Prostate Cancer Treatments and Their Effects on Male Fertility: Mechanisms and Mitigation Strategies
Abstract
1. Introduction
2. Prostate Function and Male Reproductive Health
3. Prostate Cancer Treatments and Their Impact on Fertility
3.1. Radical Prostatectomy
3.2. Radiotherapy (External Beam and Brachytherapy)
3.3. Androgen Deprivation Therapy (ADT)
3.4. Chemotherapy
3.5. Next-Generation Androgen Receptor Pathway Inhibitors
3.6. Minimally Invasive Local Therapies (Focal Therapy, HIFU, Cryotherapy)
3.7. Emerging Systemic Therapies and Their Potential Effects on Male Fertility
3.7.1. Radium-223 Dichloride (Xofigo)
3.7.2. Sipuleucel-T (Provenge)
3.7.3. PARP Inhibitors (Olaparib, Rucaparib)
3.7.4. Lutetium-177–PSMA-617 (Pluvicto)
4. Mechanisms of Fertility Impairment in Prostate Cancer Treatments
4.1. Testicular Damage and Hypogonadism
4.2. Ejaculatory Dysfunction
4.3. Oxidative Stress and DNA Damage
4.4. Psychosexual Sequelae Affecting Reproduction
5. Fertility Preservation Strategies and Clinical Counseling
5.1. Sperm Cryopreservation Before Treatment
5.2. Testicular Sperm Extraction (TESE) and MicroTESE
5.3. Use of Assisted Reproductive Technologies (ART)
5.4. Counseling and Ethical Considerations
6. Emerging Research Needs and Gaps
6.1. Absence of Standardized Fertility Preservation Protocols in Prostate Cancer
6.2. Limited Long-Term Data on Offspring Health
6.3. Lack of Predictive Biomarkers for Post-Treatment Fertility
6.4. Precision Medicine and Artificial Intelligence in Fertility Risk Stratification
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Culp, M.B.; Soerjomataram, I.; Efstathiou, J.A.; Bray, F.; Jemal, A. Recent Global Patterns in Prostate Cancer Incidence and Mortality Rates. Eur. Urol. 2020, 77, 38–52. [Google Scholar] [CrossRef]
- Brandao, A.; Paulo, P.; Maia, S.; Pinheiro, M.; Peixoto, A.; Cardoso, M.; Silva, M.P.; Santos, C.; Eeles, R.A.; Kote-Jarai, Z.; et al. The CHEK2 Variant C.349A>G Is Associated with Prostate Cancer Risk and Carriers Share a Common Ancestor. Cancers 2020, 12, 3254. [Google Scholar] [CrossRef]
- Mahal, B.A.; Butler, S.; Franco, I.; Spratt, D.E.; Rebbeck, T.R.; D’Amico, A.V.; Nguyen, P.L. Use of Active Surveillance or Watchful Waiting for Low-Risk Prostate Cancer and Management Trends Across Risk Groups in the United States, 2010–2015. JAMA 2019, 321, 704–706. [Google Scholar] [CrossRef]
- Dyba, T.; Randi, G.; Bray, F.; Martos, C.; Giusti, F.; Nicholson, N.; Gavin, A.; Flego, M.; Neamtiu, L.; Dimitrova, N.; et al. The European cancer burden in 2020: Incidence and mortality estimates for 40 countries and 25 major cancers. Eur. J. Cancer 2021, 157, 308–347. [Google Scholar] [CrossRef]
- Vezyraki, P.; Vlachaki, A.; Baltogiannis, D.; Batistatou, A.; Tsampalas, S.; Y, V.S.; Kaltsas, A.; Pappas, P.; Dounousi, E.; Ragos, V.; et al. Impact of total PSA and percent free PSA in the differentiation of prostate disease: A retrospective comparative study implicating neoplastic and non-neoplastic entities. J. BUON 2019, 24, 2107–2113. [Google Scholar]
- Giannakodimos, I.; Kaltsas, A.; Moulavasilis, N.; Kratiras, Z.; Mitropoulos, D.; Chrisofos, M.; Stravodimos, K.; Fragkiadis, E. Fusion MRI/Ultrasound-Guided Transperineal Biopsy: A Game Changer in Prostate Cancer Diagnosis. J. Clin. Med. 2025, 14, 453. [Google Scholar] [CrossRef] [PubMed]
- Kaltsas, A.; Koumenis, A.; Stavropoulos, M.; Kratiras, Z.; Deligiannis, D.; Adamos, K.; Chrisofos, M. Male Infertility and Reduced Life Expectancy: Epidemiology, Mechanisms, and Clinical Implications. J. Clin. Med. 2025, 14, 3930. [Google Scholar] [CrossRef]
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer. J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.D.; Nogueira, L.; Devasia, T.; Mariotto, A.B.; Yabroff, K.R.; Jemal, A.; Kramer, J.; Siegel, R.L. Cancer treatment and survivorship statistics, 2022. CA Cancer. J. Clin. 2022, 72, 409–436. [Google Scholar] [CrossRef]
- Tran, S.; Boissier, R.; Perrin, J.; Karsenty, G.; Lechevallier, E. Review of the Different Treatments and Management for Prostate Cancer and Fertility. Urology 2015, 86, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Albamonte, M.I.; Vitullo, A.D. Preservation of fertility in female and male prepubertal patients diagnosed with cancer. J. Assist. Reprod. Genet. 2023, 40, 2755–2767. [Google Scholar] [CrossRef]
- Hua, L.; Gao, X.; Zhan, J.; Wu, X.; Liu, H. Prostatitis and male infertility. Aging Male 2025, 28, 2494550. [Google Scholar] [CrossRef]
- Tamessar, C.T.; Trigg, N.A.; Nixon, B.; Skerrett-Byrne, D.A.; Sharkey, D.J.; Robertson, S.A.; Bromfield, E.G.; Schjenken, J.E. Roles of male reproductive tract extracellular vesicles in reproduction. Am. J. Reprod. Immunol. 2021, 85, e13338. [Google Scholar] [CrossRef]
- Verze, P.; Cai, T.; Lorenzetti, S. The role of the prostate in male fertility, health and disease. Nat. Rev. Urol. 2016, 13, 379–386. [Google Scholar] [CrossRef]
- Tomaiuolo, G.; Fellico, F.; Preziosi, V.; Cariati, F.; Strina, I.; Votino, C.; Zullo, F.; Longobardi, S.; Guido, S. Post-liquefaction normospermic human semen behaves as a weak-gel viscoelastic fluid. Soft Matter 2023, 19, 5039–5043. [Google Scholar] [CrossRef]
- Jonsson, M.; Linse, S.; Frohm, B.; Lundwall, A.; Malm, J. Semenogelins I and II bind zinc and regulate the activity of prostate-specific antigen. Biochem. J. 2005, 387, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Anamthathmakula, P.; Winuthayanon, W. Mechanism of semen liquefaction and its potential for a novel non-hormonal contraceptiondagger. Biol. Reprod. 2020, 103, 411–426. [Google Scholar] [CrossRef] [PubMed]
- Costello, L.C.; Franklin, R.B. A comprehensive review of the role of zinc in normal prostate function and metabolism; and its implications in prostate cancer. Arch. Biochem. Biophys. 2016, 611, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Edstrom, A.M.; Malm, J.; Frohm, B.; Martellini, J.A.; Giwercman, A.; Morgelin, M.; Cole, A.M.; Sorensen, O.E. The major bactericidal activity of human seminal plasma is zinc-dependent and derived from fragmentation of the semenogelins. J. Immunol. 2008, 181, 3413–3421. [Google Scholar] [CrossRef] [PubMed]
- Zigo, M.; Kerns, K.; Sen, S.; Essien, C.; Oko, R.; Xu, D.; Sutovsky, P. Zinc is a master-regulator of sperm function associated with binding, motility, and metabolic modulation during porcine sperm capacitation. Commun. Biol. 2022, 5, 538. [Google Scholar] [CrossRef]
- Acevedo, S.; Segovia, M.F.; de la Fuente-Ortega, E. Emerging Perspectives in Zinc Transporter Research in Prostate Cancer: An Updated Review. Nutrients 2024, 16, 2026. [Google Scholar] [CrossRef]
- Ibraheem, N.; Abdelglil, M.; Wanees, A.; Aosmali, A.M.; Shahid, M.H.; Mithany, R.H. Innovations and Emerging Trends in Prostate Cancer Management: A Literature Review. Cureus 2024, 16, e73128. [Google Scholar] [CrossRef]
- van Heijster, F.H.A.; Breukels, V.; Jansen, K.; Schalken, J.A.; Heerschap, A. Carbon sources and pathways for citrate secreted by human prostate cancer cells determined by NMR tracing and metabolic modeling. Proc. Natl. Acad. Sci. USA 2022, 119, e2024357119. [Google Scholar] [CrossRef]
- Toragall, M.M.; Satapathy, S.K.; Kadadevaru, G.G.; Hiremath, M.B. Evaluation of Seminal Fructose and Citric Acid Levels in Men with Fertility Problem. J. Hum. Reprod. Sci. 2019, 12, 199–203. [Google Scholar] [CrossRef]
- Lo, S.T.; Parrott, D.; Jordan, M.V.C.; Joseph, D.B.; Strand, D.; Lo, U.G.; Lin, H.; Darehshouri, A.; Sherry, A.D. The Roles of ZnT1 and ZnT4 in Glucose-Stimulated Zinc Secretion in Prostate Epithelial Cells. Mol. Imaging Biol. 2021, 23, 230–240. [Google Scholar] [CrossRef]
- Fallah, A.; Mohammad-Hasani, A.; Colagar, A.H. Zinc is an Essential Element for Male Fertility: A Review of Zn Roles in Men’s Health, Germination, Sperm Quality, and Fertilization. J. Reprod. Infertil. 2018, 19, 69–81. [Google Scholar]
- Aalberts, M.; Stout, T.A.; Stoorvogel, W. Prostasomes: Extracellular vesicles from the prostate. Reproduction 2014, 147, R1–R14. [Google Scholar] [CrossRef]
- Ronquist, G. Prostasomes: Their Characterisation: Implications for Human Reproduction: Prostasomes and Human Reproduction. Adv. Exp. Med. Biol. 2015, 868, 191–209. [Google Scholar] [CrossRef] [PubMed]
- Vickram, A.S.; Srikumar, P.S.; Srinivasan, S.; Jeyanthi, P.; Anbarasu, K.; Thanigaivel, S.; Nibedita, D.; Jenila Rani, D.; Rohini, K. Seminal exosomes—An important biological marker for various disorders and syndrome in human reproduction. Saudi. J. Biol. Sci. 2021, 28, 3607–3615. [Google Scholar] [CrossRef] [PubMed]
- Visnyaiova, K.; Varga, I.; Feitscherova, C.; Pavlikova, L.; Zahumensky, J.; Mikusova, R. Morphology of the immune cells in the wall of the human uterine tube and their possible impact on reproduction-uterine tube as a possible immune privileged organ. Front. Cell. Dev. Biol. 2024, 12, 1325565. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Martinez, H.; Martinez, E.A.; Calvete, J.J.; Pena Vega, F.J.; Roca, J. Seminal Plasma: Relevant for Fertility? Int. J. Mol. Sci. 2021, 22, 4368. [Google Scholar] [CrossRef]
- Panner Selvam, M.K.; Finelli, R.; Baskaran, S.; Agarwal, A. Dysregulation of Key Proteins Associated with Sperm Motility and Fertility Potential in Cancer Patients. Int. J. Mol. Sci. 2020, 21, 6754. [Google Scholar] [CrossRef] [PubMed]
- Shimabukuro, T.; Hidekazu, T.; Masahiro, T.; Tokunaga, T.; Shimizu, K.; Fujii, N.; Kobayashi, K.; Hirata, H.; Shiraishi, K. Long-Term Clinical Outcomes of Radical Prostatectomy Versus Image-Guided and Intensity-Modulated Radiation Therapy for Prostate Cancer: A Retrospective and Comparative Study. Adv. Urol. 2025, 2025, 6412793. [Google Scholar] [CrossRef]
- Kadono, Y.; Nohara, T.; Kawaguchi, S.; Iwamoto, H.; Yaegashi, H.; Shigehara, K.; Izumi, K.; Mizokami, A. Impact of Pelvic Anatomical Changes Caused by Radical Prostatectomy. Cancers 2022, 14, 3050. [Google Scholar] [CrossRef]
- Cahill, E.M.; de Oca, E.M.M.; Flores, J.M.; Bennett, N.E.; Mulhall, J.P. Knowledge and Attitudes Towards Fertility Preservation in Patients Undergoing Radical Prostatectomy. Urology 2025, in press. [Google Scholar] [CrossRef]
- Bratu, O.; Oprea, I.; Marcu, D.; Spinu, D.; Niculae, A.; Geavlete, B.; Mischianu, D. Erectile dysfunction post-radical prostatectomy—A challenge for both patient and physician. J. Med. Life. 2017, 10, 13–18. [Google Scholar]
- Lumbiganon, S.; Patcharatrakul, S.; Khongcharoensombat, W.; Sangkum, P. Pre- and post-radical prostatectomy testosterone levels in prostate cancer patients. Int. J. Impot. Res. 2019, 31, 145–149. [Google Scholar] [CrossRef]
- Reichard, C.; Sabanegh, E.S.; Jones, J.S.; Fareed, K. Spermaturia after radical prostatectomy: Is surgical preservation of fertility possible? Case Rep. Urol. 2013, 2013, 124715. [Google Scholar] [CrossRef]
- Onal, C.; Bozca, R.; Dolek, Y.; Guler, O.C.; Arslan, G. Incidental testicular doses during volumetric-modulated arc radiotherapy in prostate cancer patients. Radiol. Med. 2020, 125, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Ghaffar, U.; Abbasi, B.; Li, K.D.; Venishetty, N.; Hakam, N.; Fernandez, A.; Pearce, R.; Patel, H.V.; Carlisle, M.N.; Breyer, B.N. Ejaculatory function after radiotherapy for prostate cancer: A systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2024, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Loi, M.; Wortel, R.C.; Francolini, G.; Incrocci, L. Sexual Function in Patients Treated With Stereotactic Radiotherapy For Prostate Cancer: A Systematic Review of the Current Evidence. J. Sex Med. 2019, 16, 1409–1420. [Google Scholar] [CrossRef]
- Roychoudhury, S.; Das, A.; Panner Selvam, M.K.; Chakraborty, S.; Slama, P.; Sikka, S.C.; Kesari, K.K. Recent Publication Trends in Radiotherapy and Male Infertility over Two Decades: A Scientometric Analysis. Front. Cell Dev. Biol. 2022, 10, 877079. [Google Scholar] [CrossRef] [PubMed]
- Fukunaga, H.; Yokoya, A.; Prise, K.M. A Brief Overview of Radiation-Induced Effects on Spermatogenesis and Oncofertility. Cancers 2022, 14, 805. [Google Scholar] [CrossRef] [PubMed]
- Rives, N.; Courbiere, B.; Almont, T.; Kassab, D.; Berger, C.; Grynberg, M.; Papaxanthos, A.; Decanter, C.; Elefant, E.; Dhedin, N.; et al. What should be done in terms of fertility preservation for patients with cancer? The French 2021 guidelines. Eur J Cancer 2022, 173, 146–166. [Google Scholar] [CrossRef]
- Crawford, E.D.; Heidenreich, A.; Lawrentschuk, N.; Tombal, B.; Pompeo, A.C.L.; Mendoza-Valdes, A.; Miller, K.; Debruyne, F.M.J.; Klotz, L. Androgen-targeted therapy in men with prostate cancer: Evolving practice and future considerations. Prostate Cancer Prostatic Dis. 2019, 22, 24–38. [Google Scholar] [CrossRef]
- Grande, G.; Barrachina, F.; Soler-Ventura, A.; Jodar, M.; Mancini, F.; Marana, R.; Chiloiro, S.; Pontecorvi, A.; Oliva, R.; Milardi, D. The Role of Testosterone in Spermatogenesis: Lessons From Proteome Profiling of Human Spermatozoa in Testosterone Deficiency. Front. Endocrinol. 2022, 13, 852661. [Google Scholar] [CrossRef]
- Caramella, I.; Dalla Volta, A.; Bergamini, M.; Cosentini, D.; Valcamonico, F.; Berruti, A. Maintenance of androgen deprivation therapy or testosterone supplementation in the management of castration-resistant prostate cancer: That is the question. Endocrine 2022, 78, 441–445. [Google Scholar] [CrossRef]
- Ramaswamy, S.; Weinbauer, G.F. Endocrine control of spermatogenesis: Role of FSH and LH/ testosterone. Spermatogenesis 2014, 4, e996025. [Google Scholar] [CrossRef]
- Muresanu, H. Benefits of intermittent/continuous androgen deprivation in patients with advanced prostate cancer. Clujul. Med. 2016, 89, 419–422. [Google Scholar] [CrossRef]
- Tsumura, H.; Satoh, T.; Ishiyama, H.; Hirano, S.; Tabata, K.; Kurosaka, S.; Matsumoto, K.; Fujita, T.; Kitano, M.; Baba, S.; et al. Recovery of serum testosterone following neoadjuvant and adjuvant androgen deprivation therapy in men treated with prostate brachytherapy. World J. Radiol. 2015, 7, 494–500. [Google Scholar] [CrossRef]
- Mazzola, C.R.; Mulhall, J.P. Impact of androgen deprivation therapy on sexual function. Asian J. Androl. 2012, 14, 198–203. [Google Scholar] [CrossRef]
- Dal Pra, A.; Cury, F.L.; Souhami, L. Combining radiation therapy and androgen deprivation for localized prostate cancer-a critical review. Curr. Oncol. 2010, 17, 28–38. [Google Scholar] [CrossRef]
- Dohle, G.R. Male infertility in cancer patients: Review of the literature. Int. J. Urol. 2010, 17, 327–331. [Google Scholar] [CrossRef]
- Himpe, J.; Lammerant, S.; Van den Bergh, L.; Lapeire, L.; De Roo, C. The Impact of Systemic Oncological Treatments on the Fertility of Adolescents and Young Adults-A Systematic Review. Life 2023, 13, 852661. [Google Scholar] [CrossRef]
- Kanodia, C.; Rimmer, M.P.; Duffin, K.; Mitchell, R.T. Impact of taxane-based chemotherapeutics on male reproductive function. Reprod. Fertil. 2023, 4, e220134. [Google Scholar] [CrossRef]
- Meistrich, M.L. Effects of chemotherapy and radiotherapy on spermatogenesis in humans. Fertil. Steril. 2013, 100, 1180–1186. [Google Scholar] [CrossRef] [PubMed]
- Yumura, Y.; Takeshima, T.; Komeya, M.; Karibe, J.; Kuroda, S.; Saito, T. Long-Term Fertility Function Sequelae in Young Male Cancer Survivors. World J. Mens. Health 2023, 41, 255–271. [Google Scholar] [CrossRef] [PubMed]
- Meistrich, M.L.; Wilson, G.; Mathur, K.; Fuller, L.M.; Rodriguez, M.A.; McLaughlin, P.; Romaguera, J.E.; Cabanillas, F.F.; Ha, C.S.; Lipshultz, L.I.; et al. Rapid recovery of spermatogenesis after mitoxantrone, vincristine, vinblastine, and prednisone chemotherapy for Hodgkin’s disease. J. Clin. Oncol. 1997, 15, 3488–3495. [Google Scholar] [CrossRef] [PubMed]
- Burney, B.O.; Garcia, J.M. Hypogonadism in male cancer patients. J. Cachexia. Sarcopenia. Muscle 2012, 3, 149–155. [Google Scholar] [CrossRef]
- Gill, K.; Machalowski, T.; Harasny, P.; Grabowska, M.; Duchnik, E.; Piasecka, M. Low human sperm motility coexists with sperm nuclear DNA damage and oxidative stress in semen. Andrology 2024, 12, 1154–1169. [Google Scholar] [CrossRef]
- Bai, B.; Ma, Y.; Liu, D.; Zhang, Y.; Zhang, W.; Shi, R.; Zhou, Q. DNA damage caused by chemotherapy has duality, and traditional Chinese medicine may be a better choice to reduce its toxicity. Front. Pharmacol. 2024, 15, 1483160. [Google Scholar] [CrossRef] [PubMed]
- Duffin, K.; Mitchell, R.T.; Brougham, M.F.H.; Hamer, G.; van Pelt, A.M.M.; Mulder, C.L. Impacts of cancer therapy on male fertility: Past and present. Mol. Aspects Med. 2024, 100, 101308. [Google Scholar] [CrossRef]
- Lavaud, P.; Dumont, C.; Thibault, C.; Albiges, L.; Baciarello, G.; Colomba, E.; Flippot, R.; Fuerea, A.; Loriot, Y.; Fizazi, K. Next-generation androgen receptor inhibitors in non-metastatic castration-resistant prostate cancer. Ther. Adv. Med. Oncol. 2020, 12, 1758835920978134. [Google Scholar] [CrossRef] [PubMed]
- Velez, D.; Ohlander, S. Medical therapies causing iatrogenic male infertility. Fertil. Steril. 2021, 116, 618–624. [Google Scholar] [CrossRef]
- Freedland, S.J.; Mulhall, J.P.; Gleave, M.; De Giorgi, U.; Saad, F.; Rannikko, A.; Ivanova, J.I.; Nasr, A.F.; Reisman, A.L.; Ganguli, A.; et al. Effects of Enzalutamide on the Sexual Activity of Patients with Biochemically Recurrent Prostate Cancer: A Post Hoc Analysis of Patient-reported Outcomes in the EMBARK Study. Eur. Urol. 2025, 87, 507–511. [Google Scholar] [CrossRef]
- van Soest, R.J.; de Morree, E.S.; Kweldam, C.F.; de Ridder, C.M.A.; Wiemer, E.A.C.; Mathijssen, R.H.J.; de Wit, R.; van Weerden, W.M. Targeting the Androgen Receptor Confers In Vivo Cross-resistance Between Enzalutamide and Docetaxel, But Not Cabazitaxel, in Castration-resistant Prostate Cancer. Eur. Urol. 2015, 67, 981–985. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, M.T.; True, L.; Gulati, R.; Zhao, Y.; Ellis, W.; Schade, G.; Montgomery, B.; Goyal, S.; Nega, K.; Hakansson, A.K.; et al. Pathological Effects of Apalutamide in Lower-risk Prostate Cancer: Results from a Phase II Clinical Trial. J. Urol. 2023, 209, 354–363. [Google Scholar] [CrossRef]
- Arafa, A.T.; Blader, L.R.; Ramakrishna, K.; Engle, J.; Ryan, C.J.; Zorko, N.A.; Jha, G.; Antonarakis, E.S. Clinical outcomes in patients with metastatic castrate-resistant prostate cancer treated with abiraterone with or without ongoing androgen deprivation therapy: A retrospective case-control study. Prostate 2023, 83, 1279–1284. [Google Scholar] [CrossRef]
- Fizazi, K.; Tran, N.; Fein, L.; Matsubara, N.; Rodriguez-Antolin, A.; Alekseev, B.Y.; Ozguroglu, M.; Ye, D.; Feyerabend, S.; Protheroe, A.; et al. Abiraterone acetate plus prednisone in patients with newly diagnosed high-risk metastatic castration-sensitive prostate cancer (LATITUDE): Final overall survival analysis of a randomised, double-blind, phase 3 trial. Lancet. Oncol. 2019, 20, 686–700. [Google Scholar] [CrossRef]
- Fizazi, K.; Tran, N.; Fein, L.; Matsubara, N.; Rodriguez-Antolin, A.; Alekseev, B.Y.; Ozguroglu, M.; Ye, D.; Feyerabend, S.; Protheroe, A.; et al. Abiraterone plus Prednisone in Metastatic, Castration-Sensitive Prostate Cancer. N. Engl. J. Med. 2017, 377, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Yanagisawa, T.; Fukuokaya, W.; Hatakeyama, S.; Narita, S.; Muramoto, K.; Katsumi, K.; Takahashi, H.; Urabe, F.; Mori, K.; Tashiro, K.; et al. Comparison of abiraterone, enzalutamide, and apalutamide for metastatic hormone-sensitive prostate cancer: A multicenter study. Prostate 2025, 85, 165–174. [Google Scholar] [CrossRef]
- Ramacciotti, L.S.; Jadvar, D.S.; Lenon, M.S.L.; Cacciamani, G.E.; Abreu, A.L.; Kaneko, M. Focal Therapy for Prostate Cancer: The Impact on Sexual Function. Uro 2022, 2, 204–212. [Google Scholar] [CrossRef]
- Nomura, T.; Mimata, H. Focal therapy in the management of prostate cancer: An emerging approach for localized prostate cancer. Adv. Urol. 2012, 2012, 391437. [Google Scholar] [CrossRef]
- Shoji, S.; Hiraiwa, S.; Uemura, K.; Nitta, M.; Hasegawa, M.; Kawamura, Y.; Hashida, K.; Hasebe, T.; Tajiri, T.; Miyajima, A. Focal therapy with high-intensity focused ultrasound for the localized prostate cancer for Asian based on the localization with MRI-TRUS fusion image-guided transperineal biopsy and 12-cores transperineal systematic biopsy: Prospective analysis of oncological and functional outcomes. Int. J. Clin. Oncol. 2020, 25, 1844–1853. [Google Scholar] [CrossRef]
- Ganzer, R.; Hadaschik, B.; Pahernik, S.; Koch, D.; Baumunk, D.; Kuru, T.; Heidenreich, A.; Stolzenburg, J.U.; Schostak, M.; Blana, A. Prospective Multicenter Phase II Study on Focal Therapy (Hemiablation) of the Prostate with High Intensity Focused Ultrasound. J. Urol. 2018, 199, 983–989. [Google Scholar] [CrossRef]
- von Hardenberg, J.; Westhoff, N.; Baumunk, D.; Hausmann, D.; Martini, T.; Marx, A.; Porubsky, S.; Schostak, M.; Michel, M.S.; Ritter, M. Prostate cancer treatment by the latest focal HIFU device with MRI/TRUS-fusion control biopsies: A prospective evaluation. Urol. Oncol. 2018, 36, 401. [Google Scholar] [CrossRef]
- Marra, G.; Soeterik, T.; Oreggia, D.; Tourinho-Barbosa, R.; Moschini, M.; Filippini, C.; van Melick, H.H.E.; van den Bergh, R.C.N.; Gontero, P.; Cathala, N.; et al. Long-term Outcomes of Focal Cryotherapy for Low- to Intermediate-risk Prostate Cancer: Results and Matched Pair Analysis with Active Surveillance. Eur. Urol. Focus 2022, 8, 701–709. [Google Scholar] [CrossRef]
- Piramide, F.; Veccia, A.; Tzelves, L.; Nikles, S.; Ortega Polledo, L.E.; Nocera, L.; Khelif, A.; Dumbovic, L.; Lazarou, L.; Cisero, E.; et al. Sexual function outcomes in men undergoing minimal invasive ablative techniques for prostate cancer: A ESRU/YAU urotech systematic review and pooled analysis. Minerva. Urol. Nephrol. 2025, 77, 285–297. [Google Scholar] [CrossRef] [PubMed]
- Tay, K.J.; Fong, K.Y.; Stabile, A.; Dominguez-Escrig, J.L.; Ukimura, O.; Rodriguez-Sanchez, L.; Blana, A.; Becher, E.; Laguna, M.P. Established focal therapy-HIFU, IRE, or cryotherapy-where are we now?-a systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2024. [Google Scholar] [CrossRef] [PubMed]
- Barak, S. Fertility preservation in male patients with cancer. Best Pract. Res. Clin. Obstet. Gynaecol. 2019, 55, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, S.; Cislo, P.; Sartor, O.; Vogelzang, N.J.; Coleman, R.E.; O’Sullivan, J.M.; Reuning-Scherer, J.; Shan, M.; Zhan, L.; Parker, C. Patient-reported quality-of-life analysis of radium-223 dichloride from the phase III ALSYMPCA study. Ann. Oncol. 2016, 27, 868–874. [Google Scholar] [CrossRef] [PubMed]
- Dauer, L.T.; Williamson, M.J.; Humm, J.; O’Donoghue, J.; Ghani, R.; Awadallah, R.; Carrasquillo, J.; Pandit-Taskar, N.; Aksnes, A.K.; Biggin, C.; et al. Radiation safety considerations for the use of (2)(2)(3)RaCl(2) DE in men with castration-resistant prostate cancer. Health Phys. 2014, 106, 494–504. [Google Scholar] [CrossRef]
- Thaler-Demers, D. Endocrine and fertility effects in male cancer survivors. Changes related to androgen-deprivation therapy and other treatments require timely intervention. Am. J. Nurs. 2006, 106, 66–71. [Google Scholar] [CrossRef]
- Beer, T.M.; Schellhammer, P.F.; Corman, J.M.; Glode, L.M.; Hall, S.J.; Whitmore, J.B.; Frohlich, M.W.; Penson, D.F. Quality of life after sipuleucel-T therapy: Results from a randomized, double-blind study in patients with androgen-dependent prostate cancer. Urology 2013, 82, 410–415. [Google Scholar] [CrossRef]
- Taylor, A.K.; Kosoff, D.; Emamekhoo, H.; Lang, J.M.; Kyriakopoulos, C.E. PARP inhibitors in metastatic prostate cancer. Front. Oncol. 2023, 13, 1159557. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Chen, L.; Gai, D.; He, S.; Jiang, X.; Zhang, N. Adverse Event Profiles of PARP Inhibitors: Analysis of Spontaneous Reports Submitted to FAERS. Front. Pharmacol. 2022, 13, 851246. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.J.; Castellano, D.; Herrmann, K.; de Bono, J.S.; Shore, N.D.; Chi, K.N.; Crosby, M.; Piulats, J.M.; Flechon, A.; Wei, X.X.; et al. (177)Lu-PSMA-617 versus a change of androgen receptor pathway inhibitor therapy for taxane-naive patients with progressive metastatic castration-resistant prostate cancer (PSMAfore): A phase 3, randomised, controlled trial. Lancet 2024, 404, 1227–1239. [Google Scholar] [CrossRef]
- Fallah, J.; Agrawal, S.; Gittleman, H.; Fiero, M.H.; Subramaniam, S.; John, C.; Chen, W.; Ricks, T.K.; Niu, G.; Fotenos, A.; et al. FDA Approval Summary: Lutetium Lu 177 Vipivotide Tetraxetan for Patients with Metastatic Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2023, 29, 1651–1657. [Google Scholar] [CrossRef]
- Watabe, T.; Kaneda-Nakashima, K.; Kadonaga, Y.; Ooe, K.; Sampunta, T.; Hirose, N.; Yin, X.; Haba, H.; Kon, Y.; Toyoshima, A.; et al. Preclinical Evaluation of Biodistribution and Toxicity of [(211)At]PSMA-5 in Mice and Primates for the Targeted Alpha Therapy against Prostate Cancer. Int. J. Mol. Sci. 2024, 25, 5667. [Google Scholar] [CrossRef] [PubMed]
- Kissel, M.; Terlizzi, M.; Giraud, N.; Alexis, A.; Cheve, M.; Vautier, J.; Bossi, A.; Morice, P.; Blanchard, P. Prostate radiotherapy may cause fertility issues: A retrospective analysis of testicular dose following modern radiotherapy techniques. Radiat. Oncol. 2024, 19, 101. [Google Scholar] [CrossRef]
- Trottmann, M.; Becker, A.J.; Stadler, T.; Straub, J.; Soljanik, I.; Schlenker, B.; Stief, C.G. Semen quality in men with malignant diseases before and after therapy and the role of cryopreservation. Eur. Urol. 2007, 52, 355–367. [Google Scholar] [CrossRef]
- Ogilvy-Stuart, A.L.; Shalet, S.M. Effect of radiation on the human reproductive system. Environ. Health Perspect. 1993, 101, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Okada, K.; Fujisawa, M. Recovery of Spermatogenesis Following Cancer Treatment with Cytotoxic Chemotherapy and Radiotherapy. World J. Mens. Health 2019, 37, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Lambrot, R.; Coffigny, H.; Pairault, C.; Lecureuil, C.; Frydman, R.; Habert, R.; Rouiller-Fabre, V. High radiosensitivity of germ cells in human male fetus. J. Clin. Endocrinol. Metab. 2007, 92, 2632–2639. [Google Scholar] [CrossRef]
- Daniell, H.W.; Clark, J.C.; Pereira, S.E.; Niazi, Z.A.; Ferguson, D.W.; Dunn, S.R.; Figueroa, M.L.; Stratte, P.T. Hypogonadism following prostate-bed radiation therapy for prostate carcinoma. Cancer 2001, 91, 1889–1895. [Google Scholar] [CrossRef]
- Howell, S.J.; Shalet, S.M. Spermatogenesis after cancer treatment: Damage and recovery. J. Natl. Cancer Inst. Monogr. 2005, 34, 12–17. [Google Scholar] [CrossRef]
- Chatzidarellis, E.; Makrilia, N.; Giza, L.; Georgiadis, E.; Alamara, C.; Syrigos, K.N. Effects of taxane-based chemotherapy on inhibin B and gonadotropins as biomarkers of spermatogenesis. Fertil. Steril. 2010, 94, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri-Fard, S.; Shoorei, H.; Abak, A.; Seify, M.; Mohaqiq, M.; Keshmir, F.; Taheri, M.; Ayatollahi, S.A. Effects of chemotherapeutic agents on male germ cells and possible ameliorating impact of antioxidants. Biomed. Pharmacother. 2021, 142, 112040. [Google Scholar] [CrossRef] [PubMed]
- Huhtaniemi, I.; Nikula, H.; Parvinen, M.; Rannikko, S. Histological and functional changes of the testis tissue during GnRH agonist treatment of prostatic cancer. Am. J. Clin. Oncol. 1988, 11, S11–S15. [Google Scholar] [CrossRef]
- Nabid, A.; Carrier, N.; Vigneault, E.; Martin, A.G.; Bahary, J.P.; Van Nguyen, T.; Vavassis, P.; Vass, S.; Brassard, M.A.; Bahoric, B.; et al. Testosterone recovery after androgen deprivation therapy in localised prostate cancer: Long-term data from two randomised trials. Radiother. Oncol. 2024, 195, 110256. [Google Scholar] [CrossRef]
- Green, T.P.; Saavedra-Belaunde, J.; Wang, R. Ejaculatory and Orgasmic Dysfunction Following Prostate Cancer Therapy: Clinical Management. Med. Sci. 2019, 7, 109. [Google Scholar] [CrossRef]
- Huyghe, E.; Delannes, M.; Wagner, F.; Delaunay, B.; Nohra, J.; Thoulouzan, M.; Shut-Yee, J.Y.; Plante, P.; Soulie, M.; Thonneau, P.; et al. Ejaculatory function after permanent 125I prostate brachytherapy for localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2009, 74, 126–132. [Google Scholar] [CrossRef]
- Reimer, N.; Brodesser, D.; Ratiu, D.; Zubac, D.; Lehmann, H.C.; Baumann, F.T. Initial observations on sexual dysfunction as a symptom of chemotherapy-induced peripheral neuropathy. Ger. Med. Sci. 2023, 21, Doc08. [Google Scholar] [CrossRef] [PubMed]
- Salonia, A.; Adaikan, G.; Buvat, J.; Carrier, S.; El-Meliegy, A.; Hatzimouratidis, K.; McCullough, A.; Morgentaler, A.; Torres, L.O.; Khera, M. Sexual Rehabilitation After Treatment For Prostate Cancer-Part 2: Recommendations From the Fourth International Consultation for Sexual Medicine (ICSM 2015). J. Sex Med. 2017, 14, 297–315. [Google Scholar] [CrossRef] [PubMed]
- Frey, A.; Pedersen, C.; Lindberg, H.; Bisbjerg, R.; Sonksen, J.; Fode, M. Prevalence and Predicting Factors for Commonly Neglected Sexual Side Effects to External-Beam Radiation Therapy for Prostate Cancer. J. Sex Med. 2017, 14, 558–565. [Google Scholar] [CrossRef]
- Sullivan, J.F.; Stember, D.S.; Deveci, S.; Akin-Olugbade, Y.; Mulhall, J.P. Ejaculation profiles of men following radiation therapy for prostate cancer. J. Sex Med. 2013, 10, 1410–1416. [Google Scholar] [CrossRef]
- Gegechkori, N.; Haines, L.; Lin, J.J. Long-Term and Latent Side Effects of Specific Cancer Types. Med. Clin. N. Am. 2017, 101, 1053–1073. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidis, C.; Zachariou, A.; Evgeni, E.; Cayan, S.; Boeri, L.; Agarwal, A. Recent Advances in the Diagnosis and Management of Retrograde Ejaculation: A Narrative Review. Diagnostics 2025, 15, 726. [Google Scholar] [CrossRef] [PubMed]
- Kaltsas, A.; Markou, E.; Kyrgiafini, M.A.; Zikopoulos, A.; Symeonidis, E.N.; Dimitriadis, F.; Zachariou, A.; Sofikitis, N.; Chrisofos, M. Oxidative-Stress-Mediated Epigenetic Dysregulation in Spermatogenesis: Implications for Male Infertility and Offspring Health. Genes 2025, 16, 93. [Google Scholar] [CrossRef]
- Singh, D.K.; Hersey, K.; Perlis, N.; Crook, J.; Jarvi, K.; Fleshner, N. The effect of radiation on semen quality and fertility in men treated with brachytherapy for early stage prostate cancer. J. Urol. 2012, 187, 987–989. [Google Scholar] [CrossRef]
- Azzam, E.I.; Jay-Gerin, J.P.; Pain, D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012, 327, 48–60. [Google Scholar] [CrossRef]
- Sengupta, P.; Pinggera, G.M.; Calogero, A.E.; Agarwal, A. Oxidative stress affects sperm health and fertility-Time to apply facts learned at the bench to help the patient: Lessons for busy clinicians. Reprod. Med. Biol. 2024, 23, e12598. [Google Scholar] [CrossRef]
- Meistrich, M.L. Risks of genetic damage in offspring conceived using spermatozoa produced during chemotherapy or radiotherapy. Andrology 2020, 8, 545–558. [Google Scholar] [CrossRef]
- Liu, J.; Ma, C.; Leng, Y.; Qin, J.; Zhang, P. Association between the oxidative balance score and testosterone deficiency: A cross-sectional study of the NHANES, 2011–2016. Sci. Rep. 2025, 15, 8040. [Google Scholar] [CrossRef]
- Biswas, S.K. Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxid. Med. Cell Longev. 2016, 2016, 5698931. [Google Scholar] [CrossRef]
- Kaltsas, A.; Zikopoulos, A.; Kojovic, V.; Dimitriadis, F.; Sofikitis, N.; Chrisofos, M.; Zachariou, A. Paternal Contributions to Recurrent Pregnancy Loss: Mechanisms, Biomarkers, and Therapeutic Approaches. Medicina 2024, 60, 1920. [Google Scholar] [CrossRef]
- Nissi, J.; Kalam, L.; Catalini, L.; Fedder, J. Effects of Chemotherapy on Aneuploidy Rates in Sperm from Male Patients with Testicular Cancer or Hodgkin’s Lymphoma-A Systematic Review. J. Clin. Med. 2024, 13, 3650. [Google Scholar] [CrossRef]
- Hyman, J.H.; Tulandi, T. Fertility preservation options after gonadotoxic chemotherapy. Clin. Med. Insights Reprod. Health 2013, 7, 61–69. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, X.; Li, H. Mechanisms of oxidative stress-induced sperm dysfunction. Front. Endocrinol. 2025, 16, 1520835. [Google Scholar] [CrossRef]
- Kaltsas, A. Oxidative Stress and Male Infertility: The Protective Role of Antioxidants. Medicina 2023, 59, 1769. [Google Scholar] [CrossRef]
- Symeonidis, E.N.; Evgeni, E.; Palapelas, V.; Koumasi, D.; Pyrgidis, N.; Sokolakis, I.; Hatzichristodoulou, G.; Tsiampali, C.; Mykoniatis, I.; Zachariou, A.; et al. Redox Balance in Male Infertility: Excellence through Moderation—“Μέτρον ἄριστον”. Antioxidants 2021, 10, 1534. [Google Scholar] [CrossRef]
- Schover, L.R.; van der Kaaij, M.; van Dorst, E.; Creutzberg, C.; Huyghe, E.; Kiserud, C.E. Sexual dysfunction and infertility as late effects of cancer treatment. EJC Suppl. 2014, 12, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Junuzovic, D.; Hasanbegovic, M.; Omerbegovic, D. Erectile dysfunction as a complication after treatment of prostate cancer. Mater Sociomed. 2011, 23, 230–231. [Google Scholar] [CrossRef] [PubMed]
- Duarte, V.; Araujo, N.; Lopes, C.; Costa, A.; Ferreira, A.; Carneiro, F.; Oliveira, J.; Braga, I.; Morais, S.; Pacheco-Figueiredo, L.; et al. Anxiety and Depression in Patients with Prostate Cancer, at Cancer Diagnosis and after a One-Year Follow-Up. Int. J. Environ. Res. Public Health 2022, 19, 9122. [Google Scholar] [CrossRef] [PubMed]
- Walker, L.M.; Tran, S.; Robinson, J.W. Luteinizing hormone--releasing hormone agonists: A quick reference for prevalence rates of potential adverse effects. Clin. Genitourin. Cancer 2013, 11, 375–384. [Google Scholar] [CrossRef]
- Kinnaird, W.; Schartau, P.; Kirby, M.; Jenkins, V.; Allen, S.; Payne, H. Sexual Dysfunction in Prostate Cancer Patients According to Disease Stage and Treatment Modality. Clin. Oncol. 2025, 41, 103801. [Google Scholar] [CrossRef]
- Armuand, G.M.; Wettergren, L.; Rodriguez-Wallberg, K.A.; Lampic, C. Desire for children, difficulties achieving a pregnancy, and infertility distress 3 to 7 years after cancer diagnosis. Support. Care Cancer 2014, 22, 2805–2812. [Google Scholar] [CrossRef]
- Nelson, C.J.; Emanu, J.C.; Avildsen, I. Couples-based interventions following prostate cancer treatment: A narrative review. Transl. Androl. Urol. 2015, 4, 232–242. [Google Scholar] [CrossRef]
- Wibowo, E.; Johnson, T.W.; Wassersug, R.J. Infertility, impotence, and emasculation--psychosocial contexts for abandoning reproduction. Asian J. Androl. 2016, 18, 403–408. [Google Scholar] [CrossRef]
- Yuen, W.; Witherspoon, L.; Wu, E.; Wong, J.; Sheikholeslami, S.; Bentley, J.; Zarowski, C.; Sundar, M.; Elliott, S.; Higano, C.; et al. Sexual rehabilitation recommendations for prostate cancer survivors and their partners from a biopsychosocial Prostate Cancer Supportive Care Program. Support. Care Cancer 2022, 30, 1853–1861. [Google Scholar] [CrossRef]
- Kaltsas, A.; Dimitriadis, F.; Zachariou, A.; Sofikitis, N.; Chrisofos, M. Phosphodiesterase Type 5 Inhibitors in Male Reproduction: Molecular Mechanisms and Clinical Implications for Fertility Management. Cells 2025, 14, 120. [Google Scholar] [CrossRef]
- Kaltsas, A.; Zikopoulos, A.; Dimitriadis, F.; Sheshi, D.; Politis, M.; Moustakli, E.; Symeonidis, E.N.; Chrisofos, M.; Sofikitis, N.; Zachariou, A. Oxidative Stress and Erectile Dysfunction: Pathophysiology, Impacts, and Potential Treatments. Curr. Issues Mol. Biol. 2024, 46, 8807–8834. [Google Scholar] [CrossRef]
- Sofikitis, N.; Kaltsas, A.; Dimitriadis, F.; Rassweiler, J.; Grivas, N.; Zachariou, A.; Kaponis, A.; Tsounapi, P.; Paterakis, N.; Karagiannis, A.; et al. The Effect of PDE5 Inhibitors on the Male Reproductive Tract. Curr. Pharm. Des. 2021, 27, 2697–2713. [Google Scholar] [CrossRef]
- Goonewardene, S.S.; Persad, R. Psychosexual care in prostate cancer survivorship: A systematic review. Transl. Androl. Urol. 2015, 4, 413–420. [Google Scholar] [CrossRef]
- Reese, J.B.; Keefe, F.J.; Somers, T.J.; Abernethy, A.P. Coping with sexual concerns after cancer: The use of flexible coping. Support. Care Cancer 2010, 18, 785–800. [Google Scholar] [CrossRef]
- Goldfarb, S.; Mulhall, J.; Nelson, C.; Kelvin, J.; Dickler, M.; Carter, J. Sexual and reproductive health in cancer survivors. Semin. Oncol. 2013, 40, 726–744. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, Y.; Kawahara, T.; Kuroda, S.; Takeshima, T.; Uemura, H.; Yumura, Y. Sperm cryopreservation before definitive therapy for early-stage prostate cancer: A single institution experience. Int. J. Urol. 2023, 30, 114–115. [Google Scholar] [CrossRef] [PubMed]
- Skinner, R.; Mulder, R.L.; Kremer, L.C.; Hudson, M.M.; Constine, L.S.; Bardi, E.; Boekhout, A.; Borgmann-Staudt, A.; Brown, M.C.; Cohn, R.; et al. Recommendations for gonadotoxicity surveillance in male childhood, adolescent, and young adult cancer survivors: A report from the International Late Effects of Childhood Cancer Guideline Harmonization Group in collaboration with the PanCareSurFup Consortium. Lancet. Oncol. 2017, 18, e75–e90. [Google Scholar] [CrossRef]
- Vakalopoulos, I.; Dimou, P.; Anagnostou, I.; Zeginiadou, T. Impact of cancer and cancer treatment on male fertility. Hormones 2015, 14, 579–589. [Google Scholar] [CrossRef]
- Yang, E.H.; Strohl, H.B.; Su, H.I. Fertility preservation before and after cancer treatment in children, adolescents, and young adults. Cancer 2024, 130, 344–355. [Google Scholar] [CrossRef]
- Williams, D.H. Sperm banking and the cancer patient. Ther. Adv. Urol. 2010, 2, 19–34. [Google Scholar] [CrossRef]
- Su, H.I.; Lacchetti, C.; Letourneau, J.; Partridge, A.H.; Qamar, R.; Quinn, G.P.; Reinecke, J.; Smith, J.F.; Tesch, M.; Wallace, W.H.; et al. Fertility Preservation in People With Cancer: ASCO Guideline Update. J. Clin. Oncol. 2025, 43, 1488–1515. [Google Scholar] [CrossRef] [PubMed]
- Minhas, S.; Boeri, L.; Capogrosso, P.; Cocci, A.; Corona, G.; Dinkelman-Smit, M.; Falcone, M.; Jensen, C.F.; Gul, M.; Kalkanli, A.; et al. European Association of Urology Guidelines on Male Sexual and Reproductive Health: 2025 Update on Male Infertility. Eur. Urol. 2025, 88, 76–102. [Google Scholar] [CrossRef]
- Shin, D.; Lo, K.C.; Lipshultz, L.I. Treatment options for the infertile male with cancer. J. Natl. Cancer Inst. Monogr. 2005, 34, 48–50. [Google Scholar] [CrossRef]
- Williams, D.H.t. Fertility preservation in the male with cancer. Curr. Urol. Rep. 2013, 14, 315–326. [Google Scholar] [CrossRef]
- Li, Q.; Lan, Q.Y.; Zhu, W.B.; Fan, L.Q.; Huang, C. Fertility preservation in adult male patients with cancer: A systematic review and meta-analysis. Hum. Reprod. Open 2024, 1, hoae006. [Google Scholar] [CrossRef]
- Merrick, H.; Wright, E.; Pacey, A.A.; Eiser, C. Finding out about sperm banking: What information is available online for men diagnosed with cancer? Hum. Fertil. 2012, 15, 121–128. [Google Scholar] [CrossRef]
- Kaltsas, A.; Markou, E.; Zachariou, A.; Dimitriadis, F.; Symeonidis, E.N.; Zikopoulos, A.; Mamoulakis, C.; Tien, D.M.B.; Takenaka, A.; Sofikitis, N. Evaluating the Predictive Value of Diagnostic Testicular Biopsy for Sperm Retrieval Outcomes in Men with Non-Obstructive Azoospermia. J. Pers. Med. 2023, 13, 1362. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Fort, M.K.; Kardoust-Parizi, M.; Flannigan, R.; Bach, P.; Koch, N.; Gilman, C.; Suarez, P.; Fort, D.V.; McClelland, S., 3rd; Lange, C.S.; et al. Preservation of male fertility in patients undergoing pelvic irradiation. Rep. Pract. Oncol. Radiother. 2023, 28, 835–845. [Google Scholar] [CrossRef] [PubMed]
- Ogouma, L.; Berthaut, I.; Levy, R.; Hamid, R.H.; Prades, M.; Audouin, M.; Sermondade, N.; Dupont, C. Testicular sperm extraction (TESE) outcomes in the context of malignant disease: A systematic review. Asian J. Androl. 2022, 24, 584–590. [Google Scholar] [CrossRef]
- Amano, T.; Suzuki, C.; Shimojima, Y.; Imao, T.; Earle, C. Testicular sperm extraction in a patient with ejaculatory dysfunction after combined androgen blockade therapy for prostate cancer. IJU Case Rep. 2020, 3, 150–152. [Google Scholar] [CrossRef]
- Kaltsas, A.; Stavros, S.; Kratiras, Z.; Zikopoulos, A.; Machairiotis, N.; Potiris, A.; Dimitriadis, F.; Sofikitis, N.; Chrisofos, M.; Zachariou, A. Predictors of Successful Testicular Sperm Extraction: A New Era for Men with Non-Obstructive Azoospermia. Biomedicines 2024, 12, 2679. [Google Scholar] [CrossRef]
- Arai, M.; Kosaka, T.; Yasumizu, Y.; Takeda, T.; Matsumoto, K.; Oya, M. Androgen deprivation therapy duration is significantly associated with Testosterone recovery in Japanese patients with prostate cancer. Int. J. Urol. 2023, 30, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.C.; Singh, S.; Raj, D.; Ramakrishnan, S.; Esteves, S.C. Micro-dissection testicular sperm extraction as an alternative for sperm acquisition in the most difficult cases of Azoospermia: Technique and preliminary results in India. J. Hum. Reprod. Sci. 2013, 6, 111–123. [Google Scholar] [CrossRef]
- Kaltsas, A.; Dimitriadis, F.; Zachariou, D.; Zikopoulos, A.; Symeonidis, E.N.; Markou, E.; Tien, D.M.B.; Takenaka, A.; Sofikitis, N.; Zachariou, A. From Diagnosis to Treatment: Comprehensive Care by Reproductive Urologists in Assisted Reproductive Technology. Medicina 2023, 59, 1835. [Google Scholar] [CrossRef] [PubMed]
- Graham, M.E.; Jelin, A.; Hoon, A.H., Jr.; Wilms Floet, A.M.; Levey, E.; Graham, E.M. Assisted reproductive technology: Short- and long-term outcomes. Dev. Med. Child Neurol. 2023, 65, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Papler, T.B.; Vrtacnik-Bokal, E.; Drobnic, S.; Stimpfel, M. The outcome of IVF/ICSI cycles in male cancer patients: Retrospective analysis of procedures from 2004 to 2018. Radiol. Oncol. 2021, 55, 221–228. [Google Scholar] [CrossRef]
- Huang, Z.; Berg, W.T. Iatrogenic effects of radical cancer surgery on male fertility. Fertil. Steril. 2021, 116, 625–629. [Google Scholar] [CrossRef]
- Kitlinski, M.; Giwercman, A.; Elenkov, A. Paternity through use of assisted reproduction technology in male adult and childhood cancer survivors: A nationwide register study. Hum. Reprod. 2023, 38, 973–981. [Google Scholar] [CrossRef]
- Kaltsas, A.; Zachariou, A.; Dimitriadis, F.; Chrisofos, M.; Sofikitis, N. Empirical Treatments for Male Infertility: A Focus on Lifestyle Modifications and Medicines. Diseases 2024, 12, 209. [Google Scholar] [CrossRef]
- Salonia, A.; Capogrosso, P.; Castiglione, F.; Russo, A.; Gallina, A.; Ferrari, M.; Clementi, M.C.; Castagna, G.; Briganti, A.; Cantiello, F.; et al. Sperm banking is of key importance in patients with prostate cancer. Fertil. Steril. 2013, 100, 367–372. [Google Scholar] [CrossRef]
- Romito, F.; Corvasce, C.; Montanaro, R.; Mattioli, V. Do elderly cancer patients have different care needs compared with younger ones? Tumori J. 2011, 97, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Kimelman, D.; Torrens, A.; Bonelli, C.; Sapiro, R. Fertility preservation in male cancer patients. Counseling and reproductive outcomes. Front. Cell Dev. Biol. 2023, 11, 1240152. [Google Scholar] [CrossRef]
- Chan, J.L.; Letourneau, J.; Salem, W.; Cil, A.P.; Chan, S.W.; Chen, L.M.; Rosen, M.P. Regret around fertility choices is decreased with pre-treatment counseling in gynecologic cancer patients. J. Cancer Surviv. 2017, 11, 58–63. [Google Scholar] [CrossRef]
- Bearelly, P.; Rague, J.T.; Oates, R.D. Fertility Preservation in the Transgender Population. Curr. Sex. Health Rep. 2020, 12, 40–48. [Google Scholar] [CrossRef]
- Schover, L.R. Patient attitudes toward fertility preservation. Pediatr. Blood Cancer 2009, 53, 281–284. [Google Scholar] [CrossRef]
- Saito, K.; Suzuki, K.; Iwasaki, A.; Yumura, Y.; Kubota, Y. Sperm cryopreservation before cancer chemotherapy helps in the emotional battle against cancer. Cancer 2005, 104, 521–524. [Google Scholar] [CrossRef] [PubMed]
- Flink, D.M.; Sheeder, J.; Kondapalli, L.A. A Review of the Oncology Patient’s Challenges for Utilizing Fertility Preservation Services. J. Adolesc. Young Adult Oncol. 2017, 6, 31–44. [Google Scholar] [CrossRef]
- Hudson, J.N.; Stanley, N.B.; Nahata, L.; Bowman-Curci, M.; Quinn, G.P. New Promising Strategies in Oncofertility. Expert Rev. Qual. Life Cancer Care 2017, 2, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Dorfman, C.S.; Stalls, J.M.; Mills, C.; Voelkel, S.; Thompson, M.; Acharya, K.S.; Baker, K.C.; Wagner, L.M.; Miller, N.; Boswell, A.; et al. Addressing Barriers to Fertility Preservation for Cancer Patients: The Role of Oncofertility Patient Navigation. J. Oncol. Navig. Surviv. 2021, 12, 332–348. [Google Scholar] [PubMed]
- Keller, S.R.; Rosen, A.; Lewis, M.A.; Park, H.K.; Babyak, R.; Feldman, J.; Ye, F.; Agarwal, R.; Ciombor, K.K.; Geiger, T.M.; et al. Patient-Reported Discussions on Fertility Preservation Before Early-Onset Cancer Treatment. JAMA Netw. Open 2024, 7, e2444540. [Google Scholar] [CrossRef] [PubMed]
- Santaballa, A.; Marquez-Vega, C.; Rodriguez-Lescure, A.; Rovirosa, A.; Vazquez, L.; Zeberio-Etxetxipia, I.; Andres, M.; Bassas, L.; Ceballos-Garcia, E.; Domingo, J.; et al. Multidisciplinary consensus on the criteria for fertility preservation in cancer patients. Clin. Transl. Oncol. 2022, 24, 227–243. [Google Scholar] [CrossRef]
- Kao, W.H.; Chuang, Y.F.; Huang, Y.W.; Chen, P.J.; Liu, Y.C.; Wang, C.C.; Hsu, J.T.; Shueng, P.W.; Kuo, C.F. Adverse Birth and Obstetric Outcomes in the Offspring of Male Adolescent and Young Adult Cancer Survivors: A Nationwide Population-Based Study. Cancer Epidemiol. Biomark. Prev. 2025, 34, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Stahl, O.; Boyd, H.A.; Giwercman, A.; Lindholm, M.; Jensen, A.; Kjaer, S.K.; Anderson, H.; Cavallin-Stahl, E.; Rylander, L. Risk of birth abnormalities in the offspring of men with a history of cancer: A cohort study using Danish and Swedish national registries. J. Natl. Cancer Inst. 2011, 103, 398–406. [Google Scholar] [CrossRef]
- Signorello, L.B.; Friedman, D.L.; Boice, J.D., Jr. Congenital abnormalities: A legacy of cancer treatment? J. Natl. Cancer Inst. 2011, 103, 358–359. [Google Scholar] [CrossRef] [PubMed]
- Paoli, D.; Pallotti, F.; Lenzi, A.; Lombardo, F. Fatherhood and Sperm DNA Damage in Testicular Cancer Patients. Front. Endocrinol. 2018, 9, 506. [Google Scholar] [CrossRef]
- Spermon, J.R.; Ramos, L.; Wetzels, A.M.; Sweep, C.G.; Braat, D.D.; Kiemeney, L.A.; Witjes, J.A. Sperm integrity pre- and post-chemotherapy in men with testicular germ cell cancer. Hum. Reprod. 2006, 21, 1781–1786. [Google Scholar] [CrossRef]
- Remenar, E.; Szamel, I.; Budai, B.; Vincze, B.; Gaudi, I.; Gundy, S.; Kasler, M. Increase of hypophyseal hormone levels in male head and neck cancer patients. Pathol. Oncol. Res. 2007, 13, 341–344. [Google Scholar] [CrossRef]
- Levi, M.; Hasky, N.; Stemmer, S.M.; Shalgi, R.; Ben-Aharon, I. Anti-Mullerian Hormone Is a Marker for Chemotherapy-Induced Testicular Toxicity. Endocrinology 2015, 156, 3818–3827. [Google Scholar] [CrossRef]
- Peigne, M.; Decanter, C. Serum AMH level as a marker of acute and long-term effects of chemotherapy on the ovarian follicular content: A systematic review. Reprod. Biol. Endocrinol. 2014, 12, 26. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.H.; Acharya, C.R.; Harris, B.S.; Acharya, K.S. Development of a fertility risk calculator to predict individualized chance of ovarian failure after chemotherapy. J. Assist. Reprod. Genet. 2021, 38, 3047–3055. [Google Scholar] [CrossRef] [PubMed]
- Naik, N.; Roth, B.; Lundy, S.D. Artificial Intelligence for Clinical Management of Male Infertility, a Scoping Review. Curr. Urol. Rep. 2024, 26, 17. [Google Scholar] [CrossRef] [PubMed]
- Tenchov, R.; Zhou, Q.A. Assisted Reproductive Technology: A Ray of Hope for Infertility. ACS Omega 2025, 10, 22347–22365. [Google Scholar] [CrossRef] [PubMed]
- Mapari, S.A.; Shrivastava, D.; Bedi, G.N.; Pradeep, U.; Gupta, A.; Kasat, P.R.; Sachani, P. Revolutionizing Reproduction: The Impact of Robotics and Artificial Intelligence (AI) in Assisted Reproductive Technology: A Comprehensive Review. Cureus 2024, 16, e63072. [Google Scholar] [CrossRef]
Treatment | Ejaculatory Function (EF) | Sperm Parameters (SP) | Hormonal Effects (HE) | Fertility-Recovery Potential (FRP) |
---|---|---|---|---|
Radical Prostatectomy [34,35,36,37,38] | 100% anejaculation (seminal vesicles + vas deferens excised) |
|
| Natural conception impossible → micro-TESE ± ICSI required |
Radiotherapy (EBRT ± brachytherapy) [39,40,41,42,43,44] | 80–90% develop dry ejaculation or markedly ↓ volume on long-term follow-up |
| Scatter ≥ 1 Gy may cause lasting Leydig cell damage and mild hypogonadism | Partial recovery if ≤ 0.5 Gy; ≥1–2 Gy ⇒ high chance of permanent infertility → cryopreserve before Tx |
Androgen-Deprivation Therapy (ADT) [45,46,47,48,49,50,51,52] | Functional aspermia; profound ↓ libido and ejaculation frequency |
| Castrate T (<50 ng/dL); suppressed (GnRH agonist) or rebound (anti-androgen mono) LH/FSH | Young men on ≤6–12 mo may recover within a year; prolonged/older ⇒ often irreversible; bank sperm first |
Chemotherapy (taxanes, cabazitaxel, etc.) [53,54,55,56,57,58,59,60,61,62] | Anatomical EF preserved but diminished by fatigue/neuropathy; occasional autonomic anejaculation |
|
| Highly unpredictable—some regain counts after years; many remain infertile; pre-Tx cryopreservation essential |
Next-generation AR pathway inhibitors (enzalutamide, apalutamide, darolutamide, abiraterone) [63,64,65,66,67,68,69,70,71] | With concomitant ADT: EF already absent; as monotherapy: mild ↓ ejaculate volume, libido | Human data is sparse; animal and mechanistic data predict ↓ spermatogenesis despite normal/elevated serum T | ADT-combined: castrate T; mono-Rx: serum T ↑ (pituitary disinhibition) but intratesticular T ↓ | Reversible in principle after discontinuation, but no systematic human follow-up; advise sperm banking |
Focal/organ-preserving local therapies (HIFU, focal cryotherapy, IRE, laser) [72,73,74,75,76,77,78,79] | ~70% retain antegrade EF; aspermia is uncommon | Testes untouched; transient mild oligo–asthenospermia can normalize by 12 mo | Endocrine axis unaffected | High likelihood of natural conception; long-term fertility studies still limited; monitor semen post-Tx |
Emerging systemic agents
| Additional EF loss is minimal (patients are usually on background ADT) | No dedicated human data; potential for DNA damage (PARPi, 177Lu-PSMA) | Generally dictated by concurrent ADT; Radium-223; and 177Lu-PSMA may expose testes to low-dose radiation | Theoretical or unknown; regulatory guidance: counsel and cryopreserve when feasible |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaltsas, A.; Razos, N.; Kratiras, Z.; Deligiannis, D.; Stavropoulos, M.; Adamos, K.; Zachariou, A.; Dimitriadis, F.; Sofikitis, N.; Chrisofos, M. Prostate Cancer Treatments and Their Effects on Male Fertility: Mechanisms and Mitigation Strategies. J. Pers. Med. 2025, 15, 360. https://doi.org/10.3390/jpm15080360
Kaltsas A, Razos N, Kratiras Z, Deligiannis D, Stavropoulos M, Adamos K, Zachariou A, Dimitriadis F, Sofikitis N, Chrisofos M. Prostate Cancer Treatments and Their Effects on Male Fertility: Mechanisms and Mitigation Strategies. Journal of Personalized Medicine. 2025; 15(8):360. https://doi.org/10.3390/jpm15080360
Chicago/Turabian StyleKaltsas, Aris, Nikolaos Razos, Zisis Kratiras, Dimitrios Deligiannis, Marios Stavropoulos, Konstantinos Adamos, Athanasios Zachariou, Fotios Dimitriadis, Nikolaos Sofikitis, and Michael Chrisofos. 2025. "Prostate Cancer Treatments and Their Effects on Male Fertility: Mechanisms and Mitigation Strategies" Journal of Personalized Medicine 15, no. 8: 360. https://doi.org/10.3390/jpm15080360
APA StyleKaltsas, A., Razos, N., Kratiras, Z., Deligiannis, D., Stavropoulos, M., Adamos, K., Zachariou, A., Dimitriadis, F., Sofikitis, N., & Chrisofos, M. (2025). Prostate Cancer Treatments and Their Effects on Male Fertility: Mechanisms and Mitigation Strategies. Journal of Personalized Medicine, 15(8), 360. https://doi.org/10.3390/jpm15080360