Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (510)

Search Parameters:
Keywords = e-Learning research advances

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1477 KiB  
Review
Bioinformation and Monitoring Technology for Environmental DNA Analysis: A Review
by Hyo Jik Yoon, Joo Hyeong Seo, Seung Hoon Shin, Mohamed A. A. Abedlhamid and Seung Pil Pack
Biosensors 2025, 15(8), 494; https://doi.org/10.3390/bios15080494 (registering DOI) - 1 Aug 2025
Abstract
Environmental DNA (eDNA) analysis has emerged as a transformative tool in environmental monitoring, enabling non-invasive detection of species and microbial communities across diverse ecosystems. This study systematically reviews the role of bioinformation technology in eDNA analysis, focusing on methodologies and applications across air, [...] Read more.
Environmental DNA (eDNA) analysis has emerged as a transformative tool in environmental monitoring, enabling non-invasive detection of species and microbial communities across diverse ecosystems. This study systematically reviews the role of bioinformation technology in eDNA analysis, focusing on methodologies and applications across air, soil, groundwater, sediment, and aquatic environments. Advances in molecular biology, high-throughput sequencing, bioinformatics tools, and field-deployable detection systems have significantly improved eDNA detection sensitivity, allowing for early identification of invasive species, monitoring ecosystem health, and tracking pollutant degradation processes. Airborne eDNA monitoring has demonstrated potential for assessing microbial shifts due to air pollution and tracking pathogen transmission. In terrestrial environments, eDNA facilitates soil and groundwater pollution assessments and enhances understanding of biodegradation processes. In aquatic ecosystems, eDNA serves as a powerful tool for biodiversity assessment, invasive species monitoring, and wastewater-based epidemiology. Despite its growing applicability, challenges remain, including DNA degradation, contamination risks, and standardization of sampling protocols. Future research should focus on integrating eDNA data with remote sensing, machine learning, and ecological modeling to enhance predictive environmental monitoring frameworks. As technological advancements continue, eDNA-based approaches are poised to revolutionize environmental assessment, conservation strategies, and public health surveillance. Full article
(This article belongs to the Section Environmental Biosensors and Biosensing)
Show Figures

Figure 1

29 pages, 959 KiB  
Review
Machine Learning-Driven Insights in Cancer Metabolomics: From Subtyping to Biomarker Discovery and Prognostic Modeling
by Amr Elguoshy, Hend Zedan and Suguru Saito
Metabolites 2025, 15(8), 514; https://doi.org/10.3390/metabo15080514 (registering DOI) - 1 Aug 2025
Abstract
Cancer metabolic reprogramming plays a critical role in tumor progression and therapeutic resistance, underscoring the need for advanced analytical strategies. Metabolomics, leveraging mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy, offers a comprehensive and functional readout of tumor biochemistry. By enabling both targeted [...] Read more.
Cancer metabolic reprogramming plays a critical role in tumor progression and therapeutic resistance, underscoring the need for advanced analytical strategies. Metabolomics, leveraging mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy, offers a comprehensive and functional readout of tumor biochemistry. By enabling both targeted metabolite quantification and untargeted profiling, metabolomics captures the dynamic metabolic alterations associated with cancer. The integration of metabolomics with machine learning (ML) approaches further enhances the interpretation of these complex, high-dimensional datasets, providing powerful insights into cancer biology from biomarker discovery to therapeutic targeting. This review systematically examines the transformative role of ML in cancer metabolomics. We discuss how various ML methodologies—including supervised algorithms (e.g., Support Vector Machine, Random Forest), unsupervised techniques (e.g., Principal Component Analysis, t-SNE), and deep learning frameworks—are advancing cancer research. Specifically, we highlight three major applications of ML–metabolomics integration: (1) cancer subtyping, exemplified by the use of Similarity Network Fusion (SNF) and LASSO regression to classify triple-negative breast cancer into subtypes with distinct survival outcomes; (2) biomarker discovery, where Random Forest and Partial Least Squares Discriminant Analysis (PLS-DA) models have achieved >90% accuracy in detecting breast and colorectal cancers through biofluid metabolomics; and (3) prognostic modeling, demonstrated by the identification of race-specific metabolic signatures in breast cancer and the prediction of clinical outcomes in lung and ovarian cancers. Beyond these areas, we explore applications across prostate, thyroid, and pancreatic cancers, where ML-driven metabolomics is contributing to earlier detection, improved risk stratification, and personalized treatment planning. We also address critical challenges, including issues of data quality (e.g., batch effects, missing values), model interpretability, and barriers to clinical translation. Emerging solutions, such as explainable artificial intelligence (XAI) approaches and standardized multi-omics integration pipelines, are discussed as pathways to overcome these hurdles. By synthesizing recent advances, this review illustrates how ML-enhanced metabolomics bridges the gap between fundamental cancer metabolism research and clinical application, offering new avenues for precision oncology through improved diagnosis, prognosis, and tailored therapeutic strategies. Full article
(This article belongs to the Special Issue Nutritional Metabolomics in Cancer)
Show Figures

Figure 1

48 pages, 2506 KiB  
Article
Enhancing Ship Propulsion Efficiency Predictions with Integrated Physics and Machine Learning
by Hamid Reza Soltani Motlagh, Seyed Behbood Issa-Zadeh, Md Redzuan Zoolfakar and Claudia Lizette Garay-Rondero
J. Mar. Sci. Eng. 2025, 13(8), 1487; https://doi.org/10.3390/jmse13081487 - 31 Jul 2025
Abstract
This research develops a dual physics-based machine learning system to forecast fuel consumption and CO2 emissions for a 100 m oil tanker across six operational scenarios: Original, Paint, Advanced Propeller, Fin, Bulbous Bow, and Combined. The combination of hydrodynamic calculations with Monte [...] Read more.
This research develops a dual physics-based machine learning system to forecast fuel consumption and CO2 emissions for a 100 m oil tanker across six operational scenarios: Original, Paint, Advanced Propeller, Fin, Bulbous Bow, and Combined. The combination of hydrodynamic calculations with Monte Carlo simulations provides a solid foundation for training machine learning models, particularly in cases where dataset restrictions are present. The XGBoost model demonstrated superior performance compared to Support Vector Regression, Gaussian Process Regression, Random Forest, and Shallow Neural Network models, achieving near-zero prediction errors that closely matched physics-based calculations. The physics-based analysis demonstrated that the Combined scenario, which combines hull coatings with bulbous bow modifications, produced the largest fuel consumption reduction (5.37% at 15 knots), followed by the Advanced Propeller scenario. The results demonstrate that user inputs (e.g., engine power: 870 kW, speed: 12.7 knots) match the Advanced Propeller scenario, followed by Paint, which indicates that advanced propellers or hull coatings would optimize efficiency. The obtained insights help ship operators modify their operational parameters and designers select essential modifications for sustainable operations. The model maintains its strength at low speeds, where fuel consumption is minimal, making it applicable to other oil tankers. The hybrid approach provides a new tool for maritime efficiency analysis, yielding interpretable results that support International Maritime Organization objectives, despite starting with a limited dataset. The model requires additional research to enhance its predictive accuracy using larger datasets and real-time data collection, which will aid in achieving global environmental stewardship. Full article
(This article belongs to the Special Issue Machine Learning for Prediction of Ship Motion)
34 pages, 17155 KiB  
Article
Machine Learning Ensemble Methods for Co-Seismic Landslide Susceptibility: Insights from the 2015 Nepal Earthquake
by Tulasi Ram Bhattarai and Netra Prakash Bhandary
Appl. Sci. 2025, 15(15), 8477; https://doi.org/10.3390/app15158477 (registering DOI) - 30 Jul 2025
Abstract
The Mw 7.8 Gorkha Earthquake of 25 April 2015 triggered over 25,000 landslides across central Nepal, with 4775 events concentrated in Gorkha District alone. Despite substantial advances in landslide susceptibility mapping, existing studies often overlook the compound role of post-seismic rainfall and lack [...] Read more.
The Mw 7.8 Gorkha Earthquake of 25 April 2015 triggered over 25,000 landslides across central Nepal, with 4775 events concentrated in Gorkha District alone. Despite substantial advances in landslide susceptibility mapping, existing studies often overlook the compound role of post-seismic rainfall and lack robust spatial validation. To address this gap, we validated an ensemble machine learning framework for co-seismic landslide susceptibility modeling by integrating seismic, geomorphological, hydrological, and anthropogenic variables, including cumulative post-seismic rainfall. Using a balanced dataset of 4775 landslide and non-landslide instances, we evaluated the performance of Logistic Regression (LR), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) models through spatial cross-validation, SHapley Additive exPlanations (SHAP) explainability, and ablation analysis. The RF model outperformed all others, achieving an accuracy of 87.9% and a Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) value of 0.94, while XGBoost closely followed (AUC = 0.93). Ensemble models collectively classified over 95% of observed landslides into High and Very High susceptibility zones, demonstrating strong spatial reliability. SHAP analysis identified elevation, proximity to fault, peak ground acceleration (PGA), slope, and rainfall as dominant predictors. Notably, the inclusion of post-seismic rainfall substantially improved recall and F1 scores in ablation experiments. Spatial cross-validation revealed the superior generalizability of ensemble models under heterogeneous terrain conditions. The findings underscore the value of integrating post-seismic hydrometeorological factors and spatial validation into susceptibility assessments. We recommend adopting ensemble models, particularly RF, for operational hazard mapping in earthquake-prone mountainous regions. Future research should explore the integration of dynamic rainfall thresholds and physics-informed frameworks to enhance early warning systems and climate resilience. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

20 pages, 732 KiB  
Review
AI Methods Tailored to Influenza, RSV, HIV, and SARS-CoV-2: A Focused Review
by Achilleas Livieratos, George C. Kagadis, Charalambos Gogos and Karolina Akinosoglou
Pathogens 2025, 14(8), 748; https://doi.org/10.3390/pathogens14080748 - 30 Jul 2025
Viewed by 29
Abstract
Artificial intelligence (AI) techniques—ranging from hybrid mechanistic–machine learning (ML) ensembles to gradient-boosted decision trees, support-vector machines, and deep neural networks—are transforming the management of seasonal influenza, respiratory syncytial virus (RSV), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Symptom-based [...] Read more.
Artificial intelligence (AI) techniques—ranging from hybrid mechanistic–machine learning (ML) ensembles to gradient-boosted decision trees, support-vector machines, and deep neural networks—are transforming the management of seasonal influenza, respiratory syncytial virus (RSV), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Symptom-based triage models using eXtreme Gradient Boosting (XGBoost) and Random Forests, as well as imaging classifiers built on convolutional neural networks (CNNs), have improved diagnostic accuracy across respiratory infections. Transformer-based architectures and social media surveillance pipelines have enabled real-time monitoring of COVID-19. In HIV research, support-vector machines (SVMs), logistic regression, and deep neural network (DNN) frameworks advance viral-protein classification and drug-resistance mapping, accelerating antiviral and vaccine discovery. Despite these successes, persistent challenges remain—data heterogeneity, limited model interpretability, hallucinations in large language models (LLMs), and infrastructure gaps in low-resource settings. We recommend standardized open-access data pipelines and integration of explainable-AI methodologies to ensure safe, equitable deployment of AI-driven interventions in future viral-outbreak responses. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

23 pages, 7839 KiB  
Article
Automated Identification and Analysis of Cracks and Damage in Historical Buildings Using Advanced YOLO-Based Machine Vision Technology
by Kui Gao, Li Chen, Zhiyong Li and Zhifeng Wu
Buildings 2025, 15(15), 2675; https://doi.org/10.3390/buildings15152675 - 29 Jul 2025
Viewed by 153
Abstract
Structural cracks significantly threaten the safety and longevity of historical buildings, which are essential parts of cultural heritage. Conventional inspection techniques, which depend heavily on manual visual evaluations, tend to be inefficient and subjective. This research introduces an automated framework for crack and [...] Read more.
Structural cracks significantly threaten the safety and longevity of historical buildings, which are essential parts of cultural heritage. Conventional inspection techniques, which depend heavily on manual visual evaluations, tend to be inefficient and subjective. This research introduces an automated framework for crack and damage detection using advanced YOLO (You Only Look Once) models, aiming to improve both the accuracy and efficiency of monitoring heritage structures. A dataset comprising 2500 high-resolution images was gathered from historical buildings and categorized into four levels of damage: no damage, minor, moderate, and severe. Following preprocessing and data augmentation, a total of 5000 labeled images were utilized to train and evaluate four YOLO variants: YOLOv5, YOLOv8, YOLOv10, and YOLOv11. The models’ performances were measured using metrics such as precision, recall, mAP@50, mAP@50–95, as well as losses related to bounding box regression, classification, and distribution. Experimental findings reveal that YOLOv10 surpasses other models in multi-target detection and identifying minor damage, achieving higher localization accuracy and faster inference speeds. YOLOv8 and YOLOv11 demonstrate consistent performance and strong adaptability, whereas YOLOv5 converges rapidly but shows weaker validation results. Further testing confirms YOLOv10’s effectiveness across different structural components, including walls, beams, and ceilings. This study highlights the practicality of deep learning-based crack detection methods for preserving building heritage. Future advancements could include combining semantic segmentation networks (e.g., U-Net) with attention mechanisms to further refine detection accuracy in complex scenarios. Full article
(This article belongs to the Special Issue Structural Safety Evaluation and Health Monitoring)
Show Figures

Figure 1

26 pages, 2177 KiB  
Article
Explaining and Predicting Microbiological Water Quality for Sustainable Management of Drinking Water Treatment Facilities
by Goran Volf, Ivana Sušanj Čule, Nataša Atanasova, Sonja Zorko and Nevenka Ožanić
Sustainability 2025, 17(15), 6659; https://doi.org/10.3390/su17156659 - 22 Jul 2025
Viewed by 375
Abstract
The continuous variability in the microbiological quality of surface waters presents significant challenges for ensuring the production of safe drinking water in compliance with public health regulations. Inadequate treatment of surface waters can lead to the presence of pathogenic microorganisms in the drinking [...] Read more.
The continuous variability in the microbiological quality of surface waters presents significant challenges for ensuring the production of safe drinking water in compliance with public health regulations. Inadequate treatment of surface waters can lead to the presence of pathogenic microorganisms in the drinking water supply, posing serious risks to public health. This research presents an in-depth data analysis using machine learning tools for the induction of models to describe and predict microbiological water quality for the sustainable management of the Butoniga drinking water treatment facility in Istria (Croatia). Specifically, descriptive and predictive models for total coliforms and E. coli bacteria (i.e., classes), which are recognized as key sanitary indicators of microbiological contamination under both EU and Croatian water quality legislation, were developed. The descriptive models provided useful information about the main environmental factors that influence the microbiological water quality. The most significant influential factors were found to be pH, water temperature, and water turbidity. On the other hand, the predictive models were developed to estimate the concentrations of total coliforms and E. coli bacteria seven days in advance using several machine learning methods, including model trees, random forests, multi-layer perceptron, bagging, and XGBoost. Among these, model trees were selected for their interpretability and potential integration into decision support systems. The predictive models demonstrated satisfactory performance, with a correlation coefficient of 0.72 for total coliforms, and moderate predictive accuracy for E. coli bacteria, with a correlation coefficient of 0.48. The resulting models offer actionable insights for optimizing operational responses in water treatment processes based on real-time and predicted microbiological conditions in the Butoniga reservoir. Moreover, this research contributes to the development of predictive frameworks for microbiological water quality management and highlights the importance of further research and monitoring of this key aspect of the preservation of the environment and public health. Full article
Show Figures

Graphical abstract

18 pages, 2545 KiB  
Article
Reliable Indoor Fire Detection Using Attention-Based 3D CNNs: A Fire Safety Engineering Perspective
by Mostafa M. E. H. Ali and Maryam Ghodrat
Fire 2025, 8(7), 285; https://doi.org/10.3390/fire8070285 - 21 Jul 2025
Viewed by 467
Abstract
Despite recent advances in deep learning for fire detection, much of the current research prioritizes model-centric metrics over dataset fidelity, particularly from a fire safety engineering perspective. Commonly used datasets are often dominated by fully developed flames, mislabel smoke-only frames as non-fire, or [...] Read more.
Despite recent advances in deep learning for fire detection, much of the current research prioritizes model-centric metrics over dataset fidelity, particularly from a fire safety engineering perspective. Commonly used datasets are often dominated by fully developed flames, mislabel smoke-only frames as non-fire, or lack intra-video diversity due to redundant frames from limited sources. Some works treat smoke detection alone as early-stage detection, even though many fires (e.g., electrical or chemical) begin with visible flames and no smoke. Additionally, attempts to improve model applicability through mixed-context datasets—combining indoor, outdoor, and wildland scenes—often overlook the unique false alarm sources and detection challenges specific to each environment. To address these limitations, we curated a new video dataset comprising 1108 annotated fire and non-fire clips captured via indoor surveillance cameras. Unlike existing datasets, ours emphasizes early-stage fire dynamics (pre-flashover) and includes varied fire sources (e.g., sofa, cupboard, and attic fires), realistic false alarm triggers (e.g., flame-colored objects, artificial lighting), and a wide range of spatial layouts and illumination conditions. This collection enables robust training and benchmarking for early indoor fire detection. Using this dataset, we developed a spatiotemporal fire detection model based on the mixed convolutions ResNets (MC3_18) architecture, augmented with Convolutional Block Attention Modules (CBAM). The proposed model achieved 86.11% accuracy, 88.76% precision, and 84.04% recall, along with low false positive (11.63%) and false negative (15.96%) rates. Compared to its CBAM-free baseline, the model exhibits notable improvements in F1-score and interpretability, as confirmed by Grad-CAM++ visualizations highlighting attention to semantically meaningful fire features. These results demonstrate that effective early fire detection is inseparable from high-quality, context-specific datasets. Our work introduces a scalable, safety-driven approach that advances the development of reliable, interpretable, and deployment-ready fire detection systems for residential environments. Full article
Show Figures

Figure 1

30 pages, 2049 KiB  
Review
Wearable Sensors-Based Intelligent Sensing and Application of Animal Behaviors: A Comprehensive Review
by Luyu Ding, Chongxian Zhang, Yuxiao Yue, Chunxia Yao, Zhuo Li, Yating Hu, Baozhu Yang, Weihong Ma, Ligen Yu, Ronghua Gao and Qifeng Li
Sensors 2025, 25(14), 4515; https://doi.org/10.3390/s25144515 - 21 Jul 2025
Viewed by 486
Abstract
Accurate monitoring of animal behaviors enables improved management in precision livestock farming (PLF), supporting critical applications including health assessment, estrus detection, parturition monitoring, and feed intake estimation. Although both contact and non-contact sensing modalities are utilized, wearable devices with embedded sensors (e.g., accelerometers, [...] Read more.
Accurate monitoring of animal behaviors enables improved management in precision livestock farming (PLF), supporting critical applications including health assessment, estrus detection, parturition monitoring, and feed intake estimation. Although both contact and non-contact sensing modalities are utilized, wearable devices with embedded sensors (e.g., accelerometers, pressure sensors) offer unique advantages through continuous data streams that enhance behavioral traceability. Focusing specifically on contact sensing techniques, this review examines sensor characteristics and data acquisition challenges, methodologies for processing behavioral data and implementing identification algorithms, industrial applications enabled by recognition outcomes, and prevailing challenges with emerging research opportunities. Current behavior classification relies predominantly on traditional machine learning or deep learning approaches with high-frequency data acquisition. The fundamental limitation restricting advancement in this field is the difficulty in maintaining high-fidelity recognition performance at reduced acquisition rates, particularly for integrated multi-behavior identification. Considering that the computational demands and limited adaptability to complex field environments remain significant constraints, Tiny Machine Learning (Tiny ML) could present opportunities to guide future research toward practical, scalable behavioral monitoring solutions. In addition, algorithm development for functional applications post behavior recognition may represent a critical future research direction. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

26 pages, 2055 KiB  
Article
Comparative Analysis of Time-Series Forecasting Models for eLoran Systems: Exploring the Effectiveness of Dynamic Weighting
by Jianchen Di, Miao Wu, Jun Fu, Wenkui Li, Xianzhou Jin and Jinyu Liu
Sensors 2025, 25(14), 4462; https://doi.org/10.3390/s25144462 - 17 Jul 2025
Viewed by 295
Abstract
This paper presents an advanced time-series forecasting methodology that integrates multiple machine learning models to improve data prediction in enhanced long-range navigation (eLoran) systems. The analysis evaluates five forecasting approaches: multivariate linear regression, long short-term memory (LSTM) networks, random forest (RF), a fusion [...] Read more.
This paper presents an advanced time-series forecasting methodology that integrates multiple machine learning models to improve data prediction in enhanced long-range navigation (eLoran) systems. The analysis evaluates five forecasting approaches: multivariate linear regression, long short-term memory (LSTM) networks, random forest (RF), a fusion model combining LSTM and RF, and a dynamic weighting (DW) model. The results demonstrate that the DW model achieves the highest prediction accuracy while maintaining strong computational efficiency, making it particularly suitable for real-time applications with stringent performance requirements. Although the LSTM model effectively captures temporal dependencies, it demands considerable computational resources. The hybrid model utilises the strengths of LSTM and RF to enhance the accuracy but involves extended training times. By contrast, the DW model dynamically adjusts the relative contributions of LSTM and RF on the basis of the data characteristics, thereby enhancing the accuracy while significantly reducing the computational demands. Demonstrating exceptional performance on the ASF2 dataset, the DW model provides a well-balanced solution that combines precision with operational efficiency. This research offers valuable insights into optimising additional secondary phase factor (ASF) prediction in eLoran systems and highlights the broader applicability of real-time forecasting models. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

13 pages, 2012 KiB  
Article
Electronic Nose System Based on Metal Oxide Semiconductor Sensors for the Analysis of Volatile Organic Compounds in Exhaled Breath for the Discrimination of Liver Cirrhosis Patients and Healthy Controls
by Makhtar War, Benachir Bouchikhi, Omar Zaim, Naoual Lagdali, Fatima Zohra Ajana and Nezha El Bari
Chemosensors 2025, 13(7), 260; https://doi.org/10.3390/chemosensors13070260 - 17 Jul 2025
Viewed by 326
Abstract
The early detection of liver cirrhosis (LC) is crucial due to its high morbidity and mortality in advanced stages. Reliable, non-invasive diagnostic tools are essential for timely intervention. Exhaled human breath, reflecting metabolic changes, offers significant potential for disease diagnosis. This paper focuses [...] Read more.
The early detection of liver cirrhosis (LC) is crucial due to its high morbidity and mortality in advanced stages. Reliable, non-invasive diagnostic tools are essential for timely intervention. Exhaled human breath, reflecting metabolic changes, offers significant potential for disease diagnosis. This paper focuses on the emerging role of sensor array-based volatile organic compounds (VOCs) analysis of exhaled breath, particularly using electronic nose (e-nose) technology to differentiate LC patients from healthy controls (HCs). This study included 55 participants: 27 LC patients and 28 HCs. Sensor’s measurement data were analyzed using machine learning techniques, such as principal component analysis (PCA), discriminant function analysis (DFA), and support vector machines (SVMs) that were utilized to uncover meaningful patterns and facilitate accurate classification of sensor-derived information. The diagnostic accuracy was thoroughly assessed through receiver operating characteristic (ROC) curve analysis, with specific emphasis on assessing sensitivity and specificity metrics. The e-nose effectively distinguished LC from HC, with PCA explaining 92.50% variance and SVMs achieving 100% classification accuracy. This study demonstrates the significant potential of e-nose technology towards VOCs analysis in exhaled breath, as a valuable tool for LC diagnosis. It also explores feature extraction methods and suitable algorithms for effectively distinguishing between LC patients and controls. This research provides a foundation for advancing breath-based diagnostic technologies for early detection and monitoring of liver cirrhosis. Full article
(This article belongs to the Section Analytical Methods, Instrumentation and Miniaturization)
Show Figures

Figure 1

16 pages, 2355 KiB  
Article
Generalising Stock Detection in Retail Cabinets with Minimal Data Using a DenseNet and Vision Transformer Ensemble
by Babak Rahi, Deniz Sagmanli, Felix Oppong, Direnc Pekaslan and Isaac Triguero
Mach. Learn. Knowl. Extr. 2025, 7(3), 66; https://doi.org/10.3390/make7030066 - 16 Jul 2025
Viewed by 278
Abstract
Generalising deep-learning models to perform well on unseen data domains with minimal retraining remains a significant challenge in computer vision. Even when the target task—such as quantifying the number of elements in an image—stays the same, data quality, shape, or form variations can [...] Read more.
Generalising deep-learning models to perform well on unseen data domains with minimal retraining remains a significant challenge in computer vision. Even when the target task—such as quantifying the number of elements in an image—stays the same, data quality, shape, or form variations can deviate from the training conditions, often necessitating manual intervention. As a real-world industry problem, we aim to automate stock level estimation in retail cabinets. As technology advances, new cabinet models with varying shapes emerge alongside new camera types. This evolving scenario poses a substantial obstacle to deploying long-term, scalable solutions. To surmount the challenge of generalising to new cabinet models and cameras with minimal amounts of sample images, this research introduces a new solution. This paper proposes a novel ensemble model that combines DenseNet-201 and Vision Transformer (ViT-B/8) architectures to achieve generalisation in stock-level classification. The novelty aspect of our solution comes from the fact that we combine a transformer with a DenseNet model in order to capture both the local, hierarchical details and the long-range dependencies within the images, improving generalisation accuracy with less data. Key contributions include (i) a novel DenseNet-201 + ViT-B/8 feature-level fusion, (ii) an adaptation workflow that needs only two images per class, (iii) a balanced layer-unfreezing schedule, (iv) a publicly described domain-shift benchmark, and (v) a 47 pp accuracy gain over four standard few-shot baselines. Our approach leverages fine-tuning techniques to adapt two pre-trained models to the new retail cabinets (i.e., standing or horizontal) and camera types using only two images per class. Experimental results demonstrate that our method achieves high accuracy rates of 91% on new cabinets with the same camera and 89% on new cabinets with different cameras, significantly outperforming standard few-shot learning methods. Full article
(This article belongs to the Section Data)
Show Figures

Figure 1

24 pages, 1795 KiB  
Article
An Empirically Validated Framework for Automated and Personalized Residential Energy-Management Integrating Large Language Models and the Internet of Energy
by Vinícius Pereira Gonçalves, Andre Luiz Marques Serrano, Gabriel Arquelau Pimenta Rodrigues, Matheus Noschang de Oliveira, Rodolfo Ipolito Meneguette, Guilherme Dantas Bispo, Maria Gabriela Mendonça Peixoto and Geraldo Pereira Rocha Filho
Energies 2025, 18(14), 3744; https://doi.org/10.3390/en18143744 - 15 Jul 2025
Cited by 1 | Viewed by 315
Abstract
The growing global demand for energy has resulted in a demand for innovative strategies for residential energy management. This study explores a novel framework—MELISSA (Modern Energy LLM-IoE Smart Solution for Automation)—that integrates Internet of Things (IoT) sensor networks with Large Language Models (LLMs) [...] Read more.
The growing global demand for energy has resulted in a demand for innovative strategies for residential energy management. This study explores a novel framework—MELISSA (Modern Energy LLM-IoE Smart Solution for Automation)—that integrates Internet of Things (IoT) sensor networks with Large Language Models (LLMs) to optimize household energy consumption through intelligent automation and personalized interactions. The system combines real-time monitoring, machine learning algorithms for behavioral analysis, and natural language processing to deliver personalized, actionable recommendations through a conversational interface. A 12-month randomized controlled trial was conducted with 100 households, which were stratified across four socioeconomic quintiles in metropolitan areas. The experimental design included the continuous collection of IoT data. Baseline energy consumption was measured and compared with post-intervention usage to assess system impact. Statistical analyses included k-means clustering, multiple linear regression, and paired t-tests. The system achieved its intended goal, with a statistically significant reduction of 5.66% in energy consumption (95% CI: 5.21–6.11%, p<0.001) relative to baseline, alongside high user satisfaction (mean = 7.81, SD = 1.24). Clustering analysis (k=4, silhouette = 0.68) revealed four distinct energy-consumption profiles. Multiple regression analysis (R2=0.68, p<0.001) identified household size, ambient temperature, and frequency of user engagement as the principal determinants of consumption. This research advances the theoretical understanding of human–AI interaction in energy management and provides robust empirical evidence of the effectiveness of LLM-mediated behavioral interventions. The findings underscore the potential of conversational AI applications in smart homes and have practical implications for optimization of residential energy use. Full article
Show Figures

Figure 1

20 pages, 1198 KiB  
Article
Semi-Supervised Deep Learning Framework for Predictive Maintenance in Offshore Wind Turbines
by Valerio F. Barnabei, Tullio C. M. Ancora, Giovanni Delibra, Alessandro Corsini and Franco Rispoli
Int. J. Turbomach. Propuls. Power 2025, 10(3), 14; https://doi.org/10.3390/ijtpp10030014 - 4 Jul 2025
Viewed by 403
Abstract
The increasing deployment of wind energy systems, particularly offshore wind farms, necessitates advanced monitoring and maintenance strategies to ensure optimal performance and minimize downtime. Supervisory Control And Data Acquisition (SCADA) systems have become indispensable tools for monitoring the operational health of wind turbines, [...] Read more.
The increasing deployment of wind energy systems, particularly offshore wind farms, necessitates advanced monitoring and maintenance strategies to ensure optimal performance and minimize downtime. Supervisory Control And Data Acquisition (SCADA) systems have become indispensable tools for monitoring the operational health of wind turbines, generating vast quantities of time series data from various sensors. Anomaly detection techniques applied to this data offer the potential to proactively identify deviations from normal behavior, providing early warning signals of potential component failures. Traditional model-based approaches for fault detection often struggle to capture the complexity and non-linear dynamics of wind turbine systems. This has led to a growing interest in data-driven methods, particularly those leveraging machine learning and deep learning, to address anomaly detection in wind energy applications. This study focuses on the development and application of a semi-supervised, multivariate anomaly detection model for horizontal axis wind turbines. The core of this study lies in Bidirectional Long Short-Term Memory (BI-LSTM) networks, specifically a BI-LSTM autoencoder architecture, to analyze time series data from a SCADA system and automatically detect anomalous behavior that could indicate potential component failures. Moreover, the approach is reinforced by the integration of the Isolation Forest algorithm, which operates in an unsupervised manner to further refine normal behavior by identifying and excluding additional anomalous points in the training set, beyond those already labeled by the data provider. The research utilizes a real-world dataset provided by EDP Renewables, encompassing two years of comprehensive SCADA records collected from a single offshore wind turbine operating in the Gulf of Guinea. Furthermore, the dataset contains the logs of failure events and recorded alarms triggered by the SCADA system across a wide range of subsystems. The paper proposes a multi-modal anomaly detection framework orchestrating an unsupervised module (i.e., decision tree method) with a supervised one (i.e., BI-LSTM AE). The results highlight the efficacy of the BI-LSTM autoencoder in accurately identifying anomalies within the SCADA data that exhibit strong temporal correlation with logged warnings and the actual failure events. The model’s performance is rigorously evaluated using standard machine learning metrics, including precision, recall, F1 Score, and accuracy, all of which demonstrate favorable results. Further analysis is conducted using Cumulative Sum (CUSUM) control charts to gain a deeper understanding of the identified anomalies’ behavior, particularly their persistence and timing leading up to the failures. Full article
Show Figures

Figure 1

35 pages, 1982 KiB  
Article
Predicting Mental Health Problems in Gay Men in Peru Using Machine Learning and Deep Learning Models
by Alejandro Aybar-Flores and Elizabeth Espinoza-Portilla
Informatics 2025, 12(3), 60; https://doi.org/10.3390/informatics12030060 - 2 Jul 2025
Viewed by 472
Abstract
Mental health disparities among those who self-identify as gay men in Peru remain a pressing public health concern, yet predictive models for early identification remain limited. This research aims to (1) develop machine learning and deep learning models to predict mental health issues [...] Read more.
Mental health disparities among those who self-identify as gay men in Peru remain a pressing public health concern, yet predictive models for early identification remain limited. This research aims to (1) develop machine learning and deep learning models to predict mental health issues in those who self-identify as gay men, and (2) evaluate the influence of demographic, economic, health-related, behavioral and social factors using interpretability techniques to enhance understanding of the factors shaping mental health outcomes. A dataset of 2186 gay men from the First Virtual Survey for LGBTIQ+ People in Peru (2017) was analyzed, considering demographic, economic, health-related, behavioral, and social factors. Several classification models were developed and compared, including Logistic Regression, Artificial Neural Networks, Random Forest, Gradient Boosting Machines, eXtreme Gradient Boosting, and a One-dimensional Convolutional Neural Network (1D-CNN). Additionally, the Shapley values and Layer-wise Relevance Propagation (LRP) heatmaps methods were used to evaluate the influence of the studied variables on the prediction of mental health issues. The results revealed that the 1D-CNN model demonstrated the strongest performance, achieving the highest classification accuracy and discrimination capability. Explainability analyses underlined prior infectious diseases diagnosis, access to medical assistance, experiences of discrimination, age, and sexual identity expression as key predictors of mental health outcomes. These findings suggest that advanced predictive techniques can provide valuable insights for identifying at-risk individuals, informing targeted interventions, and improving access to mental health care. Future research should refine these models to enhance predictive accuracy, broaden applicability, and support the integration of artificial intelligence into public health strategies aimed at addressing the mental health needs of this population. Full article
(This article belongs to the Section Health Informatics)
Show Figures

Figure 1

Back to TopTop