenuiflora, [...] Read more.
Global climate change is accelerating and human pressures are intensifying, exerting profound impacts on biodiversity and ecosystem service functions. The accurate prediction of species distributions has thus become a critical research direction in ecological conservation and restoration. This study selected Puccinellia tenuiflora, a species distributed across China, as its research subject. Utilizing 169 occurrence records and 10 environmental variables, we applied a parameter-optimized MaxEnt model to simulate the species’ current and future (2050s–2090s) potential suitable habitats under the SSP126, SSP370, and SSP585 scenarios. The results identified the human footprint index (HFI, 43.3%) and temperature seasonality (Bio4, 26.9%) as the dominant factors influencing its distribution. The current suitable area is primarily concentrated in northern China, covering approximately 258.26 × 104 km2. Under all future scenarios, a contraction of suitable habitat is projected, with the most significant reduction observed under SSP585 by the 2090s (a decrease of 56.2%). The distribution centroid is projected to shift northeastward by up to 145.36 km. This study elucidates the response mechanism of P. tenuiflora distribution to climate change and human activities. The projected habitat contraction and spatial displacement highlight the potential vulnerability of this species to future climate change. These findings, derived from a rigorously optimized and spatially validated model, provide a scientific basis for the conservation, reintroduction, and adaptive management of P. tenuiflora under climate change. Full article
(This article belongs to the Section Ecology)
Show Figures

Figure 1

20 pages, 12689 KB  
Article
Assessing the Land Use-Carbon Storage Nexus Along G318: A Coupled SD-PLUS-InVEST Model Approach for Spatiotemporal Coordination Optimization
by Xiaotian Xing, Qi Wang, Fei Meng, Pudong Liu, Li Huang and Wei Zhuo
Land 2025, 14(10), 2067; https://doi.org/10.3390/land14102067 - 16 Oct 2025
Viewed by 123
Abstract
Revealing the coordination relationship between land use/land cover (LULC) and carbon storage (CS) under diverse climate scenarios is crucial for climate change adaptation in topographically complex regions. This study developed an integrated framework combining the System Dynamics (SD) model, Patch-generating Land Use Simulation [...] Read more.
Revealing the coordination relationship between land use/land cover (LULC) and carbon storage (CS) under diverse climate scenarios is crucial for climate change adaptation in topographically complex regions. This study developed an integrated framework combining the System Dynamics (SD) model, Patch-generating Land Use Simulation (PLUS) model, and Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, enabling a closed-loop analysis of driving forces, spatial simulation, and ecological feedback. This study systematically assessed LULC evolution and ecosystem CS along China’s National Highway 318 (G318) from 2000 to 2020, and projected LULC and CS under three SSP-RCP scenarios (SSP1-1.9, SSP2-4.5, SSP5-8.5) for 2030. Results show the following: (1) Historical LULC change was dominated by rapid urban expansion, cropland loss, and nonlinear grassland fluctuation, exerting strong impacts on ecosystem dynamics. Future scenario simulations revealed distinct thresholds of ecological pressure. (2) Regional CS exhibited a decline–recovery pattern during 2000–2020, with all 2030 scenarios projecting CS reduction, although ecological-priority pathways could mitigate losses. (3) Coordination between land-use intensity and CS improved gradually, with SSP2-4.5 emerging as the optimal strategy for balancing development and ecological sustainability. Overall, the coupled SD-PLUS-InVEST framework provides a practical tool for policymakers to optimize land use patterns and enhance CS in complex terrains. Full article
Show Figures

Figure 1

30 pages, 15852 KB  
Article
Assessing Long-Term Impacts of Afforestation on Soil Conservation and Carbon Sequestration: A Spatially Explicit Analysis of China’s Shelterbelt Program Zones
by Lanqing Zhang, Xinyuan Zhang, Zhipeng Zhang, Xiaoyuan Zhang, Huihui Huang and Zong Wang
Remote Sens. 2025, 17(20), 3455; https://doi.org/10.3390/rs17203455 - 16 Oct 2025
Viewed by 200
Abstract
Afforestation is a critical nature-based strategy for enhancing ecological resilience and supporting cleaner land-use systems. This study presents a spatially explicit modeling framework to evaluate the long-term impacts of potential afforestation amendments on two key ecosystem services—soil conservation and carbon sequestration—across China’s major [...] Read more.
Afforestation is a critical nature-based strategy for enhancing ecological resilience and supporting cleaner land-use systems. This study presents a spatially explicit modeling framework to evaluate the long-term impacts of potential afforestation amendments on two key ecosystem services—soil conservation and carbon sequestration—across China’s major shelterbelt program areas under the SSP245 scenario (2020–2070). Using a zonal approach, we integrated Random Forest models, Bayesian belief networks, and Geodetector analysis to identify region-specific afforestation suitability and quantify ecological service gains across eight national shelterbelt program zones. The results reveal pronounced spatial heterogeneity in ecosystem service improvements. (1) High-quality potential afforestation lands, totaling approximately 2.33 × 105 km2, are primarily concentrated near the Hu Line (a geographical boundary that divides China into two distinct climatic regions), with the shelterbelt program for upper and middle reaches of Yangtze River accounting for 45.94%. (2) Based on the amended annual afforestation target of 0.47 × 105 km2, the adjusted land use projections indicate a significant increase in forest cover. By 2070, the afforestation program for Taihang Mountain exhibits the most significant improvements, with a 47.56% increase in soil conservation and a 10.15% increase in carbon sequestration. (3) Optimization areas differ across zones, with the Taihang mountain area (99.2%) and Pearl river area (70.1%) achieving the highest improvements in soil and carbon services, respectively. These findings provide robust scientific support for data-driven, region-specific afforestation planning under future land-use change scenarios. Full article
(This article belongs to the Special Issue Remote Sensing and Ecosystem Modeling for Nature-Based Solutions)
Show Figures

Figure 1

29 pages, 12766 KB  
Article
Spatiotemporal Evolution and Driving Mechanisms of Ecosystem Service Value–Urbanization Coupling Coordination in the Yangtze River Delta
by Xiaoyao Gao and Chunshan Zhou
Land 2025, 14(10), 2061; https://doi.org/10.3390/land14102061 - 15 Oct 2025
Viewed by 221
Abstract
The interactive coupling mechanism between ecosystem service value (ESV) and urbanization has emerged as a critical research focus in ecological security and sustainable development. This study quantifies the ESV of prefecture-level cities by leveraging remote sensing data and socioeconomic statistics from the Yangtze [...] Read more.
The interactive coupling mechanism between ecosystem service value (ESV) and urbanization has emerged as a critical research focus in ecological security and sustainable development. This study quantifies the ESV of prefecture-level cities by leveraging remote sensing data and socioeconomic statistics from the Yangtze River Delta (YRD) region spanning 2006—2020. It constructs a multidimensional evaluation index system for urbanization. We systematically assess both systems’ spatiotemporal evolution and interactions by employing entropy weighting, comprehensive indexing, and coupling coordination models. Furthermore, Geo-detectors and Geographical and Temporal Weighted Regression (GTWR) models are applied to identify driving factors influencing their coordinated development. Key findings include (1) the total amount of ESV in the YRD exhibits a fluctuating decline, primarily due to a steady increase in urbanization levels; (2) the coordination degree between ESV and urbanization demonstrates phased growth, transitioning to a “basic coordination” stage post-2009; (3) spatially, coordination patterns follow a “core–periphery” hierarchy, marked by radial diffusion and gradient disparities, with most cities being of the ESV-guidance type; (4) GTWR analysis reveals spatiotemporal heterogeneity in driving factors, ranked by intensity as Normalized Difference Vegetation Index (NDVI) > Economic density (ECON) > Degree of openness (OPEN) > Scientific and technological level (TECH) > Industrial structure upgrading index (ISUI) > Government investment efforts (GOV). This study advances methodological frameworks for analyzing ecosystem–urbanization interactions in metropolitan regions, while offering empirical support for ecological planning, dynamic redline adjustments, and territorial spatial optimization in the YRD, particularly within the Ecological Green Integrated Development Demonstration Zone. Full article
Show Figures

Figure 1

18 pages, 1656 KB  
Article
Stakeholder Perception and Priority Gaps in Ecosystem Services of Different Land-Uses in Rural Laos
by Bohwi Lee and Hakjun Rhee
Forests 2025, 16(10), 1581; https://doi.org/10.3390/f16101581 - 14 Oct 2025
Viewed by 235
Abstract
Conflicting priorities between policymakers and local communities often compromise conservation outcomes in landscapes reliant on natural resources. Understanding how diverse stakeholders value ecosystem services (ESs) across coexisting land uses is essential; however, empirical evidence from rural Southeast Asia remains limited. This study examined [...] Read more.
Conflicting priorities between policymakers and local communities often compromise conservation outcomes in landscapes reliant on natural resources. Understanding how diverse stakeholders value ecosystem services (ESs) across coexisting land uses is essential; however, empirical evidence from rural Southeast Asia remains limited. This study examined ES perceptions and priorities among community members (n = 500) and experts (n = 30) within a bamboo forest, rice paddy, and teak plantation in Sangthong District, Lao PDR. A two-step survey methodology was employed: initially assessing ES perceptions to filter locally relevant services using a ≥50% recognition threshold, followed by quantifying priorities for this subset through a 100-point allocation task. The results revealed a systematic divergence in priorities rooted in differing knowledge systems. Communities, grounded in traditional ecological knowledge (TEK), prioritized tangible provisioning and cultural services (e.g., food and raw materials). In contrast, experts emphasized regulating services (e.g., carbon sequestration and hazard regulation) and habitat services (e.g., biodiversity and habitat provision). Distinct “ES bundles” also emerged by land use: bamboo (raw materials and freshwater), rice (food and medicine), and teak (timber/bioenergy and regulating services). Our findings suggest a policy transition from single-objective management toward optimizing landscape-level ES portfolios, alongside institutionalizing participatory co-management that formally integrates local knowledge and enhances ES literacy. Full article
(This article belongs to the Special Issue Forest Ecosystem Services and Sustainable Management)
Show Figures

Figure 1

25 pages, 17251 KB  
Article
Spatial Prioritization for the Zonation of a Reef System in a New Remote Marine Protected Area in the Southern Gulf of Mexico
by Juan Emanuel Frías-Vega, Rodolfo Rioja-Nieto, Erick Barrera-Falcón, Carlos Cruz-Vázquez and Lorenzo Alvarez-Filip
Diversity 2025, 17(10), 708; https://doi.org/10.3390/d17100708 - 13 Oct 2025
Viewed by 166
Abstract
Coral reef ecosystems are biodiversity hotspots that provide essential ecological and environmental services but are increasingly threatened by anthropogenic pressure and climate change. Effective conservation of reef systems within Marine Protected Areas (MPAs) can be enhanced using spatially explicit approaches that integrate habitat [...] Read more.
Coral reef ecosystems are biodiversity hotspots that provide essential ecological and environmental services but are increasingly threatened by anthropogenic pressure and climate change. Effective conservation of reef systems within Marine Protected Areas (MPAs) can be enhanced using spatially explicit approaches that integrate habitat mapping and ecological metrics at seascape scales. In this study, we characterized the benthic seascape of Cayo Arenas and identified optimal priority conservation zones in one of the core zones of the recently established Southern Gulf of Mexico Reefs National Park (SGMRNP). In July 2023, ground-truthing was performed to quantify the cover of sand, calcareous matrix, macroalgae, hard corals and octocorals. Cluster analysis of quantitative data and ecological similarity between classes was used to identify the main benthic habitat classes. Object-based and supervised classification algorithms on a PlanetScope image were used to construct a thematic map of the benthic reef system. Based on the thematic map, habitat connectivity, β-diversity, patch compactness, and availability for commercial species were estimated. In addition, a benthic change analysis (2017–2013), based on the spectral characteristics of PlanetScope images, was performed. The layers obtained were then used to perform an iterative weighted overlay analysis (WOA) using 126 combinations. Six main habitat classes, with different coverages of hard corals, calcareous matrix, macroalgae, and sand, were identified. Habitats with calcareous matrix and sandy substrates dominated the seascape. High habitat compactness, connectivity, and β-diversity values were observed, suggesting habitat stability and ecologically dynamic areas. Based on the WOA, eight optimal priority areas for conservation were recognized. These areas are characterized by heterogeneous habitats, moderate coral cover, and high connectivity. We provide a spatially explicit approach that can strengthen conservation planning within the SGMRNP and other MPAs, particularly by assisting zonation and sub-zonation processes. Full article
Show Figures

Figure 1

30 pages, 12726 KB  
Article
Ecological Sensitivity Zoning and Functional Optimization of the Longyuwan National Forest Park
by Jing He, Yigeng Zhu, Wenwen Zhong, Qiupeng Yuan, Rui Zhang, Jue Li, Shuang Yao, Tailin Zhong and Zhi Li
Forests 2025, 16(10), 1565; https://doi.org/10.3390/f16101565 - 10 Oct 2025
Viewed by 294
Abstract
In the context of sustainable forest resource development, balancing ecological conservation with rational utilization is essential to achieving forest multifunctionality. Longyuwan National Forest Park, located in Luanchuan County, Henan Province, serves as a transitional zone between rural mountainous ecosystems and nearby urban settlements. [...] Read more.
In the context of sustainable forest resource development, balancing ecological conservation with rational utilization is essential to achieving forest multifunctionality. Longyuwan National Forest Park, located in Luanchuan County, Henan Province, serves as a transitional zone between rural mountainous ecosystems and nearby urban settlements. Increasingly, this area faces urbanization pressures such as tourism expansion, infrastructure development, and intensified land use, which may threaten ecological stability. This study aims to evaluate the ecological sensitivity of the park and optimize its spatial functional zoning. Using the Analytic Hierarchy Process (AHP), we followed four key steps: constructing the hierarchical model, generating the pairwise judgment matrices, computing the weights and conducting the consistency check, and determining the final weights. A hierarchical evaluation framework was constructed using the AHP, incorporating twelve ecological indicators across geomorphological, hydrological, atmospheric, biological, and anthropogenic dimensions. Spatial analysis tools in ArcGIS 10.2, including reclassification and weighted overlay, were employed for single-factor and integrated sensitivity assessments. The results indicated that land-use type, elevation, and water-body distribution were the most influential indicators. Ecological sensitivity across the park was categorized into five levels: extremely high (0.02%), high (11.99%), moderate (73.53%), low (14.19%), and extremely low (0.28%). Based on these findings, four functional zones were delineated: ecological conservation (50.99%), core landscape (22.86%), general recreation (23.94%), and management and service (2.21%). This research provides spatially explicit insights into forest management under anthropogenic stress, offering theoretical support for the sustainable governance of forest–urban interface landscapes. Full article
(This article belongs to the Special Issue Litter Decomposition and Soil Nutrient Cycling in Forests)
Show Figures

Figure 1

19 pages, 9329 KB  
Article
How to Achieve Integrated High Supply and a Balanced State of Ecosystem Service Bundles: A Case Study of Fujian Province, China
by Ziyi Zhang, Zhaomin Tong, Feifei Fan and Ke Liang
Land 2025, 14(10), 2002; https://doi.org/10.3390/land14102002 - 6 Oct 2025
Viewed by 404
Abstract
Ecosystems are nonlinear systems that can shift between multiple stable states. Ecosystem service bundles (ESBs) integrate the supply and trade-offs of multiple services, yet the conditions for achieving high-supply and balanced states remain unclear from a nonlinear, threshold-based perspective. In this study, six [...] Read more.
Ecosystems are nonlinear systems that can shift between multiple stable states. Ecosystem service bundles (ESBs) integrate the supply and trade-offs of multiple services, yet the conditions for achieving high-supply and balanced states remain unclear from a nonlinear, threshold-based perspective. In this study, six representative ecosystem services in Fujian Province were quantified, and ESBs were identified using a Self-Organizing Map (SOM). By integrating the Multiclass Explainable Boosting Machine (MC-EBM) with the API interpretable algorithm, we propose a framework for exploring ESB driving mechanisms from a nonlinear, threshold-based perspective, addressing two key questions: (1) Which factors dominate ESB formation? (2) What thresholds of these factors promote high-supply, balanced ESBs? Results show that (i) the proportion of water bodies, distance to construction land, annual solar radiation, annual precipitation, population density, and GDP density are the primary driving factors; (ii) higher proportions of water bodies enhance and balance multiple services, whereas intensified human activities significantly reduce supply levels, and ESBs are highly sensitive to climatic variables; (iii) at the 1 km × 1 km grid scale, optimal threshold ranges of the dominant factors substantially increase the likelihood of forming high-supply, balanced ESBs. The MC-EBM effectively reveals ESB formation mechanisms, significantly outperforming multinomial logistic regression in predictive accuracy and demonstrating strong generalizability. The proposed approach provides methodological guidance for multi-service coordination across regions and scales. Corresponding land management strategies are also proposed, which deepen understanding of ESB formation and offer practical references for enhancing ecosystem service supply and reducing trade-offs. Full article
Show Figures

Figure 1

21 pages, 5265 KB  
Article
Optimizing Ecosystem Service Patterns with Dynamic Bayesian Networks for Sustainable Land Management Under Climate Change: A Case Study in China’s Sanjiangyuan Region
by Qingmin Cheng, Xiaofeng Liu, Xiaowen Han, Jiayuan Yin, Junji Li, Xue Cheng, Hucheng Li, Qinyi Huang, Yuefeng Wang, Haotian You, Zhiwei Wang and Jianjun Chen
Remote Sens. 2025, 17(19), 3357; https://doi.org/10.3390/rs17193357 - 3 Oct 2025
Viewed by 569
Abstract
Identifying suitable areas for ecosystem services (ES) development is essential for balancing economic growth with environmental sustainability in ecologically fragile regions. However, existing studies often neglect integrating future climate and socioeconomic drivers into ES optimization, hindering the design of robust strategies for sustainable [...] Read more.
Identifying suitable areas for ecosystem services (ES) development is essential for balancing economic growth with environmental sustainability in ecologically fragile regions. However, existing studies often neglect integrating future climate and socioeconomic drivers into ES optimization, hindering the design of robust strategies for sustainable resource management. In this study, we propose a novel framework integrating the System Dynamics (SD) model, the Patch-based Land Use Simulation (PLUS) model, the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model, and the Dynamic Bayesian Network (DBN) to optimize ES patterns in the Sanjiangyuan region under three climate scenarios (SSP126, SSP245, and SSP585) from 2030 to 2060. Our results show the following: (1) Ecological land (forest) expanded by 0.86% under SSP126, but declined by 11.54% under SSP585 due to unsustainable land use intensification. (2) SSP126 emerged as the optimal scenario for ES sustainability, increasing carbon storage and sequestration, habitat quality, and water conservation by 3.2%, 1%, and 1.4%, respectively, compared to SSP585. (3) The central part of the Sanjiangyuan region, characterized by gentle topography and adequate rainfall, was identified as a priority zone for ES development. This study provides a transferable framework for aligning ecological conservation with low-carbon transitions in global biodiversity hotspots. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Figure 1

22 pages, 3938 KB  
Article
Tree Species Overcome Edaphic Heterogeneity in Shaping the Urban Orchard Soil Microbiome and Metabolome
by Emoke Dalma Kovacs and Melinda Haydee Kovacs
Horticulturae 2025, 11(10), 1163; https://doi.org/10.3390/horticulturae11101163 - 30 Sep 2025
Viewed by 581
Abstract
Despite the increasing recognition of the role of urban orchard ecosystems in sustainable urban development, the mechanistic understanding of how tree species soil biochemical heterogeneity drives microbial community assembly, the spatial patterns governing microbe-environment interactions, and their collective contributions to ecosystem multifunctionality remain [...] Read more.
Despite the increasing recognition of the role of urban orchard ecosystems in sustainable urban development, the mechanistic understanding of how tree species soil biochemical heterogeneity drives microbial community assembly, the spatial patterns governing microbe-environment interactions, and their collective contributions to ecosystem multifunctionality remain poorly characterized. This study investigated how Prunus species and soil depth affect microbial biodiversity and metabolomic signatures in an urban orchard in Cluj-Napoca, Romania. Soil samples were collected from five fruit tree species (apricot, peach, plum, cherry, and sour cherry) across three depths (0–10, 10–20, and 20–30 cm), resulting in 225 samples. The microbial community structure was analyzed through phospholipid fatty acid (PLFA) profiling, whereas the soil metabolome was analyzed by mass spectrometry techniques, including gas chromatography–mass spectrometry (GC–MS/MS) and MALDI time-of-flight (TOF/TOF) MS, which identified 489 compounds across 18 chemical classes. The results revealed significant tree species-specific effects on soil microbial biodiversity, with bacterial biomarkers dominating and total microbial biomass varying among species. The soils related to apricot trees presented the highest microbial activity, particularly in the surface layers. Metabolomic analysis revealed 247 distinct KEGG-annotated metabolites, with sour cherry exhibiting unique organic acid profiles and cherry showing distinctive quinone accumulation. Depth stratification influenced both microbial communities and metabolite composition, reflecting oxygen gradients and substrate availability. These findings provide mechanistic insights into urban orchard soil biogeochemistry, suggesting that strategic species selection can harness tree species-soil microbe interactions to optimize urban soil ecosystem services and enhance urban biodiversity conservation. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

22 pages, 7292 KB  
Article
Revealing Nonlinear Relationships and Thresholds of Human Activities and Climate Change on Ecosystem Services in Anhui Province Based on the XGBoost–SHAP Model
by Lei Zhang, Xinmu Zhang, Shengwei Gao and Xinchen Gu
Sustainability 2025, 17(19), 8728; https://doi.org/10.3390/su17198728 - 28 Sep 2025
Viewed by 404
Abstract
Under the combined influence of global climate change and intensified human activities, ecosystem services (ESs) are undergoing substantial transformations. Identifying their nonlinear driving mechanisms is crucial for promoting regional sustainable development. Taking Anhui Province as a case study, this research evaluates the spatial [...] Read more.
Under the combined influence of global climate change and intensified human activities, ecosystem services (ESs) are undergoing substantial transformations. Identifying their nonlinear driving mechanisms is crucial for promoting regional sustainable development. Taking Anhui Province as a case study, this research evaluates the spatial patterns and temporal dynamics of six key ecosystem services from 2000 to 2020—namely, biodiversity maintenance (BM), carbon fixation (CF), crop production (CP), net primary productivity (NPP), soil retention (SR), and water yield (WY). The InVEST and CASA models were employed to quantify service values, and the XGBoost–SHAP framework was used to reveal the nonlinear response paths and threshold effects of dominant drivers. Results show a distinct “high in the south, low in the north” spatial gradient of ES across Anhui. Regulatory services such as BM, NPP, and WY are concentrated in the southern mountainous areas (high-value zones > 0.7), while CP is prominent in the northern and central agricultural zones (>0.8), indicating a clear spatial complementarity of service types. Over the two-decade period, areas with significant increases in NPP and CP accounted for 50% and 64%, respectively, suggesting notable achievements in ecological restoration and agricultural modernization. CF remained stable across 98.3% of the region, while SR and WY exhibited strong sensitivity to topography and precipitation. Temporal trend analysis indicated that NPP rose from 395.83 in 2000 to 537.59 in 2020; SR increased from 150.02 to 243.28; and CP rose from 203.18 to 283.78, reflecting an overall enhancement in ecosystem productivity and regulatory functions. Driver analysis identified precipitation (PRE) as the most influential factor for most services, while elevation (DEM) was particularly important for CF and NPP. Temperature (TEM) and potential evapotranspiration (PET) affected biomass formation and hydrothermal balance. SHAP analysis revealed key threshold effects, such as the peak positive contribution of PRE to NPP occurring near 1247 mm, and the optimal temperature for BM at approximately 15.5 °C. The human footprint index (HFI) exerted negative impacts on both BM and NPP, highlighting the suppressive effect of intensive anthropogenic disturbances on ecosystem functioning. Anhui’s ES exhibit a trend of multifunctional synergy, governed by the nonlinear coupling of climatic, hydrological, topographic, and anthropogenic drivers. This study provides both a modeling toolkit and quantitative evidence to support ecosystem restoration and service optimization in similar transitional regions. Full article
Show Figures

Figure 1

Back to TopTop