Revealing Multiscale Characteristics of Ecosystem Service Flows: Application to the Yangtze River Economic Belt
Abstract
1. Introduction
- (1)
- How can a regional-scale evaluation framework be constructed to accurately identify supply–demand balance of key ESs, such as water yield, crop production, and carbon sequestration, across the YREB?
- (2)
- How do ESs flow within the region, and what spatial flow characteristics do critical ESs exhibit?
- (3)
- How can the spatial configuration and supply–demand regulation of multiple ESs be optimized at the regional level to achieve coordinated multifunctionality and ecological sustainability?
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Methodology
2.3.1. Ecosystem Services Assessment
2.3.2. Theil–Sen Trend Estimator
2.3.3. Quantitative Estimation Methods of Ecosystem Service Supply and Demand
Quantitative Estimation Methods of Crop
Quantitative Estimation Methods of Water Resources
Quantitative Estimation Methods of Carbon Sequestration Balance
2.3.4. SHAP Stacking-Bayesian Optimization Model
2.3.5. Analysis of Ecosystem Service Flows
3. Results
3.1. Spatiotemporal Analysis of Ecosystem Services
3.1.1. Temporal Characteristics of Ecosystem Services
3.1.2. Spatial Characteristics of Ecosystem Services
3.2. Analysis of Ecosystem Service Supply–Demand Balance
3.2.1. Spatial Assessment of Ecosystem Service Supply–Demand Balance
3.2.2. Drivers of Ecosystem Service Supply–Demand Balance
3.3. Optimization of Ecosystem Service Supply–Demand Balance
3.3.1. Optimization of Supply–Demand Balance for Individual Ecosystem Services
3.3.2. Optimization of the Supply–Demand Balance Across Multiple Ecosystem Services
4. Discussion
4.1. Regional-Scale Evaluation Framework for Ecosystem Service Supply–Demand Balance
4.2. Optimizing the Spatial Allocation of Ecosystem Service Supply and Demand
4.3. Spatial Strategies for Coordinated Regional Sustainability
4.4. Limitations and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SDB | supply–demand balance |
ESDR | Ecosystem Service Deficit Ratio |
YREB | Yangtze River Economic Belt |
ESs | Ecosystem services |
ES flow | ecosystem service flow |
InVEST 3.14.2 software | Ecosystem Services and Trade-offs |
ESI | ecosystem service intensity |
SHAP | Shapley Additive explanations |
SPAs | service providing areas |
SBAs | service benefiting areas |
SCAs | service connecting areas |
NSGA-II | Non-dominated Sorting Genetic Algorithm II |
UR | Urbanization Rate |
NLI | Nighttime Light Intensity |
GDP | Gross Domestic Product |
PIGDP | Primary Industry GDP |
SIGDP | Secondary Industry GDP |
TIGDP | Tertiary Industry GDP |
CLA | Cultivated Land Area |
PD | Population Density |
References
- Fu, B.; Wu, X.; Wang, Z.; Wu, X.; Wang, S. Coupling human and natural systems for sustainability: Experience from China’s Loess Plateau. Earth Syst. Dyn. 2022, 13, 795–808. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Leemans, R.; De Groot, R. Millennium Ecosystem Assessment: Ecosystems and Human Well-Being: A Framework for Assessment; Island Press: Washington, DC, USA, 2003. [Google Scholar]
- Wu, X.; Fu, B.; Wang, S.; Song, S.; Li, Y.; Xu, Z.; Wei, Y.; Liu, J. Decoupling of SDGs followed by re-coupling as sustainable development progresses. Nat. Sustain. 2022, 5, 452–459. [Google Scholar] [CrossRef]
- Wolff, S.; Schulp, C.J.E.; Kastner, T.; Verburg, P.H. Quantifying spatial variation in ecosystem services demand: A global mapping approach. Ecol. Econ. 2017, 136, 14–29. [Google Scholar] [CrossRef]
- Lorilla, R.S.; Kalogirou, S.; Poirazidis, K.; Kefalas, G. Identifying spatial mismatches between the supply and demand of ecosystem services to achieve a sustainable management regime in the Ionian Islands (Western Greece). Land Use Policy 2019, 88, 104171. [Google Scholar] [CrossRef]
- Yuan, M.; Lo, S. Ecosystem services and sustainable development: Perspectives from the food-energy-water Nexus. Ecosyst. Serv. 2020, 46, 101217. [Google Scholar] [CrossRef]
- Fang, L.; Wang, L.; Chen, W.; Sun, J.; Cao, Q.; Wang, S.; Wang, L. Identifying the impacts of natural and human factors on ecosystem service in the Yangtze and Yellow River Basins. J. Clean. Prod. 2021, 314, 127995. [Google Scholar] [CrossRef]
- Yin, D.; Yu, H.; Shi, Y.; Zhao, M.; Zhang, J.; Li, X. Matching supply and demand for ecosystem services in the Yellow River Basin, China: A perspective of the water-energy-food nexus. J. Clean. Prod. 2023, 384, 135469. [Google Scholar] [CrossRef]
- Hernández-Blanco, M.; Costanza, R.; Chen, H.; Degroot, D.; Jarvis, D.; Kubiszewski, I.; Montoya, J.; Sangha, K.; Stoeckl, N.; Turner, K.; et al. Ecosystem health, ecosystem services, and the well-being of humans and the rest of nature. Glob. Change Biol. 2022, 28, 5027–5040. [Google Scholar] [CrossRef]
- Xiaomin, G.; Chuanglin, F.; Xufang, M.; Dan, C. Coupling and coordination analysis of urbanization and ecosystem service value in Beijing-Tianjin-Hebei urban agglomeration. Ecol. Indic. 2022, 137, 108782. [Google Scholar] [CrossRef]
- Zhang, X.; Ren, W.; Peng, H. Urban land use change simulation and spatial responses of ecosystem service value under multiple scenarios: A case study of Wuhan, China. Ecol. Indic. 2022, 144, 109526. [Google Scholar] [CrossRef]
- Ouyang, Z.; Song, C.; Zheng, H.; Polasky, S.; Xiao, Y.; Bateman, I.J.; Liu, J.; Ruckelshaus, M.; Shi, F.; Xiao, Y.; et al. Using gross ecosystem product (GEP) to value nature in decision making. Proc. Natl. Acad. Sci. USA 2020, 117, 14593–14601. [Google Scholar] [CrossRef]
- Zhu, Q.I.; Tran, L.T.; Wang, Y.; Qi, L.; Zhou, W.; Zhou, L.I.; Yu, D.; Dai, L. A framework of freshwater services flow model into assessment on water security and quantification of transboundary flow: A case study in northeast China. J. Environ. Manag. 2022, 304, 114318. [Google Scholar] [CrossRef]
- Liu, J.; Yang, W.; Li, S. Framing ecosystem services in the telecoupled Anthropocene. Front. Ecol. Environ. 2016, 14, 27–36. [Google Scholar] [CrossRef]
- Ji, Q.; Feng, X.; Sun, S.; Zhang, J.; Li, S.; Fu, B. Cross-scale coupling of ecosystem service flows and socio-ecological interactions in the Yellow River Basin. J. Environ. Manag. 2024, 367, 122071. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, W.; Sun, M.; Wang, Y.; Wang, S. Exploring the formulation of ecological management policies by quantifying interregional primary ecosystem service flows in Yangtze River Delta region, China. J. Environ. Manag. 2021, 284, 112042. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wu, Z.; Di, D.; Wang, H. Water resources allocation based on water resources supply-demand forecast and comprehensive values of water resources. J. Hydrol. Reg. Stud. 2023, 47, 101421. [Google Scholar] [CrossRef]
- Liu, W.; Zhan, J.; Zhao, F.; Zhang, F.; Teng, Y.; Wang, C.; Chu, X.; Kumi, M.A. The tradeoffs between food supply and demand from the perspective of ecosystem service flows: A case study in the Pearl River Delta, China. J. Environ. Manag. 2022, 301, 113814. [Google Scholar] [CrossRef]
- Du, H.; Zhao, L.; Zhang, P.; Li, J.; Yu, S. Ecological compensation in the Beijing-Tianjin-Hebei region based on ecosystem services flow. J. Environ. Manag. 2023, 331, 117230. [Google Scholar] [CrossRef]
- Bagstad, K.J.; Johnson, G.W.; Voigt, B.; Villa, F. Spatial dynamics of ecosystem service flows: A comprehensive approach to quantifying actual services. Ecosyst. Serv. 2013, 4, 117–125. [Google Scholar] [CrossRef]
- Sun, S.; Lü, Y.; Fu, B. Relations between physical and ecosystem service flows of freshwater are critical for water resource security in large dryland river basin. Sci. Total Environ. 2023, 857, 159549. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, Z.; Zhang, W.; Meng, G.; Cao, M.; Li, J.; Xu, C.; Wu, R.; Leng, H.; Wen, Q.; et al. Relationships among multiple ecosystem services in mountainous regions: A case study of the Gaoligong Mountains. J. Environ. Manag. 2025, 387, 125765. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Wang, Y.; Liu, Y.; Zhang, Y.; Zhang, Y. What factors affect the synergy and tradeoff between ecosystem services, and how, from a geospatial perspective? J. Clean. Prod. 2020, 257, 120454. [Google Scholar] [CrossRef]
- Liu, Q.; Qiao, J.; Li, M.; Huang, M. Spatiotemporal heterogeneity of ecosystem service interactions and their drivers at different spatial scales in the Yellow River Basin. Sci. Total Environ. 2024, 908, 168486. [Google Scholar] [CrossRef]
- Schirpke, U.; Candiago, S.; Vigl, L.E.; Jäger, H.; Labadini, A.; Marsoner, T.; Meisch, C.; Tasser, E.; Tappeiner, U. Integrating supply, flow and demand to enhance the understanding of interactions among multiple ecosystem services. Sci. Total Environ. 2019, 651, 928–941. [Google Scholar] [CrossRef]
- Assis, J.C.; Hohlenwerger, C.; Metzger, J.P.; Rhodes, J.R.; Duarte, G.T.; da Silva, R.A.; Boesing, A.L.; Prist, P.R.; Ribeiro, M.C. Linking landscape structure and ecosystem service flow. Ecosyst. Serv. 2023, 62, 101535. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, M.; Yang, R.; Li, X.; Zhang, L.; Li, M. Decoupling water environment pressures from economic growth in the Yangtze River Economic Belt, China. Ecol. Indic. 2021, 122, 107314. [Google Scholar] [CrossRef]
- Ran, P.; Hu, S.; Frazier, A.E.; Qu, S.; Yu, D.; Tong, L. Exploring changes in landscape ecological risk in the Yangtze River Economic Belt from a spatiotemporal perspective. Ecol. Indic. 2022, 137, 108744. [Google Scholar] [CrossRef]
- Cao, Y.; Kong, L.; Zhang, L.; Ouyang, Z. The balance between economic development and ecosystem service value in the process of land urbanization: A case study of China’s land urbanization from 2000 to 2015. Land Use Policy 2021, 108, 105536. [Google Scholar] [CrossRef]
- Guo, S.; Wu, C.; Wang, Y.; Qiu, G.; Zhu, D.; Niu, Q.; Qin, L. Threshold effect of ecosystem services in response to climate change, human activity and landscape pattern in the upper and middle Yellow River of China. Ecol. Indic. 2022, 136, 108603. [Google Scholar] [CrossRef]
- Xu, X.; Liu, J.; Zhang, S.; Li, R.; Yan, C.; Wu, S. China Multi-Period Land Use Remote Sensing Monitoring Dataset (CNLUCC) [Dataset]; Data Center for Resources and Environmental Sciences (RESDC); Chinese Academy of Sciences: Beijing, China, 2018. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, X.; Yu, T.; Li, X.; Lan, H.; Xia, F.; Xie, Y. A new framework for making carbon compensation standards considering regional differences at different scales in China. J. Environ. Manag. 2025, 373, 123431. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Shi, K.; Chen, Z.; Liu, S.; Chang, Z. Developing improved time-series DMSP-OLS-like data (1992–2019) in China by integrating DMSP-OLS and SNPP-VIIRS. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–14. [Google Scholar] [CrossRef]
- Yu, H.; Xie, W.; Sun, L.; Wang, Y. Identifying the regional disparities of ecosystem services from a supply-demand perspective. Resour. Conserv. Recycl. 2021, 169, 105557. [Google Scholar] [CrossRef]
- Zhang, S.; Xiong, K.; Min, X.; Zhang, S. Demographic shrinkage promotes ecosystem services supply capacity in the karst desertification control. Sci. Total Environ. 2024, 917, 170427. [Google Scholar] [CrossRef]
- Li, Y.; Liu, W.; Feng, Q.; Zhu, M.; Yang, L.; Zhang, J.; Yin, X. The role of land use change in affecting ecosystem services and the ecological security pattern of the Hexi Regions, Northwest China. Sci. Total Environ. 2023, 855, 158940. [Google Scholar] [CrossRef] [PubMed]
- Wei, P.; Chen, S.; Wu, M.; Deng, Y.; Xu, H.; Jia, Y.; Liu, F. Using the InVEST model to assess the impacts of climate and land use changes on water yield in the upstream regions of the Shule River Basin. Water 2021, 13, 1250. [Google Scholar] [CrossRef]
- Gu, K.; Zhao, Y.; Yang, K.; Wang, S.; Ji, J.; Song, J.; Han, J. Revising the SCS-CN model by using the effect of biocrusts to refine the results. J. Hydrol. 2025, 657, 133080. [Google Scholar] [CrossRef]
- Zhu, W.Q.; Pan, Y.Z.; Zhang, J.S. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing. Chin. J. Plant Ecol. 2007, 31, 413. [Google Scholar] [CrossRef]
- Li, Z. Extracting spatial effects from machine learning model using local interpretation method: An example of SHAP and XGBoost. Comput. Environ. Urban Syst. 2022, 96, 101845. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, X.; Zhang, J.; Sun, D.; Zhou, X.; Mi, C.; Wen, H. Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model. J. Environ. Manag. 2023, 332, 117357. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Wang, Y.; Gao, X.; Yu, C. Bayesian forecasting and uncertainty quantifying of stream flows using Metropolis–Hastings Markov Chain Monte Carlo algorithm. J. Hydrol. 2017, 549, 476–483. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, G.; Mao, Y.; Yin, J. A Bayesian framework-based method for suppressing reverberation in moving target detection. Appl. Acoust. 2024, 224, 110141. [Google Scholar] [CrossRef]
- Guan, X.; Xu, Y.; Meng, Y.; Xu, W.; Yan, D. Quantifying multi-dimensional services of water ecosystems and breakpoint-based spatial radiation of typical regulating services considering the hierarchical clustering-based classification. J. Environ. Manag. 2024, 351, 119852. [Google Scholar] [CrossRef]
- Liu, H.; Yan, F.; Tian, H. Towards low-carbon cities: Patch-based multi-objective optimization of land use allocation using an improved non-dominated sorting genetic algorithm-II. Ecol. Indic. 2022, 134, 108455. [Google Scholar] [CrossRef]
- Tu, D.; Cai, Y.; Liu, M. Coupling coordination analysis and spatiotemporal heterogeneity between ecosystem services and new-type urbanization: A case study of the Yangtze River Economic Belt in China. Ecol. Indic. 2023, 154, 110535. [Google Scholar] [CrossRef]
- Pan, Z.; He, J.; Liu, D.; Wang, J.; Guo, X. Ecosystem health assessment based on ecological integrity and ecosystem services demand in the Middle Reaches of the Yangtze River Economic Belt, China. Sci. Total Environ. 2021, 774, 144837. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, X.; Chen, B.; Shang, Y.; Song, M. Challenges toward carbon neutrality in China: Strategies and countermeasures. Resour. Conserv. Recycl. 2022, 176, 105959. [Google Scholar] [CrossRef]
- Chen, D.; Jiang, P.; Li, M. Assessing potential ecosystem service dynamics driven by urbanization in the Yangtze River Economic Belt, China. J. Environ. Manag. 2021, 292, 112734. [Google Scholar] [CrossRef]
- Bi, Y.; Zheng, L.; Wang, Y.; Li, J.; Yang, H.; Zhang, B. Coupling relationship between urbanization and water-related ecosystem services in China’s Yangtze River economic Belt and its socio-ecological driving forces: A county-level perspective. Ecol. Indic. 2023, 146, 109871. [Google Scholar] [CrossRef]
- Luo, Q.; Luo, L.; Zhou, Q.; Song, Y. Does China’s Yangtze River Economic Belt policy impact on local ecosystem services? Sci. Total Environ. 2019, 676, 231–241. [Google Scholar] [CrossRef]
- Zhong, J.; Wang, D.; Guo, L.; Miao, C.; Zhang, D.; Yu, F.; Pan, W.; Li, F.; Peng, B.; Li, L.; et al. Downscaling top-down CO2 emissions and sinks in China empowered by hybrid training. npj Clim. Atmos. Sci. 2025, 8, 195. [Google Scholar] [CrossRef]
- Qu, H.; You, C.; Feng, C.C.; Guo, L. The spatial spillover effects of ecosystem services: A case study in Yangtze River economic belt in China. Ecol. Indic. 2024, 168, 112741. [Google Scholar] [CrossRef]
- Wu, J.; Huang, Y.; Jiang, W. Spatial matching and value transfer assessment of ecosystem services supply and demand in urban agglomerations: A case study of the Guangdong-Hong Kong-Macao Greater Bay area in China. J. Clean. Prod. 2022, 375, 134081. [Google Scholar] [CrossRef]
- Liu, M.; Zhou, X.; Huang, G.; Li, Y. The increasing water stress projected for China could shift the agriculture and manufacturing industry geographically. Commun. Earth Environ. 2024, 5, 396. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Wang, Y.; Liu, Z. Evaluating potential impacts of land use changes on water supply–demand under multiple development scenarios in dryland regions. J. Hydrol. 2022, 610, 127811. [Google Scholar] [CrossRef]
- Zheng, Z.; Shuang, Q. Scenario analysis under climate extreme of carbon peaking and neutrality in China: A hybrid interpretable machine learning model prediction. J. Clean. Prod. 2025, 495, 145086. [Google Scholar] [CrossRef]
- Yu, X.; Xiao, R.; Zhang, Z.; Zhou, F.; Mo, F.; Xu, Z.; Tian, F.; Gao, Z.; Li, Y.; Zhu, P.; et al. Rising disparities in grain self-sufficiency across China: Provincial divergence amidst overall national improvement. Environ. Sci. Policy 2025, 143, 113–124. [Google Scholar] [CrossRef]
- Liu, D.; Guo, S.; Shao, Q.; Liu, P.; Xiong, L.; Wang, L.; Hong, X.; Xu, Y.; Wang, Z. Assessing the effects of adaptation measures on optimal water resources allocation under varied water availability conditions. J. Hydrol. 2018, 556, 759–774. [Google Scholar] [CrossRef]
- Zhang, J.; He, C.; Huang, Q.; Li, L. Understanding ecosystem service flows through the metacoupling framework. Ecol. Indic. 2023, 151, 110303. [Google Scholar] [CrossRef]
- Ma, W.; Zhou, H.; Dai, M.; Tang, L.; Xu, S.; Luo, Z. Characterizing the drought events in Yangtze River basin via the insight view of its sub-basins water storage variations. J. Hydrol. 2024, 633, 130995. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhao, W.; Xia, Y.; Gu, Q.; Li, H.; Cao, X.; Zhao, Y.; Liang, C.; Zhang, X. Holocene climatic transition in the Yangtze River region and its impact on prehistoric civilizations. Catena 2024, 238, 107886. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, X.; Xu, J.; Wang, H.; Liu, L.; Cao, W. Coupling mutual information into ecological networks to analyze the sustainability of water-energy nexus: A case study of Yangtze River Economic Belt. J. Clean. Prod. 2024, 448, 141705. [Google Scholar] [CrossRef]
- Zhai, M.; Huang, G.; Liu, L.; Zheng, B.; Guan, Y. Network analysis of different types of food flows: Establishing the interaction between food flows and economic flows. Resour. Conserv. Recycl. 2019, 143, 143–153. [Google Scholar] [CrossRef]
- Jiang, B.; Xia, D. Toward carbon neutrality in China: A national wide carbon flow tracing and the CO2 emission control strategies for CO2-intensive industries. Sci. Total Environ. 2023, 879, 163009. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Pan, W.; Shi, Y.; Liu, S.; He, B.; Hu, C.; Tu, H.; Xiong, J.; Yu, D. China’s inter-regional carbon emissions: An input-output analysis under considering national economic strategy. J. Clean. Prod. 2018, 197, 794–803. [Google Scholar] [CrossRef]
- Liu, J.; Xu, J.; Zhang, X.; Liang, Z.; Rao, K. Nonlinearity and threshold effects of landscape pattern on water quality in a rapidly urbanized headwater watershed in China. Ecol. Indic. 2021, 124, 107389. [Google Scholar] [CrossRef]
- Dong, L.; Shang, J.; Ali, R.; Rehman, R.U. The coupling coordinated relationship between new-type urbanization, eco-environment and its driving mechanism: A case of Guanzhong, China. Front. Environ. Sci. 2021, 9, 638891. [Google Scholar] [CrossRef]
- Deng, C.; Zhu, D.; Nie, X.; Liu, C.; Zhang, G.; Liu, Y.; Li, Z.; Wang, S.; Ma, Y. Precipitation and urban expansion caused jointly the spatiotemporal dislocation between supply and demand of water provision service. J. Environ. Manag. 2021, 299, 113660. [Google Scholar] [CrossRef]
- Fang, G.; Gao, Z.; Tian, L.; Fu, M. What drives urban carbon emission efficiency? –Spatial analysis based on nighttime light data. Appl. Energy 2022, 312, 118772. [Google Scholar] [CrossRef]
- Kuai, C.; Huang, Y.; Wang, F. A framework for eco-compensation in the Yangtze River Delta region of China based on multiple policy objectives. J. Clean. Prod. 2024, 436, 140370. [Google Scholar] [CrossRef]
- Le, W.; Leshan, J. How eco-compensation contribute to poverty reduction: A perspective from different income group of rural households in Guizhou, China. J. Clean. Prod. 2020, 275, 122962. [Google Scholar] [CrossRef]
- Chen, M.; Xu, X.; Tan, Y.; Lin, Y. Integrating ecosystem service spillovers and environmental justice in ecological compensation: A pathway to effective ecological protection in China. Ecol. Indic. 2025, 174, 113455. [Google Scholar] [CrossRef]
- Hu, X.; Li, Y.; Sun, Y.; Zhang, C.; Ding, W.; Deng, J. Water permits trading framework for urban water demand management based on smart metering. J. Environ. Manag. 2022, 304, 114208. [Google Scholar] [CrossRef]
- Ayad, A.; Khalifa, A.; Fawy, M.E.; Moawad, A. An integrated approach for non-revenue water reduction in water distribution networks based on field activities, optimisation, and GIS applications. Ain Shams Eng. J. 2021, 12, 3509–3520. [Google Scholar] [CrossRef]
- Shi, Y.; Li, H.; Geng, J.; Askar, A.; Zhao, Z.; Pang, J.; Zhang, W.; Shao, Y. Breaking the Boundary between Permanent Capital Farmland and Arable Land in China: Understanding State and Drivers of Permanent Capital Farmland Non-Grain Production in a Rapid Urbanizing County. Land 2024, 13, 1226. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, W.; Gu, H.; Liu, A.; Guo, Q.; Chen, Y.; Lu, J.; Ren, T.; Cong, R.; Lu, Z.; et al. Field, plant, to leaf: A meta-analysis on crop water use efficiency response to potassium fertilization. J. Hydrol. 2023, 621, 129578. [Google Scholar] [CrossRef]
- Wu, L.; Fan, F. Assessment of ecosystem services in new perspective: A comprehensive ecosystem service index (CESI) as a proxy to integrate multiple ecosystem services. Ecol. Indic. 2022, 138, 108800. [Google Scholar] [CrossRef]
Data | Resolution | Description | Source |
---|---|---|---|
LULC | 1 km | classified into six land cover types: cropland, forest, grassland, water, construction land, and unused land. | https://www.resdc.cn (assessed on 1 July 2025) [32] |
precipitation | 1 km | summing the monthly data | https://www.resdc.cn (assessed on 1 July 2025) [32] |
evapotranspiration | 1 km | summing the monthly data | https://www.resdc.cn (assessed on 1 July 2025) [32] |
Normalized difference vegetation index (NDVI) | 1 km | generated using the maximum value composites | https://www.resdc.cn (assessed on 1 July 2025) [32] |
Digital elevation model (DEM) | 1 km | projected onto the Yangtze River Economic Belt | https://www.gscloud.cn (assessed on 1 July 2025) |
crop consumption | calculated by equation | China Statistical Yearbook | |
water consumption | calculated by intensity of water use | China Statistical Yearbook | |
carbon emission | calculated by equation | China Statistical Yearbook | |
cropland area | 1 km | statistics by prefecture-level city | Yang et al., 2025 [33] |
nighttime light intensity | 1 km | statistics by prefecture-level city | Wu et al., 2021 [34] |
population | statistics by prefecture-level city | China Statistical Yearbook |
Indicators | Explanation |
---|---|
carbon sequestration | capacity of ecosystems absorbing carbon dioxide from the atmosphere |
water yield | capacity of ecosystems capturing and storing water |
soil retention | capacity of ecosystems preventing soil erosion and degradation |
water purification | capacity of ecosystems assimilating nutrient loads (e.g., nitrogen and phosphorus) |
crop yield | capacity of ecosystems providing crop |
Year | Nitrogen | |||||
---|---|---|---|---|---|---|
2000 | 7.614 | 1.536 | 4.521 | 1.861 | 2.097 | 2.761 |
2005 | 6.581 | 1.361 | 4.512 | 1.923 | 2.021 | 2.177 |
2010 | 8.626 | 1.589 | 4.446 | 1.887 | 2.127 | 2.181 |
2015 | 7.758 | 1.538 | 4.426 | 1.900 | 2.333 | 2.464 |
2020 | 8.935 | 1.588 | 4.454 | 1.967 | 2.391 | 2.412 |
2023 | 7.017 | 1.284 | 4.424 | 1.935 | 2.415 | 2.517 |
Year | |||
---|---|---|---|
2000 | 5.343 | 1.361 | 1.514 |
2005 | 4.205 | 1.203 | 0.066 |
2010 | 6.033 | 1.287 | −0.886 |
2015 | 5.135 | 1.446 | −1.121 |
2020 | 6.452 | 1.491 | −1.409 |
2023 | 4.433 | 1.451 | −1.6734 |
Year | |||
---|---|---|---|
2000 | 0.851 | 0.085 | 0.957 |
2005 | 1.319 | 0.131 | 1.526 |
2010 | 1.449 | 0.145 | 2.441 |
2015 | 1.031 | 0.103 | 2.367 |
2020 | 0.845 | 0.084 | 2.785 |
2023 | 1.426 | 0.142 | 2.891 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, H.; Zhang, L.; Yang, Y.; Zhao, Z.; Jiang, X. Revealing Multiscale Characteristics of Ecosystem Service Flows: Application to the Yangtze River Economic Belt. Land 2025, 14, 2076. https://doi.org/10.3390/land14102076
Li Y, Wang H, Zhang L, Yang Y, Zhao Z, Jiang X. Revealing Multiscale Characteristics of Ecosystem Service Flows: Application to the Yangtze River Economic Belt. Land. 2025; 14(10):2076. https://doi.org/10.3390/land14102076
Chicago/Turabian StyleLi, Yiyang, Hongrui Wang, Li Zhang, Yafeng Yang, Ziyang Zhao, and Xin Jiang. 2025. "Revealing Multiscale Characteristics of Ecosystem Service Flows: Application to the Yangtze River Economic Belt" Land 14, no. 10: 2076. https://doi.org/10.3390/land14102076
APA StyleLi, Y., Wang, H., Zhang, L., Yang, Y., Zhao, Z., & Jiang, X. (2025). Revealing Multiscale Characteristics of Ecosystem Service Flows: Application to the Yangtze River Economic Belt. Land, 14(10), 2076. https://doi.org/10.3390/land14102076