Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,000)

Search Parameters:
Keywords = early-onset disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 508 KiB  
Review
RNF213-Related Vasculopathy: An Entity with Diverse Phenotypic Expressions
by Takeshi Yoshimoto, Sho Okune, Shun Tanaka, Hiroshi Yamagami and Yuji Matsumaru
Genes 2025, 16(8), 939; https://doi.org/10.3390/genes16080939 - 7 Aug 2025
Abstract
Moyamoya disease (MMD) is primarily associated with genetic variants in RNF213. RNF213 p.R4810K (c.14429G>A, p.Arg4810Lys) is a founder variant predominantly found in East Asian populations and is strongly associated with MMD, a rare cerebrovascular condition characterized by progressive stenosis of intracranial arteries [...] Read more.
Moyamoya disease (MMD) is primarily associated with genetic variants in RNF213. RNF213 p.R4810K (c.14429G>A, p.Arg4810Lys) is a founder variant predominantly found in East Asian populations and is strongly associated with MMD, a rare cerebrovascular condition characterized by progressive stenosis of intracranial arteries and the development of abnormal collateral networks. Recent evidence suggests that RNF213 variants are also enriched in non-moyamoya intracranial arteriopathies, such as large-artery atherosclerotic stroke and intracranial arterial stenosis/occlusion (ICASO), particularly in east Asian individuals with early-onset or cryptogenic stroke. This expanded phenotypic spectrum, termed RNF213-related vasculopathy (RRV), represents a distinct pathogenic entity that may involve unique pathogenic processes separate from traditional atherosclerosis. In this review, we synthesize current genetic, clinical, radiological, and experimental findings that delineate the unique features of RRV. Patients with RRV typically exhibit a lower burden of traditional vascular risk factors, negative vascular remodeling in the absence of atheromatous plaques, and an increased propensity for disease progression. RNF213 variants may compromise vascular resilience by impairing adaptive responses to hemodynamic stress. Furthermore, emerging cellular and animal model data indicate that RNF213 influences angiogenesis, lipid metabolism, and stress responses, offering mechanistic insights into its role in maintaining vascular integrity. Recognizing RRV as a distinct clinical entity has important implications for diagnosis, risk stratification, and the development of genome-informed therapeutic strategies. Full article
(This article belongs to the Special Issue Genetic Research on Cerebrovascular Disease and Stroke)
Show Figures

Figure 1

28 pages, 3469 KiB  
Review
Prostate Cancer Treatments and Their Effects on Male Fertility: Mechanisms and Mitigation Strategies
by Aris Kaltsas, Nikolaos Razos, Zisis Kratiras, Dimitrios Deligiannis, Marios Stavropoulos, Konstantinos Adamos, Athanasios Zachariou, Fotios Dimitriadis, Nikolaos Sofikitis and Michael Chrisofos
J. Pers. Med. 2025, 15(8), 360; https://doi.org/10.3390/jpm15080360 - 7 Aug 2025
Abstract
Prostate cancer (PCa) is the second most frequently diagnosed malignancy in men worldwide. Although traditionally considered a disease of older men, the incidence of early-onset PCa (diagnosis < 55 years) is steadily rising. Advances in screening and therapy have significantly improved survival, creating [...] Read more.
Prostate cancer (PCa) is the second most frequently diagnosed malignancy in men worldwide. Although traditionally considered a disease of older men, the incidence of early-onset PCa (diagnosis < 55 years) is steadily rising. Advances in screening and therapy have significantly improved survival, creating a growing cohort of younger survivors for whom post-treatment quality of life—notably reproductive function—is paramount. Curative treatments such as radical prostatectomy, pelvic radiotherapy, androgen-deprivation therapy (ADT), and chemotherapy often cause irreversible infertility via multiple mechanisms, including surgical disruption of the ejaculatory tract, endocrine suppression of spermatogenesis, direct gonadotoxic injury to the testes, and oxidative sperm DNA damage. Despite these risks, fertility preservation is frequently overlooked in pre-treatment counseling, leaving many patients unaware of their options. This narrative review synthesizes current evidence on how PCa therapies impact male fertility, elucidates the molecular and physiological mechanisms of iatrogenic infertility, and evaluates both established and emerging strategies for fertility preservation and restoration. Key interventions covered include sperm cryopreservation, microsurgical testicular sperm extraction (TESE), and assisted reproductive technologies (ART). Psychosocial factors influencing decision-making, novel biomarkers predictive of post-treatment spermatogenic recovery, and long-term offspring outcomes are also examined. The review underscores the urgent need for timely, multidisciplinary fertility consultation as a routine component of PCa care. As PCa increasingly affects men in their reproductive years, proactively integrating preservation into standard oncologic practice should become a standard survivorship priority. Full article
(This article belongs to the Special Issue Clinical Advances in Male Genitourinary and Sexual Health)
Show Figures

Figure 1

22 pages, 9552 KiB  
Article
Benefits of Maternal Choline Supplementation on Aged Basal Forebrain Cholinergic Neurons (BFCNs) in a Mouse Model of Down Syndrome and Alzheimer’s Disease
by Melissa J. Alldred, Harshitha Pidikiti, Kyrillos W. Ibrahim, Sang Han Lee, Adriana Heguy, Gabriela Chiosis, Elliott J. Mufson, Grace E. Stutzmann and Stephen D. Ginsberg
Biomolecules 2025, 15(8), 1131; https://doi.org/10.3390/biom15081131 - 5 Aug 2025
Abstract
Down syndrome (DS), stemming from the triplication of human chromosome 21, results in intellectual disability, with early mid-life onset of Alzheimer’s disease (AD) pathology. Early interventions to reduce cognitive impairments and neuropathology are lacking. One modality, maternal choline supplementation (MCS), has shown beneficial [...] Read more.
Down syndrome (DS), stemming from the triplication of human chromosome 21, results in intellectual disability, with early mid-life onset of Alzheimer’s disease (AD) pathology. Early interventions to reduce cognitive impairments and neuropathology are lacking. One modality, maternal choline supplementation (MCS), has shown beneficial effects on behavior and gene expression in neurodevelopmental and neurodegenerative disorders, including trisomic mice. Loss of basal forebrain cholinergic neurons (BFCNs) and other DS/AD relevant hallmarks were observed in a well-established trisomic model (Ts65Dn, Ts). MCS attenuates these endophenotypes with beneficial behavioral effects in trisomic offspring. We postulate MCS ameliorates dysregulated cellular mechanisms within vulnerable BFCNs, with attenuation driven by novel gene expression. Here, choline acetyltransferase immunohistochemical labeling identified BFCNs in the medial septal/ventral diagonal band nuclei of the basal forebrain in Ts and normal disomic (2N) offspring at ~11 months of age from dams exposed to MCS or normal choline during the perinatal period. BFCNs (~500 per mouse) were microisolated and processed for RNA-sequencing. Bioinformatic assessment elucidated differentially expressed genes (DEGs) and pathway alterations in the context of genotype (Ts, 2N) and maternal diet (MCS, normal choline). MCS attenuated select dysregulated DEGs and relevant pathways in aged BFCNs. Trisomic MCS-responsive improvements included pathways such as cognitive impairment and nicotinamide adenine dinucleotide signaling, among others, indicative of increased behavioral and bioenergetic fitness. Although MCS does not eliminate the DS/AD phenotype, early choline delivery provides long-lasting benefits to aged trisomic BFCNs, indicating that MCS prolongs neuronal health in the context of DS/AD. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

18 pages, 5815 KiB  
Article
Novel Lipid Biomarkers of Chronic Kidney Disease of Unknown Etiology Based on Urinary Small Extracellular Vesicles: A Pilot Study of Sugar Cane Workers
by Jie Zhou, Kevin J. Kroll, Jaime Butler-Dawson, Lyndsay Krisher, Abdel A. Alli, Chris Vulpe and Nancy D. Denslow
Metabolites 2025, 15(8), 523; https://doi.org/10.3390/metabo15080523 - 2 Aug 2025
Viewed by 234
Abstract
Background/Objectives: Chronic kidney disease of unknown etiology (CKDu) disproportionately affects young male agricultural workers who are otherwise healthy. There is a scarcity of biomarkers for early detection of this type of kidney disease. We hypothesized that small extracellular vesicles (sEVs) released into urine [...] Read more.
Background/Objectives: Chronic kidney disease of unknown etiology (CKDu) disproportionately affects young male agricultural workers who are otherwise healthy. There is a scarcity of biomarkers for early detection of this type of kidney disease. We hypothesized that small extracellular vesicles (sEVs) released into urine may provide novel biomarkers. Methods: We obtained two urine samples at the start and the end of a workday in the fields from a limited set of workers with and without kidney impairment. Isolated sEVs were characterized for size, surface marker expression, and purity and, subsequently, their lipid composition was determined by mass spectrometry. Results: The number of particles per ml of urine normalized to osmolality and the size variance were larger in workers with possible CKDu than in control workers. Surface markers CD9, CD63, and CD81 are characteristic of sEVs and a second set of surface markers suggested the kidney as the origin. Differential expression of CD25 and CD45 suggested early inflammation in CKDu workers. Of the twenty-one lipids differentially expressed, several were bioactive, suggesting that they may have essential functions. Remarkably, fourteen of the lipids showed intermediate expression values in sEVs from healthy individuals with acute creatinine increases after a day of work. Conclusions: We identified twenty-one possible lipid biomarkers in sEVs isolated from urine that may be able to distinguish agricultural workers with early onset of CKDu. Differentially expressed surface proteins in these sEVs suggested early-stage inflammation. This pilot study was limited in the number of workers evaluated, but the approach should be further evaluated in a larger population. Full article
Show Figures

Graphical abstract

19 pages, 427 KiB  
Review
The Role of Viral Infections in the Immunopathogenesis of Type 1 Diabetes Mellitus: A Narrative Review
by Ioanna Kotsiri, Maria Xanthi, Charalampia-Melangeli Domazinaki and Emmanouil Magiorkinis
Biology 2025, 14(8), 981; https://doi.org/10.3390/biology14080981 - 2 Aug 2025
Viewed by 322
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disorder characterized by the destruction of insulin-producing pancreatic beta cells, resulting in lifelong insulin dependence. While genetic susceptibility—particularly human leukocyte antigen (HLA) class II alleles—is a major risk factor, accumulating evidence implicates viral infections [...] Read more.
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disorder characterized by the destruction of insulin-producing pancreatic beta cells, resulting in lifelong insulin dependence. While genetic susceptibility—particularly human leukocyte antigen (HLA) class II alleles—is a major risk factor, accumulating evidence implicates viral infections as potential environmental triggers in disease onset and progression. This narrative review synthesizes current findings on the role of viral pathogens in T1DM pathogenesis. Enteroviruses, especially Coxsackie B strains, are the most extensively studied and show strong epidemiological and mechanistic associations with beta-cell autoimmunity. Large prospective studies—including Diabetes Virus Detection (DiViD), The environmental determinans of diabetes in the young (TEDDY), Miljøfaktorer i utvikling av type 1 diabetes (MIDIA), and Diabetes Autoimmunity Study in the Young (DAISY)—consistently demonstrate correlations between enteroviral presence and the initiation or acceleration of islet autoimmunity. Other viruses—such as mumps, rubella, rotavirus, influenza A (H1N1), and SARS-CoV-2—have been investigated for their potential involvement through direct cytotoxic effects, immune activation, or molecular mimicry. Interestingly, certain viruses like varicella-zoster virus (VZV) and cytomegalovirus (CMV) may exert modulatory or even protective influences on disease progression. Proposed mechanisms include direct beta-cell infection, molecular mimicry, bystander immune activation, and dysregulation of innate and adaptive immunity. Although definitive causality remains unconfirmed, the complex interplay between genetic predisposition, immune responses, and viral exposure underscores the need for further mechanistic research. Elucidating these pathways may inform future strategies for targeted prevention, early detection, and vaccine or antiviral development in at-risk populations. Full article
Show Figures

Figure 1

11 pages, 487 KiB  
Perspective
Constipation in Ulcerative Colitis: An Underestimated Problem
by Gabrio Bassotti, Sara Bologna and Elisabetta Antonelli
J. Clin. Med. 2025, 14(15), 5428; https://doi.org/10.3390/jcm14155428 - 1 Aug 2025
Viewed by 157
Abstract
Ulcerative colitis is a chronic intestinal disorder that belongs to the category of inflammatory bowel diseases, and is usually characterized by the presence of bloody diarrhea and abdominal pain, due to an accelerated transit and intestinal sensibilization following inflammation of the colonic mucosa. [...] Read more.
Ulcerative colitis is a chronic intestinal disorder that belongs to the category of inflammatory bowel diseases, and is usually characterized by the presence of bloody diarrhea and abdominal pain, due to an accelerated transit and intestinal sensibilization following inflammation of the colonic mucosa. However, the literature reports that ulcerative colitis may sometimes feature fecal stasis with constipation. This apparent paradox may be partially explained by the motor abnormalities of the large bowel following inflammation, damage to the enteric innervation, and the onset of parietal fibrosis over time. Moreover, some anorectal abnormalities such pelvic floor dyssynergia may explain the symptoms of constipation reported in subsets of patients. Since these abnormalities may be responsible for diagnostic delays and non- or partial responses to therapy, it is important to recognize them as early as possible to avoid incorrect clinical and therapeutic approaches to these patients. Full article
(This article belongs to the Section Gastroenterology & Hepatopancreatobiliary Medicine)
Show Figures

Figure 1

13 pages, 1698 KiB  
Review
Systematic Review of Parkinsonism in Cerebrotendinous Xanthomatosis
by Jennifer Hanson and Penelope E. Bonnen
Neurol. Int. 2025, 17(8), 117; https://doi.org/10.3390/neurolint17080117 - 30 Jul 2025
Viewed by 227
Abstract
Background: Cerebrotendinous Xanthomatosis (CTX) is a rare, inherited metabolic disease caused by pathogenic variants in CYP27A1. The clinical presentation of this progressive disease includes cognitive deficits, ataxia, peripheral neuropathy, and pyramidal signs, as well as bilateral cataracts and tendon xanthomas. In some [...] Read more.
Background: Cerebrotendinous Xanthomatosis (CTX) is a rare, inherited metabolic disease caused by pathogenic variants in CYP27A1. The clinical presentation of this progressive disease includes cognitive deficits, ataxia, peripheral neuropathy, and pyramidal signs, as well as bilateral cataracts and tendon xanthomas. In some cases, CTX also includes parkinsonism. The goals of this study are to develop a data source that provides improved characterization and awareness of parkinsonism in CTX. Methods: We conducted a systematic review of the literature according to PRISMA guidelines to identify all published individuals diagnosed with CTX and parkinsonism. Clinical signs, imaging findings and treatment response to both chenodeoxycholic acid and dopaminergic medications were examined for 72 subjects. Results: The average age of onset of parkinsonism in these CTX patients was 42 years, illustrating the early onset nature of parkinsonism in CTX. Functional dopaminergic imaging revealed the loss of presynaptic dopaminergic neurons in the substantia nigra which points to neurodegeneration of the dopaminergic system as the underlying pathophysiology for parkinsonism in CTX. Brain MRI showed abnormalities in the basal ganglia in 38% of subjects. MRI also showed abnormalities in the cerebellum in 88% of subjects which is typical for CTX and can be utilized to distinguish subjects with CTX and parkinsonism from individuals with other forms of atypical parkinsonism. Dopaminergic medication mitigated parkinsonism signs in most individuals with CTX. Conclusion: CTX is a neurometabolic disease that can result in levodopa-responsive parkinsonism that should be included in the differential for atypical parkinsonism. Full article
(This article belongs to the Section Movement Disorders and Neurodegenerative Diseases)
Show Figures

Figure 1

17 pages, 1580 KiB  
Article
Metformin Reduces Oxidative Damage in RNASEH2-Mutant Aicardi-Goutières Cells
by Francesca Dragoni, Jessica Garau, Bartolo Rizzo, Simona Orcesi, Costanza Varesio, Rosalinda Di Gerlando, Matteo Bordoni, Eveljn Scarian, Cristina Cereda, Orietta Pansarasa and Stella Gagliardi
Genes 2025, 16(8), 922; https://doi.org/10.3390/genes16080922 - 30 Jul 2025
Viewed by 235
Abstract
Background: Aicardi-Goutières Syndrome (AGS) is a rare neuroinflammatory condition characterized by early-onset symptoms that extend outside the nervous system. Due to the rarity of the disease, the pathogenesis is not well understood, and its diagnosis and treatment remain elusive. We recently demonstrated mitochondrial [...] Read more.
Background: Aicardi-Goutières Syndrome (AGS) is a rare neuroinflammatory condition characterized by early-onset symptoms that extend outside the nervous system. Due to the rarity of the disease, the pathogenesis is not well understood, and its diagnosis and treatment remain elusive. We recently demonstrated mitochondrial abnormalities and increased reactive oxygen species (ROS) levels in lymphoblastoid cell lines (LCLs) derived from RNASEH2B- and RNASEH2A-mutated AGS patients. On this background, we turned our attention to metformin, the first-choice drug for type 2 diabetes, as a possible treatment acting on oxidative stress in RNASEH2-mutant AGS cells. Methods and Results: By means of flow cytometry, we found that metformin treatment significantly decreases ROS production in RNASEH2B- and RNASEH2A-mutated AGS LCLs. Of note, metformin treatment reduces the green JC-1 monomeric signal and, concurrently, increases the red JC-1 signal in both mutated LCLs, accounting for restoration of the mitochondrial membrane potential. Immunofluorescence staining shows a decrease in 8-oxoG levels only in RNASEH2B- mutated AGS LCLs. Finally, the significant upregulation of Forkhead Box O3 (FOXO3), cytochrome C somatic (CYCS), and superoxide dismutase 2 (SOD2) mRNA levels in RNASEH2B-mutated AGS LCLs after metformin treatment points to FOXO3 signaling as a possible mechanism to reduce oxidative stress. Conclusions: In conclusion, even if these pilot results need to be confirmed on a larger cohort, we shed light on metformin treatment as a valid approach to ameliorate oxidative stress-related inflammation in AGS patients. Full article
(This article belongs to the Section Cytogenomics)
Show Figures

Graphical abstract

28 pages, 3082 KiB  
Article
Genetic Insights and Diagnostic Challenges in Highly Attenuated Lysosomal Storage Disorders
by Elena Urizar, Eamon P. McCarron, Chaitanya Gadepalli, Andrew Bentley, Peter Woolfson, Siying Lin, Christos Iosifidis, Andrew C. Browning, John Bassett, Udara D. Senarathne, Neluwa-Liyanage R. Indika, Heather J. Church, James A. Cooper, Jorge Menendez Lorenzo, Maria Elena Farrugia, Simon A. Jones, Graeme C. Black and Karolina M. Stepien
Genes 2025, 16(8), 915; https://doi.org/10.3390/genes16080915 - 30 Jul 2025
Viewed by 730
Abstract
Background: Lysosomal storage diseases (LSDs) are a genetically and clinically heterogeneous group of inborn errors of metabolism caused by variants in genes encoding lysosomal hydrolases, membrane proteins, activator proteins, or transporters. These disease-causing variants lead to enzymatic deficiencies and the progressive accumulation of [...] Read more.
Background: Lysosomal storage diseases (LSDs) are a genetically and clinically heterogeneous group of inborn errors of metabolism caused by variants in genes encoding lysosomal hydrolases, membrane proteins, activator proteins, or transporters. These disease-causing variants lead to enzymatic deficiencies and the progressive accumulation of undegraded substrates within lysosomes, disrupting cellular function across multiple organ systems. While classical phenotypes typically manifest in infancy or early childhood with severe multisystem involvement, a combination of advances in molecular diagnostics [particularly next-generation sequencing (NGS)] and improved understanding of disease heterogeneity have enabled the identification of attenuated forms characterised by residual enzyme activity and later-onset presentations. These milder phenotypes often evade early recognition due to nonspecific or isolated symptoms, resulting in significant diagnostic delays and missed therapeutic opportunities. Objectives/Methods: This study characterises the clinical, biochemical, and molecular profiles of 10 adult patients diagnosed with LSDs, all representing attenuated forms, and discusses them alongside a narrative review. Results: Enzyme activity, molecular data, and phenotypic assessments are described to explore genotype–phenotype correlations and identify diagnostic challenges. Conclusions: These findings highlight the variable expressivity and organ involvement of attenuated LSDs and reinforce the importance of maintaining clinical suspicion in adults presenting with unexplained cardiovascular, neurological, ophthalmological, or musculoskeletal findings. Enhanced recognition of atypical presentations is critical to facilitate earlier diagnosis, guide management, and enable cascade testing for at-risk family members. Full article
(This article belongs to the Special Issue Molecular Basis and Genetics of Intellectual Disability)
Show Figures

Figure 1

24 pages, 587 KiB  
Review
Uric Acid and Preeclampsia: Pathophysiological Interactions and the Emerging Role of Inflammasome Activation
by Celia Arias-Sánchez, Antonio Pérez-Olmos, Virginia Reverte, Isabel Hernández, Santiago Cuevas and María Teresa Llinás
Antioxidants 2025, 14(8), 928; https://doi.org/10.3390/antiox14080928 - 29 Jul 2025
Viewed by 477
Abstract
Preeclampsia (PE) is a multifactorial hypertensive disorder unique to pregnancy and a leading cause of maternal and fetal morbidity and mortality worldwide. Its pathogenesis involves placental dysfunction and an exaggerated maternal inflammatory response. Uric acid (UA), traditionally regarded as a marker of renal [...] Read more.
Preeclampsia (PE) is a multifactorial hypertensive disorder unique to pregnancy and a leading cause of maternal and fetal morbidity and mortality worldwide. Its pathogenesis involves placental dysfunction and an exaggerated maternal inflammatory response. Uric acid (UA), traditionally regarded as a marker of renal impairment, is increasingly recognized as an active contributor to the development of PE. Elevated UA levels are associated with oxidative stress, endothelial dysfunction, immune activation, and reduced renal clearance. Clinically, UA is measured in the second and third trimesters to assess disease severity and guide obstetric management, with higher levels correlating with early-onset PE and adverse perinatal outcomes. Its predictive accuracy improves when combined with other clinical and biochemical markers, particularly in low-resource settings. Mechanistically, UA and its monosodium urate crystals can activate the NLRP3 inflammasome, a cytosolic multiprotein complex of the innate immune system. This activation promotes the release of IL-1β and IL-18, exacerbating placental, vascular, and renal inflammation. NLRP3 inflammasome activation has been documented in placental tissues, immune cells, and kidneys of women with PE and is associated with hypertension, proteinuria, and endothelial injury. Experimental studies indicate that targeting UA metabolism or inhibiting NLRP3 activation, using agents such as allopurinol, metformin, or MCC950, can mitigate the clinical and histopathological features of PE. These findings support the dual role of UA as both a biomarker and a potential therapeutic target in the management of the disease. Full article
Show Figures

Graphical abstract

14 pages, 1385 KiB  
Article
Is TGF-β Associated with Cytokines and Other Biochemical or Clinical Risk Parameters in Early-Onset CAD Patients?
by Bartosz Rakoczy, Violetta Dziedziejko, Krzysztof Safranow and Monika Rac
Biomedicines 2025, 13(8), 1840; https://doi.org/10.3390/biomedicines13081840 - 29 Jul 2025
Viewed by 332
Abstract
Background: TGF-β is an immunosuppressive cytokine. Its signaling pathway plays a role in anti-inflammatory responses. Coronary artery disease (CAD) is a clinical consequence of atherosclerosis, which manifests as chronic inflammation and involves platelet mediators, including TGF-β. The aim of this study is to [...] Read more.
Background: TGF-β is an immunosuppressive cytokine. Its signaling pathway plays a role in anti-inflammatory responses. Coronary artery disease (CAD) is a clinical consequence of atherosclerosis, which manifests as chronic inflammation and involves platelet mediators, including TGF-β. The aim of this study is to validate the diagnostic utility of TGF-β levels in relation to classical and molecular risk factors for CAD. Methods: The study group included 25 women and 75 men, all aged up to 55 and 50 years, respectively, who had been diagnosed with early-onset CAD. Fasting blood samples were taken to measure plasma levels of TGF-β, sCD36, PCSK9, TNF, VEGF, IL-6, and E-selectin using the ELISA method. Furthermore, a full lipid profile, apolipoproteins (Lp(a), ApoA1, and ApoB), C-reactive protein (hsCRP), and blood morphology were analyzed at the Central Hospital Laboratory. A physical examination was also performed. Results: Positive associations were observed between TGF-β concentration and TNF, platelet count, PTC, and triglyceride levels. TNF and platelet concentration were significant independent predictors of increased plasma TGF-β levels. None of the clinical parameters showed statistically significant associations with plasma TGF-β concentration. Conclusions: Our research has demonstrated that TGF-β levels, including circulating TNF, triglycerides, and platelets, are linked to specific biochemical risk factors in early-onset CAD cases. Full article
Show Figures

Figure 1

11 pages, 1809 KiB  
Brief Report
Fatty Acid Profile in the Liver of Mice with Early- and Late-Onset Forms of Huntington’s Disease
by Magdalena Gregorczyk, Adriana Mika, Tomasz Śledziński, Marta Tomczyk and Iwona Rybakowska
Int. J. Mol. Sci. 2025, 26(15), 7304; https://doi.org/10.3390/ijms26157304 - 28 Jul 2025
Viewed by 231
Abstract
Huntington’s disease (HD) is characterized by progressive neurodegeneration, but increasing evidence points to multisystemic involvement, including early hepatic steatosis in pediatric HD. Therefore, it is important to consider systemic alterations, particularly in liver lipid metabolism. In this study, we analyzed fatty acid (FA) [...] Read more.
Huntington’s disease (HD) is characterized by progressive neurodegeneration, but increasing evidence points to multisystemic involvement, including early hepatic steatosis in pediatric HD. Therefore, it is important to consider systemic alterations, particularly in liver lipid metabolism. In this study, we analyzed fatty acid (FA) profiles in two symptomatic HD mouse models: 2-month-old R6/2 mice representing early-onset HD and 22-month-old HdhQ150/Q150 (Hdh) mice representing late-onset HD, along with age-matched wild-type (WT) controls. FA composition in liver tissue was assessed by gas chromatography–mass spectrometry (GC–MS). In R6/2 mice, we observed increased levels of total iso-branched chain, monounsaturated, and n-6 polyunsaturated FAs compared to WT. In contrast, only a few FA species showed reduced concentrations in Hdh mice. Overall, our results indicate that R6/2 mice exhibit more pronounced alterations in hepatic FA profiles than Hdh mice, suggesting that early-onset HD may be associated with more severe peripheral metabolic dysregulation. Full article
(This article belongs to the Special Issue Lipid Metabolism and Biomarkers in Neural and Cardiometabolic Health)
Show Figures

Figure 1

23 pages, 2002 KiB  
Article
Precision Oncology Through Dialogue: AI-HOPE-RTK-RAS Integrates Clinical and Genomic Insights into RTK-RAS Alterations in Colorectal Cancer
by Ei-Wen Yang, Brigette Waldrup and Enrique Velazquez-Villarreal
Biomedicines 2025, 13(8), 1835; https://doi.org/10.3390/biomedicines13081835 - 28 Jul 2025
Viewed by 471
Abstract
Background/Objectives: The RTK-RAS signaling cascade is a central axis in colorectal cancer (CRC) pathogenesis, governing cellular proliferation, survival, and therapeutic resistance. Somatic alterations in key pathway genes—including KRAS, NRAS, BRAF, and EGFR—are pivotal to clinical decision-making in precision oncology. However, the integration of [...] Read more.
Background/Objectives: The RTK-RAS signaling cascade is a central axis in colorectal cancer (CRC) pathogenesis, governing cellular proliferation, survival, and therapeutic resistance. Somatic alterations in key pathway genes—including KRAS, NRAS, BRAF, and EGFR—are pivotal to clinical decision-making in precision oncology. However, the integration of these genomic events with clinical and demographic data remains hindered by fragmented resources and a lack of accessible analytical frameworks. To address this challenge, we developed AI-HOPE-RTK-RAS, a domain-specialized conversational artificial intelligence (AI) system designed to enable natural language-based, integrative analysis of RTK-RAS pathway alterations in CRC. Methods: AI-HOPE-RTK-RAS employs a modular architecture combining large language models (LLMs), a natural language-to-code translation engine, and a backend analytics pipeline operating on harmonized multi-dimensional datasets from cBioPortal. Unlike general-purpose AI platforms, this system is purpose-built for real-time exploration of RTK-RAS biology within CRC cohorts. The platform supports mutation frequency profiling, odds ratio testing, survival modeling, and stratified analyses across clinical, genomic, and demographic parameters. Validation included reproduction of known mutation trends and exploratory evaluation of co-alterations, therapy response, and ancestry-specific mutation patterns. Results: AI-HOPE-RTK-RAS enabled rapid, dialogue-driven interrogation of CRC datasets, confirming established patterns and revealing novel associations with translational relevance. Among early-onset CRC (EOCRC) patients, the prevalence of RTK-RAS alterations was significantly lower compared to late-onset disease (67.97% vs. 79.9%; OR = 0.534, p = 0.014), suggesting the involvement of alternative oncogenic drivers. In KRAS-mutant patients receiving Bevacizumab, early-stage disease (Stages I–III) was associated with superior overall survival relative to Stage IV (p = 0.0004). In contrast, BRAF-mutant tumors with microsatellite-stable (MSS) status displayed poorer prognosis despite higher chemotherapy exposure (OR = 7.226, p < 0.001; p = 0.0000). Among EOCRC patients treated with FOLFOX, RTK-RAS alterations were linked to worse outcomes (p = 0.0262). The system also identified ancestry-enriched noncanonical mutations—including CBL, MAPK3, and NF1—with NF1 mutations significantly associated with improved prognosis (p = 1 × 10−5). Conclusions: AI-HOPE-RTK-RAS exemplifies a new class of conversational AI platforms tailored to precision oncology, enabling integrative, real-time analysis of clinically and biologically complex questions. Its ability to uncover both canonical and ancestry-specific patterns in RTK-RAS dysregulation—especially in EOCRC and populations with disproportionate health burdens—underscores its utility in advancing equitable, personalized cancer care. This work demonstrates the translational potential of domain-optimized AI tools to accelerate biomarker discovery, support therapeutic stratification, and democratize access to multi-omic analysis. Full article
Show Figures

Figure 1

15 pages, 1406 KiB  
Article
Arterial Stiffness and Early Cardiac Dysfunction in Type 2 Diabetes Mellitus: A Potential Role for 25 OH Vitamin D3 Deficiency
by Laura Maria Craciun, Florina Buleu, Stela Iurciuc, Daian Ionel Popa, Gheorghe Nicusor Pop, Flavia Goanta, Greta-Ionela Goje, Ana Maria Pah, Marius Badalica-Petrescu, Olivia Bodea, Ioana Cotet, Claudiu Avram, Diana-Maria Mateescu and Adina Avram
Medicina 2025, 61(8), 1349; https://doi.org/10.3390/medicina61081349 - 25 Jul 2025
Viewed by 164
Abstract
Background and Objectives: Type 2 diabetes mellitus (T2DM) is associated with subclinical cardiovascular changes, such as increased arterial stiffness and myocardial dysfunction. Vitamin D deficiency has been recognized as a potential contributing factor to vascular disease; however, its impact on early cardiac [...] Read more.
Background and Objectives: Type 2 diabetes mellitus (T2DM) is associated with subclinical cardiovascular changes, such as increased arterial stiffness and myocardial dysfunction. Vitamin D deficiency has been recognized as a potential contributing factor to vascular disease; however, its impact on early cardiac changes associated with T2DM remains poorly understood. Our aim was to evaluate the association between serum levels of 25-hydroxyvitamin D3 [25(OH)D3], arterial stiffness, and left ventricular global longitudinal strain (LV GLS) in patients with T2DM who do not have a clinically evident cardiovascular disease. Material and methods: This cross-sectional study evaluated the carotid intima–media thickness (IMT), aortic pulse wave velocity (PWVao), LV GLS, and serum 25(OH)D3 levels in patients diagnosed with T2DM (n = 65) compared to healthy control subjects (n = 55). Independent predictors of arterial stiffness were identified by a multivariate logistic regression analysis. Results: Patients with T2DM showed a significant increase in IMT and PWVao, a reduction in LV GLS, and low levels of 25(OH)D3 compared to subjects in the control group (all p < 0.05). Both vitamin D deficiency and T2DM were found to be independently associated with an increased arterial stiffness, with odds ratios of 2.4 and 4.8, respectively. A significant inverse relationship was identified between 25(OH)D3 levels and markers of arterial stiffness, as well as LV GLS, suggesting a possible association between the vitamin D status and the early onset of cardiovascular dysfunction. Conclusions: Patients with T2DM show early signs of heart and blood vessel problems, even with an ejection fraction that remains within normal limits. There is a significant correlation between vitamin D deficiency and increased arterial stiffness, along with impaired LV GLS, indicating its possible involvement in cardiovascular complications associated with diabetes. These findings support the utility of integrating vascular, myocardial, and vitamin D assessments in early cardiovascular risk stratification for T2DM patients. Full article
(This article belongs to the Special Issue Cardiovascular Diseases and Type 2 Diabetes: 2nd Edition)
Show Figures

Figure 1

15 pages, 798 KiB  
Article
Associations Between Serum Gut-Derived Tryptophan Metabolites and Cardiovascular Health Markers in Adolescents with Obesity
by Jeny E. Rivera, Renny Lan, Mario G. Ferruzzi, Elisabet Børsheim, Emir Tas and Eva C. Diaz
Nutrients 2025, 17(15), 2430; https://doi.org/10.3390/nu17152430 - 25 Jul 2025
Viewed by 304
Abstract
Background/Objectives: Gut-derived tryptophan (Trp) metabolites play important roles in metabolic and cardiovascular regulation. Although animal studies suggest their protective effects against metabolic dysfunction, data in adolescents, particularly those with obesity, remain limited. The objective of this study was to evaluate associations between circulating [...] Read more.
Background/Objectives: Gut-derived tryptophan (Trp) metabolites play important roles in metabolic and cardiovascular regulation. Although animal studies suggest their protective effects against metabolic dysfunction, data in adolescents, particularly those with obesity, remain limited. The objective of this study was to evaluate associations between circulating gut-derived Trp metabolites and markers of cardiometabolic, vascular, and platelet health in adolescents with obesity. Methods: Data were analyzed from 28 adolescents (ages 13–18; mean BMI = 36 ± 6.4 kg/m2). Fasting blood was collected to assess lipid profiles using a clinical analyzer and insulin resistance using the homeostatic model assessment for insulin resistance (HOMA-IR). Gut-derived Trp metabolites were measured by UPLC–mass spectrometry, peak oxygen uptake (VO2 peak) by gas exchange during an incremental cycle ergometer test, and body composition by dual-energy X-ray absorptiometry. Platelet spare respiratory capacity (SRC), endothelial function, and liver fat were measured using high-resolution respirometry, flow-mediated dilation (FMD) of the brachial artery, and magnetic resonance imaging respectively. Results: Indole-3-propionic acid was inversely associated with diastolic blood pressure (rho = −0.39, p = 0.047), total cholesterol (rho = −0.55, p = 0.002), and LDL-C (rho = −0.57, p = 0.0014), independent of sex and obesity severity. Indoxyl sulfate was positively correlated with fasting glucose (rho = 0.47, p = 0.012), and adolescents with impaired fasting glucose had 1.6-fold higher IS levels. Indole-3-acetaldehyde declined with age (rho = −0.50, p = 0.007), and Indole-3-acetic acid and indole were higher in Hispanics vs. non-Hispanics. No significant associations were observed between Trp metabolites and FMD, VO2 peak, or SRC. Conclusions: Gut-derived Trp metabolites, particularly indole-3-propionic and indoxyl sulfate, are associated with markers of cardiometabolic risk in adolescents with obesity. These findings support their potential relevance in early-onset cardiovascular disease risk. Full article
Show Figures

Figure 1

Back to TopTop