Wearable Sensors-Based Intelligent Sensing and Application of Animal Behaviors: A Comprehensive Review
Abstract
1. Introduction
2. Hotspots in Behavior Monitoring and Application Research
2.1. Targeting Animal Species and Behavior Type
Behavior | Definition | Reference |
---|---|---|
Feeding | Behaviors exhibited by animals while eating, such as chewing and swallowing. | [13,14,15] |
Resting | The relaxed state of an animal, lying down, or remaining still, typically to recover energy. | [13,16] |
Walking | The behavior of an animal when moving, usually in search of food, water, or other resources. | [13,15,17,18,19,20,21,22] |
Standing | The animal maintaining a standing posture, which may be for observing the surroundings, waiting, or preparing to move. | [15,17,18,19,20,21,22,23] |
Ruminating | The process in ruminant animals (cattle, sheep) of regurgitating and re-chewing food from the stomach. | [13,15,16,18] |
Grazing | Eating forage at ground level with the head down. | [13,14,16,17,19,22] |
Socializing | Interactions between animals, such as sniffing or physical contact, typically seen as social behavior in group-living species. | [23,24,25] |
Exploring | The behavior of animals investigating their surroundings by sniffing, licking, or observing, especially in new environments or when encountering novel stimuli. | [23,24] |
Parturition | Involving uterine contractions, the expulsion of offspring, and observable behaviors such as restlessness, vocalization, and seeking isolation. | [25] |
Licking /Grooming | The behavior of licking either their own body or another animal, usually for cleaning or showing affection. | [23] |
Pawing /Kicking | The behavior of animals pawing the ground or kicking, often due to agitation or aggressive emotions (rare in pigs). | [24] |
Fighting | Intense confrontational behavior between animals, often over resources or status, such as wrestling or headbutting | [24] |
2.2. Monitoring Techniques
2.3. Monitoring Purposes and Application
3. Behavior Monitoring Based on Wearable Sensors
3.1. Sensing
3.1.1. Sensor Type
Sensing Method | Sampling Frequency | Deployment Location | Behavior Categories Identified | Time Window Size | Recognition Accuracy | Number of Animals | Species | Reference |
---|---|---|---|---|---|---|---|---|
ACC | 62.5 Hz | Jaw | Grazing, rumination, resting | 5 s | 93% | 3 | Sheep | [16] |
ACC | 12 Hz | Ear | Grazing, standing, walking | 10 s | 94–99% | 10 | Sheep | [17] |
ACC | 50 Hz | Neck | Grazing, walking, rumination, resting, drinking | 5.12 s | 90% | 10 | Cattle | [13] |
ACC | 50–62.5 Hz | Neck, Ear | Feeding, walking, resting, ruminating | 4.1–5.12 s | 80.9–87.4% | 27 | Cattle | [13] |
ACSs | 44.1 kHz | Forehead | Grazing, ruminating | 300 points | 76.5–83.3% | 5 | Cattle | [37] |
ACSs | 44.1 kHz | Neck | Mouth open, mouth closed, mixed mouth movements | 256 points | 99.5% | 10 | Cattle | [38] |
ACSs | \ | Forehead | Bites, exclusive chews, chew-bite combinations, exclusive sorting | 2048 points | 89.62–95.9% | 10 | Cattle | [39] |
PRSs | 2 Hz | Reticulorumen | Ruminating, eating, drinking, sleeping | 120 s | 98% | 4 | Cattle | [40] |
PRSs | 10 Hz | Noseband | Ruminating, eating, drinking, other | 10 s | 93% | 60 | Cattle | [41] |
PRSs | 50 Hz | Noseband | Ruminating, eating, other | 10 s | 96.6% | 3 | Cattle | [42] |
Location (GNSS) | \ | Neck | Movement speeds during estrus and non-estrus | \ | \ | 48 | Sheep | [43] |
Location (GPS) | \ | Neck | Tracking to analyze feeding patterns and pasture grazing behavior | \ | \ | 357 | Sheep | [14] |
Sensing Method | Sampling Frequency | Deployment Location | Behavior Categories Identified | Time Window Size | Recognition Accuracy | Number of Animals | Species | Reference |
---|---|---|---|---|---|---|---|---|
ACC, UR | 50 Hz | Neck | Grazing, eating, walking, running, standing | 0.02 s | 95% | 1 | Sheep | [19] |
ACC, GPS | 60 Hz (GPS), 12 Hz (ACC) | Neck | Grazing or non-grazing (walking, standing, ruminating, drinking) | 81 s | 88.8% | 45 | Cattle | [18] |
ACC, GYR | 16–20 Hz | Ears, Neck | Walking, standing, lying, grazing | 3–7 s | 80–95% | 6–23 | Sheep | [20,21,22] |
PRSs, IMU | 30 Hz (PRSs), 200 Hz (IMU) | Claws of hind limbs | Gait analysis | \ | \ | 10 | Cattle | [44] |
IMU, GPS | 20 Hz (IMU), 1 Hz (GPS) | Chin, Neck, Hind legs | Feeding, ruminating, walking, standing, lying down | 5 s | 98.9–99.9% | 22 | Sheep | [15] |
3.1.2. Sampling Frequency
3.1.3. Sensor Deployment Position
3.2. Algorithms for Behavioral Recognition
3.2.1. Data Preprocessing
Denoising
Data Augmentation
Windowing
Feature Extraction
3.2.2. Behavior Classification
Machine Learning Algorithm
Algorithm Assembling and Deep Learning
3.2.3. Promising Use of Tiny Machine Learning
4. Application with Behavioral Monitoring
4.1. Feed Intake Estimation
4.2. Estrus and Parturition Alarming
4.3. Assessing Animal Health and Welfare
5. Challenges and Prospects
5.1. Current Challenges
5.2. Future Research Prospects
Author Contributions
Funding
Conflicts of Interest
References
- OECD-FAO Agricultural Outlook 2021–2030. 2021. Available online: https://www.oecd.org/en/publications/oecd-fao-agricultural-outlook-2021-2030_19428846-en.html (accessed on 10 October 2024).
- Li, Y.F.; Wang, W.S.; Guo, L.F.; Shu, H.; Xu, B.B.; Qi, J.W. Research Progress of Cattle Behavior Recognition Based on Wearable Sensors. Acta Ecol. Anim. Domastici 2022, 43, 1–9. [Google Scholar]
- Riaboff, L.; Shalloo, L.; Smeaton, A.F.; Couvreur, S.; Madouasse, A.; Keane, M.T. Predicting livestock behaviour using accelerometers: A systematic review of processing techniques for ruminant behaviour prediction from raw accelerometer data. Comput. Electron. Agric. 2022, 192, 106610. [Google Scholar] [CrossRef]
- Shangru, L.; Chengrui, Z.; Ruixue, W.; Jiamei, S.; Hangshu, X.; Yonggen, Z.; Yukun, S. Establishment of a feed intake prediction model based on eating time, ruminating time and dietary composition. Comput. Electron. Agric. 2022, 202, 107296. [Google Scholar] [CrossRef]
- Talukder, S.; Thomson, P.C.; Kerrisk, K.L.; Clark, C.E.F.; Celi, P. Evaluation of infrared thermography body temperature and collar-mounted accelerometer and acoustic technology for predicting time of ovulation of cows in a pasture-based system. Theriogenology 2015, 83, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Silper, B.F.; Madureira, A.M.L.; Kaur, M.; Burnett, T.A.; Cerri, R.L.A. Short communication: Comparison of estrus characteristics in Holstein heifers by 2 activity monitoring systems. J. Dairy Sci. 2015, 98, 3158–3165. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, S.A.R.; Hayajneh, A.M.; Hafeez, M.; Ahmed, Q.Z. Unlocking Edge Intelligence Through Tiny Machine Learning (TinyML). IEEE Access 2022, 10, 100867–100877. [Google Scholar] [CrossRef]
- Qiao, Y.; Kong, H.; Clark, C.; Lomax, S.; Su, D.; Eiffert, S.; Sukkarieh, S. Intelligent Perception-Based Cattle Lameness Detection and Behaviour Recognition: A Review. Animals 2021, 11, 3033. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Jiang, H.; Qiao, Y.; Jiang, S.; Lin, H.; Sun, Q. The Research Progress of Vision-Based Artificial Intelligence in Smart Pig Farming. Sensors 2022, 22, 6541. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.X.; Gao, F.Y.; Liu, T.H.; Wang, H.; Ha, S.; Yang, T.T.; Yuan, C.C. Research progress of the recognition of free-range sheep behavior using sensor technology. Trans. Chin. Soc. Agric. Eng. 2023, 39, 1–18. [Google Scholar] [CrossRef]
- Liu, M.; He, J.; Liu, D.; Hou, M.; Ma, Y. Bibliometric and visualized analysis of dynamic balance and brain function using web of science and CiteSpace from 1995 to 2022. Heliyon 2024, 10, e24300. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, J.; Chen, Y.; Feng, X.; Sun, Z. Knowledge Mapping of Machine Learning Approaches Applied in Agricultural Management—A Scientometric Review with CiteSpace. Sustainability 2021, 13, 7662. [Google Scholar] [CrossRef]
- Wang, L.; Arablouei, R.; Alvarenga, F.A.P.; Bishop-Hurley, G.J. Classifying animal behavior from accelerometry data via recurrent neural networks. Comput. Electron. Agric. 2023, 206, 107647. [Google Scholar] [CrossRef]
- Ermetin, O.; Karadağ, Y.; Yıldız, A.K.; Karaca, Ö.; Tüfekçi, H.; Tufan, Y.; Kayaalp, A.N. Use of a Global Positioning System (GPS) to Manage Extensive Sheep Farming and Pasture Land. J. Hell. Vet. Med. Soc. 2022, 73, 4441–4448. [Google Scholar] [CrossRef]
- Jin, Z.; Shu, H.; Hu, T.; Jiang, C.; Yan, R.; Qi, J.; Wang, W.; Guo, L. Behavior classification and spatiotemporal analysis of grazing sheep using deep learning. Comput. Electron. Agric. 2024, 220, 108894. [Google Scholar] [CrossRef]
- Giovanetti, V.; Decandia, M.; Molle, G.; Acciaro, M.; Mameli, M.; Cabiddu, A.; Cossu, R.; Serra, M.G.; Manca, C.; Rassu, S.P.G.; et al. Automatic classification system for grazing, ruminating and resting behaviour of dairy sheep using a tri-axial accelerometer. Livest. Sci. 2017, 196, 42–48. [Google Scholar] [CrossRef]
- Barwick, J.; Lamb, D.W.; Dobos, R.; Welch, M.; Trotter, M. Categorising sheep activity using a tri-axial accelerometer. Comput. Electron. Agric. 2018, 145, 289–297. [Google Scholar] [CrossRef]
- Brennan, J.; Johnson, P.; Olson, K. Classifying season long livestock grazing behavior with the use of a low-cost GPS and accelerometer. Comput. Electron. Agric. 2021, 181, 105957. [Google Scholar] [CrossRef]
- Nóbrega, L.; Gonçalves, P.; Antunes, M.; Corujo, D. Assessing sheep behavior through low-power microcontrollers in smart agriculture scenarios. Comput. Electron. Agric. 2020, 173, 105444. [Google Scholar] [CrossRef]
- Walton, E.; Casey, C.; Mitsch, J.; Vázquez-Diosdado, J.A.; Yan, J.; Dottorini, T.; Ellis, K.A.; Winterlich, A.; Kaler, J. Evaluation of sampling frequency, window size and sensor position for classification of sheep behaviour. R. Soc. Open Sci. 2018, 5, 171442. [Google Scholar] [CrossRef] [PubMed]
- Kaler, J.; Mitsch, J.; Vázquez-Diosdado, J.A.; Bollard, N.; Dottorini, T.; Ellis, K.A. Automated detection of lameness in sheep using machine learning approaches: Novel insights into behavioural differences among lame and non-lame sheep. R. Soc. Open Sci. 2020, 7, 190824. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Guo, L.; Shu, H.; Qi, J.; Li, Y.; Xu, B.; Zhang, W.; Wang, K.; Wang, W. Behavior Classification and Analysis of Grazing Sheep on Pasture with Different Sward Surface Heights Using Machine Learning. Animals 2022, 12, 1744. [Google Scholar] [CrossRef] [PubMed]
- Carslake, C.; Vázquez-Diosdado, J.A.; Kaler, J. Machine Learning Algorithms to Classify and Quantify Multiple Behaviours in Dairy Calves Using a Sensor: Moving beyond Classification in Precision Livestock. Sensors 2021, 21, 88. [Google Scholar] [CrossRef] [PubMed]
- Biszkup, M.; Vásárhelyi, G.; Setiawan, N.N.; Márton, A.; Szentes, S.; Balogh, P.; Babay-Török, B.; Pajor, G.; Drexler, D. Detectability of multi-dimensional movement and behaviour in cattle using sensor data and machine learning algorithms: Study on a Charolais bull. Artif. Intell. Agric. 2024, 14, 86–98. [Google Scholar] [CrossRef]
- Fogarty, E.; Swain, D.; Cronin, G.; Moraes, L.; Bailey, D.; Trotter, M. Developing a Simulated Online Model That Integrates GNSS, Accelerometer and Weather Data to Detect Parturition Events in Grazing Sheep: A Machine Learning Approach. Animals 2021, 11, 303. [Google Scholar] [CrossRef] [PubMed]
- Ying, Y.W.; Zeng, S.W.; Zhao, A.Y.; Yan, F.F. Recognition method for prenatal behavior of ewes based on the acquisition nodes of the collar. Trans. Chin. Soc. Agric. Eng. 2020, 36, 210–219. [Google Scholar] [CrossRef]
- Zhang, L.N.; Wu, P.; Wu, Y.; Xuan, C.Z.; Ma, Y.H.; Chen, P.Y. Real-time non-contact monitoring method for growth parameters of sheep based on image analysis. Trans. Chin. Soc. Agric. Eng. 2017, 33, 182–191. [Google Scholar] [CrossRef]
- Xuan, C.Z.; Ma, Y.H.; Wu, P.; Zhang, L.N.; Hao, M.; Zhang, X.Y. Behavior classification and recognition for facility breeding sheep based on acoustic signal weighted feature. Trans. Chin. Soc. Agric. Eng. 2016, 32, 195–202. [Google Scholar] [CrossRef]
- Qi, Y.S.; Jiao, J.; Bao, T.F.; Wang, Z.X.; Du, X.X. Cattle face detection algorithm in complex scenes using adaptive attention mechanism. Trans. Chin. Soc. Agric. Eng. 2023, 39, 173–183. [Google Scholar] [CrossRef]
- Li, Q.; Zhuo, Z.; Gao, R.; Wang, R.; Zhang, N.; Shi, Y.; Wu, T.; Ma, W. A pig behavior-tracking method based on a multi-channel high-efficiency attention mechanism. Agric. Commun. 2024, 2, 100062. [Google Scholar] [CrossRef]
- Guo, D.D.; Hao, R.F.; Ji, Z.T.; Yang, X.Y.; Zhou, C.; Liang, X.J. Classification and Recognition of Goats Daily Behavior Based onThree-dimensional Acceleration Sensor. Acta Ecol. Anim. Domastic 2014, 35, 53–57. [Google Scholar]
- Barwick, J.; Lamb, D.; Dobos, R.; Schneider, D.; Welch, M.; Trotter, M. Predicting Lameness in Sheep Activity Using Tri-Axial Acceleration Signals. Animals 2018, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, H.; Wang, J.; Zhao, K.; Li, X.; Liu, B.; Zhou, Y. Identification of oestrus cows based on vocalisation characteristics and machine learning technique using a dual-channel-equipped acoustic tag. Animal 2023, 17, 100811. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, Q.M.; Ahmad, M.; Anisi, M.H. Smart Farming: An Enhanced Pursuit of Sustainable Remote Livestock Tracking and Geofencing Using IoT and GPRS. Wirel. Commun. Mob. Comput. 2020, 2020, 6660733. [Google Scholar] [CrossRef]
- Kleanthous, N.; Hussain, A.J.; Khan, W.; Sneddon, J.; Al-Shamma’a, A.; Liatsis, P. A survey of machine learning approaches in animal behaviour. Neurocomputing 2022, 491, 442–463. [Google Scholar] [CrossRef]
- Mao, A.; Huang, E.; Wang, X.; Liu, K. Deep learning-based animal activity recognition with wearable sensors: Overview, challenges, and future directions. Comput. Electron. Agric. 2023, 211, 108043. [Google Scholar] [CrossRef]
- Chelotti, J.O.; Vanrell, S.R.; Martinez Rau, L.S.; Galli, J.R.; Planisich, A.M.; Utsumi, S.A.; Milone, D.H.; Giovanini, L.L.; Rufiner, H.L. An online method for estimating grazing and rumination bouts using acoustic signals in grazing cattle. Comput. Electron. Agric. 2020, 173, 105443. [Google Scholar] [CrossRef]
- Shorten, P.R.; Hunter, L.B. Acoustic sensors for automated detection of cow vocalization duration and type. Comput. Electron. Agric. 2023, 208, 107760. [Google Scholar] [CrossRef]
- Abdanan Mehdizadeh, S.; Sari, M.; Orak, H.; Pereira, D.F.; Nääs, I.d.A. Classifying Chewing and Rumination in Dairy Cows Using Sound Signals and Machine Learning. Animals 2023, 13, 2874. [Google Scholar] [CrossRef] [PubMed]
- Scheurwatero, J.; Hostens, M.; Nielen, M.; Heesterbeek, H.; van Hoei, R.; Aardema, H. Pressure measurement in the reticulum todetect different behaviors of healthy cows. PLoS ONE 2021, 16, e0254410. [Google Scholar]
- Zehner, N.; Umstätter, C.; Niederhauser, J.J.; Schick, M. System specification and validation of a noseband pressure sensor for measurement of ruminating and eating behavior in stable-fed cows. Comput. Electron. Agric. 2017, 136, 31–41. [Google Scholar] [CrossRef]
- Chen, G.; Li, C.; Guo, Y.; Shu, H.; Cao, Z.; Xu, B. Recognition of Cattle’s Feeding Behaviors Using Noseband Pressure Sensor With Machine Learning. Front. Vet. Sci. 2022, 9, 822621. [Google Scholar] [CrossRef] [PubMed]
- Fogarty, E.S.; Manning, J.K.; Trotter, M.G.; Schneider, D.A.; Thomson, P.C.; Bush, R.D.; Cronin, G.M. GNSS technology and its application for improved reproductive management in extensive sheep systems. Anim. Prod. Sci. 2015, 55, 1272–1280. [Google Scholar] [CrossRef]
- Fischer, D.; Friebel, L.I.G.; Grund, S.; Winter, W.; Wagner, F.C.; Mülling, C.K.W. Gait Analysis in Walking and Trotting Dairy Cows on Different Flooring Types with Novel Mobile Pressure Sensors and Inertial Sensors. Animals 2022, 12, 2457. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.D.; Kays, R.; Wikelski, M.; Wilson, R.; Klimley, A.P. Observing the unwatchable through acceleration logging of animal behavior. Anim. Biotelemetry 2013, 1, 20. [Google Scholar] [CrossRef]
- Mansbridge, N.; Mitsch, J.; Bollard, N.; Ellis, K.; Miguel-Pacheco, G.G.; Dottorini, T.; Kaler, J. Feature Selection and Comparison of Machine Learning Algorithms in Classification of Grazing and Rumination Behaviour in Sheep. Sensors 2018, 18, 3532. [Google Scholar] [CrossRef] [PubMed]
- Wang, K. Research on Monitoring of Grazing Information for Sheep Based on Acoustic Signals. Ph.D. Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2021. [Google Scholar]
- Hulbert, I.A.R.; French, J. The accuracy of GPS for wildlife telemetry and habitat mapping. J. Appl. Ecol. 2001, 38, 869–878. [Google Scholar] [CrossRef]
- Hongzhou, L.; Lu, Y. Research and design of technology for tracking and positioning wild stocking animals. Trans. Chin. Soc. Agric. Eng. 2014, 30, 232–237. [Google Scholar] [CrossRef]
- Zhang, S.M.; Cui, X.S.; Wu, Y.M.; Zheng, Q.L.; Wang, X.X.; Fan, W. Analyzing space-time characteristics of Xiangshan trawling based on BeidouVessel Monitoring System Data. Trans. Chin. Soc. Agric. Eng. 2015, 31, 151–156. [Google Scholar]
- Chelotti, J.O.; Vanrell, S.R.; Milone, D.H.; Utsumi, S.A.; Galli, J.R.; Rufiner, H.L.; Giovanini, L.L. A real-time algorithm for acoustic monitoring of ingestive behavior of grazing cattle. Comput. Electron. Agric. 2016, 127, 64–75. [Google Scholar] [CrossRef]
- Deniz, N.N.; Chelotti, J.O.; Galli, J.R.; Planisich, A.M.; Larripa, M.J.; Leonardo Rufiner, H.; Giovanini, L.L. Embedded system for real-time monitoring of foraging behavior of grazing cattle using acoustic signals. Comput. Electron. Agric. 2017, 138, 167–174. [Google Scholar] [CrossRef]
- Liu, Y.Q. Research of Dairy Goat Behavior Classification Based on Multi-Sensor Data; Northwest A&F University: Xianyang, China, 2020. [Google Scholar]
- Barwick, J.; Lamb, D.W.; Dobos, R.; Welch, M.; Schneider, D.; Trotter, M. Identifying Sheep Activity from Tri-Axial Acceleration Signals Using a Moving Window Classification Model. Remote Sens. 2020, 12, 646. [Google Scholar] [CrossRef]
- Zhang, C.H.; Xuan, C.Z.; Yu, W.B.; Hao, M.; Liu, L.F. Grazing Behavior of Herding Sheep Based on Three-axis Acceleration Sensor. Trans. Chin. Soc. Agric. Eng. 2021, 52, 307–313. [Google Scholar] [CrossRef]
- Price, E.; Langford, J.; Fawcett, T.W.; Wilson, A.J.; Croft, D.P. Classifying the posture and activity of ewes and lambs using accelerometers and machine learning on a commercial flock. Appl. Anim. Behav. Sci. 2022, 251, 105630. [Google Scholar] [CrossRef]
- Xuan, C.Z.; Wu, P.; Zhang, L.N.; Ma, Y.H.; Zhang, Y.A.; Wu, J. Feature Parameters Extraction and Recognition Method of Sheep Cough Sound. Trans. Chin. Soc. Agric. Mach. 2016, 47, 342–348. [Google Scholar] [CrossRef]
- Duan, G.H. The Study on Estimation Method of Forage Intake of Tibetan Sheep Based on Acoustic Analysis; Nanjing Agricultural University: Nanjing, China, 2020. [Google Scholar]
- Wang, K.; Wu, P.; Cui, H.; Xuan, C.; Su, H. Identification and classification for sheep foraging behavior based on acoustic signal and deep learning. Comput. Electron. Agric. 2021, 187, 106275. [Google Scholar] [CrossRef]
- Sheng, H.; Zhang, S.; Zuo, L.; Duan, G.; Zhang, H.; Okinda, C.; Shen, M.; Chen, K.; Lu, M.; Norton, T. Construction of sheep forage intake estimation models based on sound analysis. Biosyst. Eng. 2020, 192, 144–158. [Google Scholar] [CrossRef]
- Decandia, M.; Giovanetti, V.; Molle, G.; Acciaro, M.; Mameli, M.; Cabiddu, A.; Cossu, R.; Serra, M.G.; Manca, C.; Rassu, S.P.G.; et al. The effect of different time epoch settings on the classification of sheep behaviour using tri-axial accelerometry. Comput. Electron. Agric. 2018, 154, 112–119. [Google Scholar] [CrossRef]
- Guo, L.; Welch, M.; Dobos, R.; Kwan, P.; Wang, W. Comparison of grazing behaviour of sheep on pasture with different sward surface heights using an inertial measurement unit sensor. Comput. Electron. Agric. 2018, 150, 394–401. [Google Scholar] [CrossRef]
- Cao, L.T.; Cheng, M.; Bo, Y.H.; Liu, Y.Q.; Sui, H.Y.; Zhao, X.X. Influence and analysis of deployment location of wearable devices on sheep behavior recognition. J. Chin. Agric. Mech. 2022, 43, 133–141. [Google Scholar]
- Oudshoorn, F.W.; Cornou, C.; Hellwing, A.L.F.; Hansen, H.H.; Munksgaard, L.; Lund, P.; Kristensen, T. Estimation of grass intake on pasture for dairy cows using tightly and loosely mounted di- and tri-axial accelerometers combined with bite count. Comput. Electron. Agric. 2013, 99, 227–235. [Google Scholar] [CrossRef]
- Decandia, M.; Rassu, S.P.G.; Psiroukis, V.; Hadjigeorgiou, I.; Fountas, S.; Molle, G.; Acciaro, M.; Cabiddu, A.; Mameli, M.; Dimauro, C.; et al. Evaluation of proper sensor position for classification of sheep behaviour through accelerometers. Small Rumin. Res. 2021, 201, 106445. [Google Scholar] [CrossRef]
- Kleanthous, N.; Hussain, A.; Khan, W.; Sneddon, J.; Mason, A. Feature Extraction and Random Forest to Identify Sheep Behavior from Accelerometer Data. In Proceedings of the Intelligent Computing Methodologies, Bari, Italy, 2–5 October 2020; pp. 408–419. [Google Scholar]
- Peng, Y.; Kondo, N.; Fujiura, T.; Suzuki, T.; Ouma, S.; Wulandari; Yoshioka, H.; Itoyama, E. Dam behavior patterns in Japanese black beef cattle prior to calving: Automated detection using LSTM-RNN. Comput. Electron. Agric. 2020, 169, 105178. [Google Scholar] [CrossRef]
- Tsoukas, V.; Boumpa, E.; Giannakas, G.; Kakarountas, A. A Review of Machine Learning and TinyML in Healthcare. In Proceedings of the 25th Pan-Hellenic Conference on Informatics, Volos, Greece, 25–27 November 2022; pp. 69–73. [Google Scholar]
- Nicolas, C.; Naila, B.; Amar, R.C. TinyML Smart Sensor for Energy Saving in Internet of Things Precision Agriculture platform. In Proceedings of the 2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN), Barcelona, Spain, 5–8 July 2022; pp. 256–259. [Google Scholar]
- Alongi, F.; Ghielmetti, N.; Pau, D.; Terraneo, F.; Fornaciari, W. Tiny Neural Networks for Environmental Predictions: An Integrated Approach with Miosix. In Proceedings of the 2020 IEEE International Conference on Smart Computing (SMARTCOMP), Bologna, Italy, 14–17 September 2020; pp. 350–355. [Google Scholar]
- Ray, P.P. A review on TinyML: State-of-the-art and prospects. J. King Saud Univ.—Comput. Inf. Sci. 2022, 34, 1595–1623. [Google Scholar] [CrossRef]
- Xie, J.; Colonna, J.G.; Zhang, J.L. Bioacoustic signal denoising: A review. Artif. Intell. Rev. 2020, 54, 3575–3597. [Google Scholar] [CrossRef]
- Zhang, J.; Marszałek, M.; Lazebnik, S.; Schmid, C. Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study. Int. J. Comput. Vis. 2007, 73, 213–238. [Google Scholar] [CrossRef]
- Haykin, S. Adaptive Filter Theory; Pearson Education India: Hyderabad, India, 1986. [Google Scholar]
- Riaboff, L.; Aubin, S.; Bédère, N.; Couvreur, S.; Madouasse, A.; Goumand, E.; Chauvin, A.; Plantier, G. Evaluation of pre-processing methods for the prediction of cattle behaviour from accelerometer data. Comput. Electron. Agric. 2019, 165, 104961. [Google Scholar] [CrossRef]
- Jin, M.; Wang, C. Effect of Wavelet De-Noising on the Classification of Pig Behaviour. Eng. Agrícola 2021, 41, 286–296. [Google Scholar] [CrossRef]
- Dineva, K.; Atanasova, T. Analysis of Dairy Cow Behavioral Patterns Using a Combination of IOT Data and Signal Processing Techniques. In Proceedings of the 23rd SGEM International Multidisciplinary Scientific GeoConference, Albena, Bulgaria, 3–9 July 2023; pp. 121–128. [Google Scholar]
- Arablouei, R.; Bishop-Hurley, G.J.; Bagnall, N.; Ingham, A. Cattle behavior recognition from accelerometer data: Leveraging in-situ cross-device model learning. Comput. Electron. Agric. 2024, 227, 109546. [Google Scholar] [CrossRef]
- Minati, L.; Li, C.; Bartels, J.; Chakraborty, P.; Li, Z.; Yoshimura, N.; Frasca, M.; Ito, H. Accelerometer time series augmentation through externally driving a non-linear dynamical system. Chaos Solitons Fractals 2023, 168, 113100. [Google Scholar] [CrossRef]
- Sakai, K.; Oishi, K.; Miwa, M.; Kumagai, H.; Hirooka, H. Behavior classification of goats using 9-axis multi sensors: The effect of imbalanced datasets on classification performance. Comput. Electron. Agric. 2019, 166, 105027. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Z.; Yan, S.; He, X.; Sun, J. Distribution Alignment: A Unified Framework for Long-tail Visual Recognition. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, 20–25 June 2021; pp. 2361–2370. [Google Scholar]
- Khan, S.H.; Hayat, M.; Bennamoun, M.; Sohel, F.A.; Togneri, R. Cost-Sensitive Learning of Deep Feature Representations From Imbalanced Data. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 3573–3587. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Ali, S.; Abdullah; Kim, H.C. Activity Detection for the Wellbeing of Dogs Using Wearable Sensors Based on Deep Learning. IEEE Access 2022, 10, 53153–53163. [Google Scholar] [CrossRef]
- Mao, A.; Huang, E.; Gan, H.; Parkes, R.S.V.; Xu, W.; Liu, K. Cross-Modality Interaction Network for Equine Activity Recognition Using Imbalanced Multi-Modal Data. Sensors 2021, 21, 5818. [Google Scholar] [CrossRef] [PubMed]
- Suh, S.; Lee, H.; Lukowicz, P.; Lee, Y.O. CEGAN: Classification Enhancement Generative Adversarial Networks for unraveling data imbalance problems. Neural Netw. 2021, 133, 69–86. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.-S.J. Time series segmentation: A sliding window approach. Inf. Sci. 1995, 85, 147–173. [Google Scholar] [CrossRef]
- Dehghani, A.; Sarbishei, O.; Glatard, T.; Shihab, E. A Quantitative Comparison of Overlapping and Non-Overlapping Sliding Windows for Human Activity Recognition Using Inertial Sensors. Sensors 2019, 19, 5026. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, F.A.P.; Borges, I.; Oddy, V.H.; Dobos, R.C. Discrimination of biting and chewing behaviour in sheep using a tri-axial accelerometer. Comput. Electron. Agric. 2020, 168, 105051. [Google Scholar] [CrossRef]
- Alvarenga, F.A.P.; Borges, I.; Palkovič, L.; Rodina, J.; Oddy, V.H.; Dobos, R.C. Using a three-axis accelerometer to identify and classify sheep behaviour at pasture. Appl. Anim. Behav. Sci. 2016, 181, 91–99. [Google Scholar] [CrossRef]
- Fogarty, E.S.; Swain, D.L.; Cronin, G.M.; Moraes, L.E.; Trotter, M. Behaviour classification of extensively grazed sheep using machine learning. Comput. Electron. Agric. 2020, 169, 105175. [Google Scholar] [CrossRef]
- Khalid, S.; Khalil, T.; Nasreen, S. A survey of feature selection and feature extraction techniques in machine learning. In Proceedings of the 2014 Science and Information Conference, London, UK, 27–29 August 2014; pp. 372–378. [Google Scholar]
- Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [Google Scholar] [CrossRef]
- Cai, J.; Luo, J.; Wang, S.; Yang, S. Feature selection in machine learning: A new perspective. Neurocomputing 2018, 300, 70–79. [Google Scholar] [CrossRef]
- Karantonis, D.M.; Narayanan, M.R.; Mathie, M.; Lovell, N.H.; Celler, B.G. Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans. Inf. Technol. Biomed. 2006, 10, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Hosseininoorbin, S.; Layeghy, S.; Kusy, B.; Jurdak, R.; Bishop-Hurley, G.J.; Greenwood, P.L.; Portmann, M. Deep learning-based cattle behaviour classification using joint time-frequency data representation. Comput. Electron. Agric. 2021, 187, 106241. [Google Scholar] [CrossRef]
- Dargie, W. Analysis of Time and Frequency Domain Features of Accelerometer Measurements. In Proceedings of the 2009 Proceedings of 18th International Conference on Computer Communications and Networks, San Francisco, CA, USA, 3–6 August 2009; pp. 1–6. [Google Scholar]
- Chauhan, N.K.; Singh, K. A Review on Conventional Machine Learning vs Deep Learning. In Proceedings of the 2018 International Conference on Computing, Power and Communication Technologies (GUCON), Uttar Pradesh, Idia, 28–29 September 2018; pp. 347–352. [Google Scholar]
- Zhang, X.Y.; Wu, P.; Xuan, C.Z.; Yang, J.N.; Liu, Y.Q.; Hao, M. Recognition of the movement behavior ofstud rams based on acceleration sensor. J. China Agric. Univ. 2018, 23, 104–114. [Google Scholar] [CrossRef]
- Ren, X.H.; Liu, G.; Zhang, M.; Si, Y.S.; Zhang, X.Y.; Ma, L. Dairy Cattle’s Behavior Recognition Method Based on Support Vector Machine Classification Model. Trans. Chin. Soc. Agric. Mach. 2019, 50, 290–296. [Google Scholar] [CrossRef]
- Jin, B. Research on Recognition of Dairy Goat Movement Behavior Based on Wearable Multi Sensor; Northwest A&F University: Xianyang, China, 2022. [Google Scholar]
- Kleanthous, N.; Hussain, A.J.; Mason, A.; Sneddon, J.; Shaw, A.; Fergus, P.; Chalmers, C.; Al-Jumeily, D. Machine Learning Techniques for Classification of Livestock Behavior. In Proceedings of the International Conference on Neural Information Processing, Siem Reap, Cambodia, 13–16 December 2018. [Google Scholar]
- Achour, B.; Belkadi, M.; Aoudjit, R.; Laghrouche, M. Unsupervised automated monitoring of dairy cows’ behavior based on Inertial Measurement Unit attached to their back. Comput. Electron. Agric. 2019, 167, 105068. [Google Scholar] [CrossRef]
- Schmeling, L.; Elmamooz, G.; Hoang, P.T.; Kozar, A.; Nicklas, D.; Sünkel, M.; Thurner, S.; Rauch, E. Training and Validating a Machine Learning Model for the Sensor-Based Monitoring of Lying Behavior in Dairy Cows on Pasture and in the Barn. Animals 2021, 11, 2660. [Google Scholar] [CrossRef] [PubMed]
- Balasso, P.; Marchesini, G.; Ughelini, N.; Serva, L.; Andrighetto, I. Machine Learning to Detect Posture and Behavior in Dairy Cows: Information from an Accelerometer on the Animal’s Left Flank. Animals 2021, 11, 2972. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Wang, J.; Xiong, B.; Jiang, L.; Song, Z.; Li, F. Real-Time Behavioral Recognition in Dairy Cows Based on Geomagnetism and Acceleration Information. IEEE Access 2021, 9, 109497–109509. [Google Scholar] [CrossRef]
- Shen, W.; Sun, Y.; Zhang, Y.; Fu, X.; Hou, H.; Kou, S.; Zhang, Y. Automatic recognition method of cow ruminating behaviour based on edge computing. Comput. Electron. Agric. 2021, 191, 106495. [Google Scholar] [CrossRef]
- Roux, S.P.l.; Wolhuter, R.; Niesler, T. Energy-Aware Feature and Model Selection for Onboard Behavior Classification in Low-Power Animal Borne Sensor Applications. IEEE Sens. J. 2019, 19, 2722–2734. [Google Scholar] [CrossRef]
- Xuan, C.Z.; Wu, P.; Ma, Y.H.; Zhang, L.N.; Han, D.; Liu, Y.Q. Vocal signal recognition of ewes based on power spectrum and formant analysis method. Trans. Chin. Soc. Agric. Eng. 2015, 31, 219–224. [Google Scholar] [CrossRef]
- Liu, M.; Wu, Y.; Li, G.; Liu, M.; Hu, R.; Zou, H.; Wang, Z.; Peng, Y. Classification of cow behavior patterns using inertial measurement units and a fully convolutional network model. J. Dairy Sci. 2023, 106, 1351–1359. [Google Scholar] [CrossRef] [PubMed]
- Arablouei, R.; Wang, L.; Currie, L.; Yates, J.; Alvarenga, F.A.P.; Bishop-Hurley, G.J. Animal behavior classification via deep learning on embedded systems. Comput. Electron. Agric. 2023, 207, 107707. [Google Scholar] [CrossRef]
- Ding, L.; Lv, Y.; Jiang, R.; Zhao, W.; Li, Q.; Yang, B.; Yu, L.; Ma, W.; Gao, R.; Yu, Q. Predicting the Feed Intake of Cattle Based on Jaw Movement Using a Triaxial Accelerometer. Agriculture 2022, 12, 899. [Google Scholar] [CrossRef]
- Chelotti, J.O.; Vanrell, S.R.; Galli, J.R.; Giovanini, L.L.; Rufiner, H.L. A pattern recognition approach for detecting and classifying jaw movements in grazing cattle. Comput. Electron. Agric. 2018, 145, 83–91. [Google Scholar] [CrossRef]
- Bloch, V.; Frondelius, L.; Arcidiacono, C.; Mancino, M.; Pastell, M. Development and Analysis of a CNN- and Transfer-Learning-Based Classification Model for Automated Dairy Cow Feeding Behavior Recognition from Accelerometer Data. Sensors 2023, 23, 2611. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Kondo, N.; Fujiura, T.; Suzuki, T.; Wulandari; Yoshioka, H.; Itoyama, E. Classification of multiple cattle behavior patterns using a recurrent neural network with long short-term memory and inertial measurement units. Comput. Electron. Agric. 2019, 157, 247–253. [Google Scholar] [CrossRef]
- Bielecki, T.; Jakubowski, J.; Nieweglowski, M. Intricacies of Dependence between Components of Multivariate Markov Chains: Weak Markov Consistency and Markov Copulae. Electron. J. Probab. 2013, 18, 1–21. [Google Scholar] [CrossRef]
- Riaboff, L.; Poggi, S.; Madouasse, A.; Couvreur, S.; Aubin, S.; Bédère, N.; Goumand, E.; Chauvin, A.; Plantier, G. Development of a methodological framework for a robust prediction of the main behaviours of dairy cows using a combination of machine learning algorithms on accelerometer data. Comput. Electron. Agric. 2020, 169, 105179. [Google Scholar] [CrossRef]
- Halachmi, I.; Guarino, M.; Bewley, J.; Pastell, M. Smart Animal Agriculture: Application of Real-Time Sensors to Improve Animal Well-Being and Production. Annu. Rev. Anim. Biosci. 2019, 7, 403–425. [Google Scholar] [CrossRef] [PubMed]
- Leso, L.; Becciolini, V.; Rossi, G.; Camiciottoli, S.; Barbari, M. Validation of a Commercial Collar-Based Sensor for Monitoring Eating and Ruminating Behaviour of Dairy Cows. Animals 2021, 11, 2852. [Google Scholar] [CrossRef] [PubMed]
- Kallimani, R.; Pai, K.; Raghuwanshi, P.; Iyer, S.; López, O.L.A. TinyML: Tools, applications, challenges, and future research directions. Multimed. Tools Appl. 2023, 83, 29015–29045. [Google Scholar] [CrossRef]
- Lin, J.; Zhu, L.; Chen, W.M.; Wang, W.C.; Han, S. Tiny Machine Learning: Progress and Futures [Feature]. IEEE Circuits Syst. Mag. 2023, 23, 8–34. [Google Scholar] [CrossRef]
- Nikolaos, S.; Aristeidis, K.; Christos, K.; Spyros, S. TinyML for Ultra-Low Power AI and Large Scale IoT Deployments: A Systematic Review. Future Internet 2022, 14, 363. [Google Scholar] [CrossRef]
- Chun-Ki, K. Development of Embedded Machine Learning Finger Number Recognition Application using Edge Impulse Platform. In Proceedings of the 2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE), Las Vegas, NV, USA, 24–27 July 2023; pp. 2697–2699. [Google Scholar] [CrossRef]
- Georgios, S.; Marinela, M.; Maria-Evgenia, X.; Nikolaos, P.; Vasileios, T.; Theodoros, B. Unlocking the Path Towards Automation of Tiny Machine Learning for Edge Computing. In Proceedings of the 2024 International Conference on Smart Applications, Communications and Networking (SmartNets), Harrisonburg, VA, USA, 28–30 May 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Diouani, A.; El Hamdi, R.; Njah, M. Assessing the Efficacy of TinyML Implementations on STM32 Microcontrollers: A Performance Evaluation Study. In Proceedings of the 2024 IEEE 7th International Conference on Advanced Technologies, Signal and Image Processing (ATSIP), Sousse, Tunisia, 11–13 July 2024; pp. 267–271. [Google Scholar] [CrossRef]
- Sanchez-Iborra, R.; Skarmeta, A.F. TinyML-Enabled Frugal Smart Objects: Challenges and Opportunities. IEEE Circuits Syst. Mag. 2020, 20, 4–18. [Google Scholar] [CrossRef]
- Wen, T.C.; Freire, C.F.; Benicio, L.M.; de Moura, G.B.; Amorim, M.D.; da Silva-Miranda, K.O. TinyML-Based Swine Vocalization Pattern Recognition for Enhancing Animal Welfare in Embedded Systems. Inventions 2025, 10, 52. [Google Scholar] [CrossRef]
- Zhang, Q.; Kanjo, E. MultiCore+TPU Accelerated Multi-Modal TinyML for Livestock Behaviour Recognition. arXiv 2025, arXiv:2504.11467. [Google Scholar] [CrossRef]
- Huhtanen, P.; Rinne, M.; Mäntysaari, P.; Nousiainen, J. Integration of the effects of animal and dietary factors on total dry matter intake of dairy cows fed silage-based diets. Anim. Int. J. Anim. Biosci. 2011, 5, 691–702. [Google Scholar] [CrossRef] [PubMed]
- Leiber, F.; Holinger, M.; Zehner, N.; Dorn, K.; Probst, J.K.; Spengler Neff, A. Intake estimation in dairy cows fed roughage-based diets: An approach based on chewing behaviour measurements. Appl. Anim. Behav. Sci. 2016, 185, 9–14. [Google Scholar] [CrossRef]
- Ungar, E.D.; Ravid, N.; Zada, T.; Ben-Moshe, E.; Yonatan, R.; Baram, H.; Genizi, A. The implications of compound chew–bite jaw movements for bite rate in grazing cattle. Appl. Anim. Behav. Sci. 2006, 98, 183–195. [Google Scholar] [CrossRef]
- Davison, C.; Bowen, J.M.; Michie, C.; Rooke, J.A.; Jonsson, N.; Andonovic, I.; Tachtatzis, C.; Gilroy, M.; Duthie, C.A. Predicting feed intake using modelling based on feeding behaviour in finishing beef steers. Animal 2021, 15, 100231. [Google Scholar] [CrossRef] [PubMed]
- Zeng, T.Y.; Huang, X. Development, challenges, and future trends of wearable sensors. Sci. Technol. Rev. 2016, 35, 19–32. [Google Scholar]
- Lee, J.; Zuo, S.; Chung, Y.; Park, D.; Chang, H.H.; Kim, S. Formant-based acoustic features for cow’s estrus detection in audio surveillance system. In Proceedings of the 2014 11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Madrid, Spain, 26–29 August 2014; pp. 236–240. [Google Scholar]
- Bishop, J.; Falzon, G.; Trotter, M.; Kwan, P.; Meek, P. Sound Analysis and Detection, and the Potential for Precision Livestock Farming—A Sheep Vocalization Case Study. In Proceedings of the 1st Asian-Australasian Conference on Precision Pastures and Livestock Farming, Hamilton, New Zealand, 16–18 October 2017. [Google Scholar]
- Paganoni, B.L.; Macleay, C.; Burgel, A.v.; Thompson, A.J.C.E.A. Proximity sensors fitted to ewes and rams during joining can indicate the birth date of lambs. Comput. Electron. Agric. 2020, 170, 105249. [Google Scholar] [CrossRef]
- Smith, D.V.; McNally, J.; Little, B.; Ingham, A.; Schmoelzl, S.J.C.E.A. Automatic detection of parturition in pregnant ewes using a three-axis accelerometer. Comput. Electron. Agric. 2020, 173, 105392. [Google Scholar] [CrossRef]
- Patil, A.; Pawar, C.; Patil, N.; Tambe, R. Smart health monitoring system for animals. In Proceedings of the 2015 International Conference on Green Computing and Internet of Things (ICGCIoT), Delhi, India, 8–10 October 2015; pp. 1560–1564. [Google Scholar]
- Norring, M.; Häggman, J.; Simojoki, H.; Tamminen, P.; Winckler, C.; Pastell, M. Short communication: Lameness impairs feeding behavior of dairy cows. J. Dairy Sci. 2014, 97, 4317–4321. [Google Scholar] [CrossRef] [PubMed]
- Chapinal, N.; de Passille, A.M.; Pastell, M.; Hänninen, L.; Munksgaard, L.; Rushen, J. Measurement of acceleration while walking as an automated method for gait assessment in dairy cattle. J. Dairy Sci. 2011, 94, 2895–2901. [Google Scholar] [CrossRef] [PubMed]
- Stangaferro, M.L.; Wijma, R.; Caixeta, L.S.; Al-Abri, M.A.; Giordano, J.O. Use of rumination and activity monitoring for the identification of dairy cows with health disorders: Part I. Metabolic and digestive disorders. J. Dairy Sci. 2016, 99, 7395–7410. [Google Scholar] [CrossRef] [PubMed]
- Antanaitis, R.; Džermeikaitė, K.; Krištolaitytė, J.; Ribelytė, I.; Bespalovaitė, A.; Bulvičiūtė, D.; Rutkauskas, A. Alterations in Rumination, Eating, Drinking and Locomotion Behavior in Dairy Cows Affected by Subclinical Ketosis and Subclinical Acidosis. Animals 2024, 14, 384. [Google Scholar] [CrossRef] [PubMed]
- Ingvartsen, K. Feeding- and management-related diseases in the transition cow: Physiological adaptations around calving and strategies to reduce feeding-related diseases. Anim. Feed. Sci. Technol. 2006, 126, 175–213. [Google Scholar] [CrossRef]
- Martinez-Rau, L.S.; Chelotti, J.O.; Vanrell, S.R.; Galli, J.R.; Utsumi, S.A.; Planisich, A.M.; Rufiner, H.L.; Giovanini, L.L. A robust computational approach for jaw movement detection and classification in grazing cattle using acoustic signals. Comput. Electron. Agric. 2022, 192, 106569. [Google Scholar] [CrossRef]
- le Roux, S.P.; Marias, J.; Wolhuter, R.; Niesler, T. Animal-borne behaviour classification for sheep (Dohne Merino) and Rhinoceros (Ceratotherium simum and Diceros bicornis). Anim. Biotelem. 2017, 5, 25. [Google Scholar] [CrossRef]
- Fogarty, E.S.; Swain, D.L.; Cronin, G.; Trotter, M. Autonomous on-animal sensors in sheep research: A systematic review. Comput. Electron. Agric. 2018, 150, 245–256. [Google Scholar] [CrossRef]
- Fogarty, E.S.; Swain, D.L.; Cronin, G.M.; Trotter, M. A systematic review of the potential uses of on-animal sensors to monitor the welfare of sheep evaluated using the Five Domains Model as a framework. Anim. Welf. 2019, 28, 407–420. [Google Scholar] [CrossRef]
Category | Model | Reference | |
---|---|---|---|
Tree-based model | RF, GBDT, DT, XGB | [20,102,103,104,105] | |
Distance-based model | K-means, KNN, FMM, LVQ, IT | [63,98,105,106,107] | |
Kernel and Linear-based model | CDA, DAQ, DA, SVM | [17,61,65] | |
Neural Network-based model | BP, CNN, RNN, FCN, ENN, LSTM | [55,108,109,110] | |
Assembled machine learning model | KNN-RF, FA-SVM, GA-SVM, HMM, HMM-XGB/BP, GAN-TCN, CNN-TL | [26,39,57,99,100,111,112,113,114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, L.; Zhang, C.; Yue, Y.; Yao, C.; Li, Z.; Hu, Y.; Yang, B.; Ma, W.; Yu, L.; Gao, R.; et al. Wearable Sensors-Based Intelligent Sensing and Application of Animal Behaviors: A Comprehensive Review. Sensors 2025, 25, 4515. https://doi.org/10.3390/s25144515
Ding L, Zhang C, Yue Y, Yao C, Li Z, Hu Y, Yang B, Ma W, Yu L, Gao R, et al. Wearable Sensors-Based Intelligent Sensing and Application of Animal Behaviors: A Comprehensive Review. Sensors. 2025; 25(14):4515. https://doi.org/10.3390/s25144515
Chicago/Turabian StyleDing, Luyu, Chongxian Zhang, Yuxiao Yue, Chunxia Yao, Zhuo Li, Yating Hu, Baozhu Yang, Weihong Ma, Ligen Yu, Ronghua Gao, and et al. 2025. "Wearable Sensors-Based Intelligent Sensing and Application of Animal Behaviors: A Comprehensive Review" Sensors 25, no. 14: 4515. https://doi.org/10.3390/s25144515
APA StyleDing, L., Zhang, C., Yue, Y., Yao, C., Li, Z., Hu, Y., Yang, B., Ma, W., Yu, L., Gao, R., & Li, Q. (2025). Wearable Sensors-Based Intelligent Sensing and Application of Animal Behaviors: A Comprehensive Review. Sensors, 25(14), 4515. https://doi.org/10.3390/s25144515