Litter Decomposition and Soil Nutrient Cycling in Forests

A special issue of Forests (ISSN 1999-4907). This special issue belongs to the section "Forest Soil".

Deadline for manuscript submissions: 25 March 2026 | Viewed by 1339

Special Issue Editors


E-Mail Website
Guest Editor
Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
Interests: soil organic carbon and nutrient cycling processes; soil structure and microbial interaction mechanisms
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Ecology and Environment, Northwestern Polytechnical University, No. 127 West Youyi Road, Xi'an 710000, China
Interests: ecosystem

E-Mail Website
Guest Editor
Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
Interests: biodiversity; ecosystem structure and function; restoration ecology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Forest litter decomposition is a key link between plants and soil and plays a vital role in nutrient cycling. The organic matter in litter is decomposed by microorganisms and releases nutrient elements such as nitrogen and phosphorus, which re-enter the soil for plant absorption and utilization and maintain the material circulation and energy flow of the forest ecosystem. The decomposition rate of litter is affected by litter quality, microbial activity, environmental conditions, and other factors, which, in turn, affect the efficiency and quantity of nutrient release. Litter decomposition and nutrient cycling are interdependent to maintain the balance and productivity of forest ecosystems. Research on the relationship between the two is helpful to understand the function of forest ecosystems, predict the impact of global change, and provide scientific basis for sustainable forest management.

Therefore, this Special Issue will bring together important research on litter decomposition and soil nutrient cycling in forests, including the following: (1) the mechanisms by which climate change affects litter decomposition processes; (2) the comparative study of litter decomposition characteristics of different forest types; (3) the relationship between soil biocommunity structure and litter decomposition function; and (4) the response and adaptation mechanisms to litter decomposition under human disturbance.

Dr. Shengqiang Wang
Dr. Ziliang Zhang
Prof. Dr. Yili Guo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Forests is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • soil organic carbon
  • soil nutrients
  • litter decomposition

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 2558 KB  
Article
Determinants of Needleleaf and Broadleaf Decomposition Rates Under and Outside the Parent Tree Stand
by Putu Supadma Putra, Wardiman Mas’ud, Andi Siady Hamzah, Nasri Nasri, Amran Achmad, Toshihiro Yamada and Putu Oka Ngakan
Forests 2025, 16(11), 1678; https://doi.org/10.3390/f16111678 - 4 Nov 2025
Viewed by 406
Abstract
We studied differences in the decomposition rate between Pinus merkusii Jungh. et de Vriese (tusam) leaves, a representative of needle leaf litter, and Diospyros celebica Bakh. (ebony) leaves, a representative of broadleaf litter, in three forest communities (Karst, Lowland, Pine) on the island [...] Read more.
We studied differences in the decomposition rate between Pinus merkusii Jungh. et de Vriese (tusam) leaves, a representative of needle leaf litter, and Diospyros celebica Bakh. (ebony) leaves, a representative of broadleaf litter, in three forest communities (Karst, Lowland, Pine) on the island of Sulawesi, Indonesia, and identified their determinants. Twenty-four 1 m × 1 m quadrats were set up in each forest community to observe the in situ decomposition process. Near each quadrat, 1 m2 litter traps were set to monitor litter production. In addition, 30 litter bags containing tusam leaves and 30 litter bags containing ebony leaves were spread in the three forest communities, in both the dry and wet seasons, to observe their decomposition rate during each season. The ANOVA test showed that the one-year in situ Decomposition Rate Constant (k) was significantly highest in the Karst forest (0.0921/year), followed by the Lowland forest (0.0700/year), and the lowest in the Pine forest (0.0277/year). During the dry season, the mean k-value of tusam leaves was significantly faster than ebony leaves in Karst (0.7162/6 months for tusam, 0.3840/6 months for ebony) and Lowland forests (0.3472/6 months for tusam, 0.1017/6 months for ebony), but on the contrary, it is slower in the Pine forest (0.0498/6 months for tusam, 0.0745/6 months for ebony). During the wet season, there was no significant difference between the mean k-value of tusam leaves compared to ebony leaves in the Karst (0.5217/4 months for tusam, 0.4859/4 months for ebony) and Lowland (0.2397/4 months for tusam, 0.2098/4 months for ebony) forests, but in the Pine forest, the mean k-value of ebony leaves was significantly higher than that of tusam leaves (0.0942/4 months for tusam, 0.1650/4 months for ebony). This study explains that the decomposition process of leaf litter is complex, species-specific, and is controlled by a combination of factors. Extrinsic factors play a more critical role than intrinsic factors in determining the k-value. The low rate of decomposition of tusam leaves under its mother tree stands is not caused by intrinsic factors, but rather by extrinsic factors that inhibit the growth of decomposing agents. Full article
(This article belongs to the Special Issue Litter Decomposition and Soil Nutrient Cycling in Forests)
Show Figures

Figure 1

30 pages, 12726 KB  
Article
Ecological Sensitivity Zoning and Functional Optimization of the Longyuwan National Forest Park
by Jing He, Yigeng Zhu, Wenwen Zhong, Qiupeng Yuan, Rui Zhang, Jue Li, Shuang Yao, Tailin Zhong and Zhi Li
Forests 2025, 16(10), 1565; https://doi.org/10.3390/f16101565 - 10 Oct 2025
Viewed by 557
Abstract
In the context of sustainable forest resource development, balancing ecological conservation with rational utilization is essential to achieving forest multifunctionality. Longyuwan National Forest Park, located in Luanchuan County, Henan Province, serves as a transitional zone between rural mountainous ecosystems and nearby urban settlements. [...] Read more.
In the context of sustainable forest resource development, balancing ecological conservation with rational utilization is essential to achieving forest multifunctionality. Longyuwan National Forest Park, located in Luanchuan County, Henan Province, serves as a transitional zone between rural mountainous ecosystems and nearby urban settlements. Increasingly, this area faces urbanization pressures such as tourism expansion, infrastructure development, and intensified land use, which may threaten ecological stability. This study aims to evaluate the ecological sensitivity of the park and optimize its spatial functional zoning. Using the Analytic Hierarchy Process (AHP), we followed four key steps: constructing the hierarchical model, generating the pairwise judgment matrices, computing the weights and conducting the consistency check, and determining the final weights. A hierarchical evaluation framework was constructed using the AHP, incorporating twelve ecological indicators across geomorphological, hydrological, atmospheric, biological, and anthropogenic dimensions. Spatial analysis tools in ArcGIS 10.2, including reclassification and weighted overlay, were employed for single-factor and integrated sensitivity assessments. The results indicated that land-use type, elevation, and water-body distribution were the most influential indicators. Ecological sensitivity across the park was categorized into five levels: extremely high (0.02%), high (11.99%), moderate (73.53%), low (14.19%), and extremely low (0.28%). Based on these findings, four functional zones were delineated: ecological conservation (50.99%), core landscape (22.86%), general recreation (23.94%), and management and service (2.21%). This research provides spatially explicit insights into forest management under anthropogenic stress, offering theoretical support for the sustainable governance of forest–urban interface landscapes. Full article
(This article belongs to the Special Issue Litter Decomposition and Soil Nutrient Cycling in Forests)
Show Figures

Figure 1

Back to TopTop