Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,491)

Search Parameters:
Keywords = drug manufacturing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 210 KiB  
Article
Determining the Persistence of Xylazine and Ketamine in Cattle Tissue Following a Simulated Rendering Process
by Scott A. Fritz, Michael D. Kleinhenz, Steve M. Ensley, Patrick J. Gorden, Yuntao Zhang, Johann F. Coetzee and Michael D. Apley
Vet. Sci. 2025, 12(8), 740; https://doi.org/10.3390/vetsci12080740 - 7 Aug 2025
Abstract
Humane euthanasia is an endpoint for production animals succumbing to disease or trauma. Euthanasia performed with barbiturates or other anesthetic/sedative drugs observes zero withdrawal time, and drug residues may remain in tissues. Carcasses may be submitted for rendering, and rendered products can be [...] Read more.
Humane euthanasia is an endpoint for production animals succumbing to disease or trauma. Euthanasia performed with barbiturates or other anesthetic/sedative drugs observes zero withdrawal time, and drug residues may remain in tissues. Carcasses may be submitted for rendering, and rendered products can be used to manufacture pet foods. The purpose of this study was to determine the concentration of two drugs, xylazine and ketamine, that may be used during the euthanasia process of food animals and to determine the fate of these drugs following a simulated rendering process using a commercial autoclave. Twelve cattle were administered xylazine or xylazine and ketamine prior to euthanasia via penetrating captive bolt, and samples of muscle, fat, liver, and kidney were collected. The tissue samples were analyzed by LC-MS/MS, both raw and following rendering. The parent compounds xylazine and ketamine were detected in all tissues, both before and after rendering. The highest concentrations were found in rendered kidney for both drugs, and the lowest in rendered and raw fat for xylazine and ketamine, respectively. Full article
(This article belongs to the Section Anatomy, Histology and Pathology)
15 pages, 1713 KiB  
Review
Current Developments of Iron Oxide Nanomaterials as MRI Theranostic Agents for Pancreatic Cancer
by Fong-Yu Cheng, Boguslaw Tomanek and Barbara Blasiak
J. Nanotheranostics 2025, 6(3), 22; https://doi.org/10.3390/jnt6030022 - 7 Aug 2025
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive type of pancreatic cancer. PDAC is difficult to diagnose due to a lack of symptoms in early stages, resulting in a survival rate of less than 10%. Moreover, often cancerous tissues cannot be surgically resected [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive type of pancreatic cancer. PDAC is difficult to diagnose due to a lack of symptoms in early stages, resulting in a survival rate of less than 10%. Moreover, often cancerous tissues cannot be surgically resected due to their deep abdomen location. Therefore, early detection is the essential strategy enabling effective PDAC treatment. Over the past few years, the development of nanomaterials for Magnetic Resonance Imaging (MRI) has expanded and improved imaging quality and diagnostic accuracy. Nanomaterials can be currently designed, manufactured and synthesized with other structures to provide improved diagnosis and advanced therapy. Although MRI equipped with the innovative nanomaterials became a powerful tool for the diagnosis and treatment of patients with various cancers, the detection of PDAC remains challenging. Nevertheless, recent advancements in PDAC theranostics provided progress in the detection and treatment of this challenging type of cancer. Present research in this area is focused on suitable carriers, eliminating delivery barriers, and the development of efficient anti-cancer drugs. Herein we discuss the current applications of iron oxide nanoparticles to the MRI diagnosis and treatment of pancreatic cancer. Full article
Show Figures

Figure 1

22 pages, 2122 KiB  
Review
Micro and Nano Drug Delivery Systems for the Treatment of Oral Mucositis: A Review
by Luciana Ângela Soares Maia, Tâmara Thaiane Almeida Siqueira, Carlos Alberto Arcelly Santos Bezerra, Jéssica Horana Pereira de Farias and Elquio Eleamen Oliveira
Pharmaceutics 2025, 17(8), 1025; https://doi.org/10.3390/pharmaceutics17081025 - 7 Aug 2025
Abstract
Oral mucositis (OM) is a severe inflammatory condition of the oral mucosa that is commonly associated with cancer therapies. Traditional treatments typically have limited efficacy and significant side effects, necessitating alternative approaches. Nanobased drug delivery systems (DDSs) present promising solutions, enhancing therapeutic outcomes [...] Read more.
Oral mucositis (OM) is a severe inflammatory condition of the oral mucosa that is commonly associated with cancer therapies. Traditional treatments typically have limited efficacy and significant side effects, necessitating alternative approaches. Nanobased drug delivery systems (DDSs) present promising solutions, enhancing therapeutic outcomes while minimizing side effects. This review aims to evaluate the use of nanobased DDSs to treat OM. To reach these aims, an extensive literature review was conducted using the following databases: BVS, PubMed, Scopus, and Web of Science. The search strategy included the keywords “microparticles,” “nanoparticles,” “drug delivery system,” “oral mucositis,” “therapy,” and “treatment,” combined with the Boolean operators “AND” and “OR.” After applying filters for language, relevance, full-text availability, exclusion of review articles, and removal of duplicates, a total of 32 articles were selected for analysis. Of the 32 studies included in this review, 25 employed polymeric micro- or nanosystems for the treatment of OM. Regarding the stage of investigation, 10 studies were conducted in vitro, 16 were conducted in vivo, and 6 corresponded to clinical trials. Compared with conventional drug delivery approaches, most of these studies reported improved therapeutic outcomes. These findings highlight the potential of nanosystems as innovative strategies for enhancing OM treatment. Nonetheless, challenges in large-scale manufacturing, including reproducibility and safety, and the limited number of clinical trials warrant careful consideration. Future research with larger clinical trials is essential to validate these findings and effectively guide clinical practice. Full article
Show Figures

Figure 1

26 pages, 6895 KiB  
Article
Generation of Individualized, Standardized, and Electrically Synchronized Human Midbrain Organoids
by Sanae El Harane, Bahareh Nazari, Nadia El Harane, Manon Locatelli, Bochra Zidi, Stéphane Durual, Abderrahim Karmime, Florence Ravier, Adrien Roux, Luc Stoppini, Olivier Preynat-Seauve and Karl-Heinz Krause
Cells 2025, 14(15), 1211; https://doi.org/10.3390/cells14151211 - 6 Aug 2025
Abstract
Organoids allow to model healthy and diseased human tissues. and have applications in developmental biology, drug discovery, and cell therapy. Traditionally cultured in immersion/suspension, organoids face issues like lack of standardization, fusion, hypoxia-induced necrosis, continuous agitation, and high media volume requirements. To address [...] Read more.
Organoids allow to model healthy and diseased human tissues. and have applications in developmental biology, drug discovery, and cell therapy. Traditionally cultured in immersion/suspension, organoids face issues like lack of standardization, fusion, hypoxia-induced necrosis, continuous agitation, and high media volume requirements. To address these issues, we developed an air–liquid interface (ALi) technology for culturing organoids, termed AirLiwell. It uses non-adhesive microwells for generating and maintaining individualized organoids on an air–liquid interface. This method ensures high standardization, prevents organoid fusion, eliminates the need for agitation, simplifies media changes, reduces media volume, and is compatible with Good Manufacturing Practices. We compared the ALi method to standard immersion culture for midbrain organoids, detailing the process from human pluripotent stem cell (hPSC) culture to organoid maturation and analysis. Air–liquid interface organoids (3D-ALi) showed optimized size and shape standardization. RNA sequencing and immunostaining confirmed neural/dopaminergic specification. Single-cell RNA sequencing revealed that immersion organoids (3D-i) contained 16% fibroblast-like, 23% myeloid-like, and 61% neural cells (49% neurons), whereas 3D-ALi organoids comprised 99% neural cells (86% neurons). Functionally, 3D-ALi organoids showed a striking electrophysiological synchronization, unlike the heterogeneous activity of 3D-i organoids. This standardized organoid platform improves reproducibility and scalability, demonstrated here with midbrain organoids. The use of midbrain organoids is particularly relevant for neuroscience and neurodegenerative diseases, such as Parkinson’s disease, due to their high incidence, opening new perspectives in disease modeling and cell therapy. In addition to hPSC-derived organoids, the method’s versatility extends to cancer organoids and 3D cultures from primary human cells. Full article
(This article belongs to the Special Issue The Current Applications and Potential of Stem Cell-Derived Organoids)
Show Figures

Figure 1

32 pages, 5531 KiB  
Review
Polyethylenimine Carriers for Drug and Gene Delivery
by Ahmed Ismail and Shih-Feng Chou
Polymers 2025, 17(15), 2150; https://doi.org/10.3390/polym17152150 - 6 Aug 2025
Abstract
Polyethylenimine (PEI) is a cationic polymer with a high density of amine groups suitable for strong electrostatic interactions with biological molecules to preserve their bioactivities during encapsulation and after delivery for biomedical applications. This review provides a comprehensive overview of PEI as a [...] Read more.
Polyethylenimine (PEI) is a cationic polymer with a high density of amine groups suitable for strong electrostatic interactions with biological molecules to preserve their bioactivities during encapsulation and after delivery for biomedical applications. This review provides a comprehensive overview of PEI as a drug and gene carrier, describing its polymerization methods in both linear and branched forms while highlighting the processing methods to manufacture PEIs into drug carriers, such as nanoparticles, coatings, nanofibers, hydrogels, and films. These various PEI carriers enable applications in non-viral gene and small molecule drug deliveries. The structure–property relationships of PEI carriers are discussed with emphasis on how molecular weights, branching degrees, and surface modifications of PEI carriers impact biocompatibility, transfection efficiency, and cellular interactions. While PEI offers remarkable potential for drug and gene delivery, its clinical translation remains limited by challenges, including cytotoxicity, non-degradability, and serum instability. Our aim is to provide an understanding of PEI and the structure–property relationships of its carrier forms to inform future research directions that may enable safe and effective clinical use of PEI carriers for drug and gene delivery. Full article
(This article belongs to the Special Issue Biocompatible and Biodegradable Polymer Materials)
Show Figures

Figure 1

29 pages, 2060 KiB  
Review
Revitalizing Colchicine: Novel Delivery Platforms and Derivatives to Expand Its Therapeutic Potential
by Natallia V. Dubashynskaya, Anton N. Bokatyi, Mikhail M. Galagudza and Yury A. Skorik
Int. J. Mol. Sci. 2025, 26(15), 7591; https://doi.org/10.3390/ijms26157591 - 6 Aug 2025
Abstract
Colchicine is a potent alkaloid with well-established anti-inflammatory properties. It shows significant promise in treating classic immune-mediated inflammatory diseases, as well as associated cardiovascular diseases, including atherosclerosis. However, its clinical use is limited by a narrow therapeutic window, dose-limiting systemic toxicity, variable bioavailability, [...] Read more.
Colchicine is a potent alkaloid with well-established anti-inflammatory properties. It shows significant promise in treating classic immune-mediated inflammatory diseases, as well as associated cardiovascular diseases, including atherosclerosis. However, its clinical use is limited by a narrow therapeutic window, dose-limiting systemic toxicity, variable bioavailability, and clinically significant drug–drug interactions, partly mediated by modulation of P-glycoprotein and cytochrome P450 3A4 metabolism. This review explores advanced delivery strategies designed to overcome these limitations. We critically evaluate lipid-based systems, such as solid lipid nanoparticles, liposomes, transferosomes, ethosomes, and cubosomes; polymer-based nanoparticles; microneedles; and implants, including drug-eluting stents. These systems ensure targeted delivery, improve pharmacokinetics, and reduce toxicity. Additionally, we discuss chemical derivatization approaches, such as prodrugs, codrugs, and strategic ring modifications (A-, B-, and C-rings), aimed at optimizing both the efficacy and safety profile of colchicine. Combinatorial nanoformulations that enable the co-delivery of colchicine with synergistic agents, such as glucocorticoids and statins, as well as theranostic platforms that integrate therapeutic and diagnostic functions, are also considered. These innovative delivery systems and derivatives have the potential to transform colchicine therapy by broadening its clinical applications while minimizing adverse effects. Future challenges include scalable manufacturing, long-term safety validation, and the translation of research into clinical practice. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

32 pages, 944 KiB  
Review
Continuous Manufacturing of Recombinant Drugs: Comprehensive Analysis of Cost Reduction Strategies, Regulatory Pathways, and Global Implementation
by Sarfaraz K. Niazi
Pharmaceuticals 2025, 18(8), 1157; https://doi.org/10.3390/ph18081157 - 4 Aug 2025
Viewed by 517
Abstract
The biopharmaceutical industry is undergoing a fundamental transformation from traditional batch manufacturing to continuous manufacturing (CM) for recombinant drugs and biosimilars, driven by regulatory support through the International Council for Harmonization (ICH) Q13 guidance and compelling economic advantages. This comprehensive review examines the [...] Read more.
The biopharmaceutical industry is undergoing a fundamental transformation from traditional batch manufacturing to continuous manufacturing (CM) for recombinant drugs and biosimilars, driven by regulatory support through the International Council for Harmonization (ICH) Q13 guidance and compelling economic advantages. This comprehensive review examines the technical, economic, and regulatory aspects of implementing continuous manufacturing specifically for recombinant protein production and biosimilar development, synthesizing validated data from peer-reviewed research, regulatory sources, and global implementation case studies. The analysis demonstrates that continuous manufacturing offers substantial benefits, including a reduced equipment footprint of up to 70%, a 3- to 5-fold increase in volumetric productivity, enhanced product quality consistency, and facility cost reductions of 30–50% compared to traditional batch processes. Leading biomanufacturers across North America, Europe, and the Asia–Pacific region are successfully integrating perfusion upstream processes with connected downstream bioprocesses, enabling the fully end-to-end continuous manufacture of biopharmaceuticals with demonstrated commercial viability. The regulatory framework has been comprehensively established through ICH Q13 guidance and region-specific implementations across the FDA, EMA, PMDA, and emerging market authorities. This review provides a critical analysis of advanced technologies, including single-use perfusion bioreactors, continuous chromatography systems, real-time process analytical technology, and Industry 4.0 integration strategies. The economic modeling presents favorable return-on-investment profiles, accompanied by a detailed analysis of global market dynamics, regional implementation patterns, and supply chain integration opportunities. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

23 pages, 3243 KiB  
Article
Design of Experiments Leads to Scalable Analgesic Near-Infrared Fluorescent Coconut Nanoemulsions
by Amit Chandra Das, Gayathri Aparnasai Reddy, Shekh Md. Newaj, Smith Patel, Riddhi Vichare, Lu Liu and Jelena M. Janjic
Pharmaceutics 2025, 17(8), 1010; https://doi.org/10.3390/pharmaceutics17081010 - 1 Aug 2025
Viewed by 235
Abstract
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription [...] Read more.
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription medication for pain reaching approximately USD 17.8 billion. Theranostic pain nanomedicine therefore emerges as an attractive analgesic strategy with the potential for increased efficacy, reduced side-effects, and treatment personalization. Theranostic nanomedicine combines drug delivery and diagnostic features, allowing for real-time monitoring of analgesic efficacy in vivo using molecular imaging. However, clinical translation of these nanomedicines are challenging due to complex manufacturing methodologies, lack of standardized quality control, and potentially high costs. Quality by Design (QbD) can navigate these challenges and lead to the development of an optimal pain nanomedicine. Our lab previously reported a macrophage-targeted perfluorocarbon nanoemulsion (PFC NE) that demonstrated analgesic efficacy across multiple rodent pain models in both sexes. Here, we report PFC-free, biphasic nanoemulsions formulated with a biocompatible and non-immunogenic plant-based coconut oil loaded with a COX-2 inhibitor and a clinical-grade, indocyanine green (ICG) near-infrared fluorescent (NIRF) dye for parenteral theranostic analgesic nanomedicine. Methods: Critical process parameters and material attributes were identified through the FMECA (Failure, Modes, Effects, and Criticality Analysis) method and optimized using a 3 × 2 full-factorial design of experiments. We investigated the impact of the oil-to-surfactant ratio (w/w) with three different surfactant systems on the colloidal properties of NE. Small-scale (100 mL) batches were manufactured using sonication and microfluidization, and the final formulation was scaled up to 500 mL with microfluidization. The colloidal stability of NE was assessed using dynamic light scattering (DLS) and drug quantification was conducted through reverse-phase HPLC. An in vitro drug release study was conducted using the dialysis bag method, accompanied by HPLC quantification. The formulation was further evaluated for cell viability, cellular uptake, and COX-2 inhibition in the RAW 264.7 macrophage cell line. Results: Nanoemulsion droplet size increased with a higher oil-to-surfactant ratio (w/w) but was no significant impact by the type of surfactant system used. Thermal cycling and serum stability studies confirmed NE colloidal stability upon exposure to high and low temperatures and biological fluids. We also demonstrated the necessity of a solubilizer for long-term fluorescence stability of ICG. The nanoemulsion showed no cellular toxicity and effectively inhibited PGE2 in activated macrophages. Conclusions: To our knowledge, this is the first instance of a celecoxib-loaded theranostic platform developed using a plant-derived hydrocarbon oil, applying the QbD approach that demonstrated COX-2 inhibition. Full article
(This article belongs to the Special Issue Quality by Design in Pharmaceutical Manufacturing)
Show Figures

Graphical abstract

25 pages, 17212 KiB  
Article
Three-Dimensional Printing of Personalized Carbamazepine Tablets Using Hydrophilic Polymers: An Investigation of Correlation Between Dissolution Kinetics and Printing Parameters
by Lianghao Huang, Xingyue Zhang, Qichen Huang, Minqing Zhu, Tiantian Yang and Jiaxiang Zhang
Polymers 2025, 17(15), 2126; https://doi.org/10.3390/polym17152126 - 1 Aug 2025
Viewed by 383
Abstract
Background: Precision medicine refers to the formulation of personalized drug regimens according to the individual characteristics of patients to achieve optimal efficacy and minimize adverse reactions. Additive manufacturing (AM), also known as three-dimensional (3D) printing, has emerged as an optimal solution for precision [...] Read more.
Background: Precision medicine refers to the formulation of personalized drug regimens according to the individual characteristics of patients to achieve optimal efficacy and minimize adverse reactions. Additive manufacturing (AM), also known as three-dimensional (3D) printing, has emerged as an optimal solution for precision drug delivery, enabling customizable and the fabrication of multifunctional structures with precise control over morphology and release behavior in pharmaceutics. However, the influence of 3D printing parameters on the printed tablets, especially regarding in vitro and in vivo performance, remains poorly understood, limiting the optimization of manufacturing processes for controlled-release profiles. Objective: To establish the fabrication process of 3D-printed controlled-release tablets via comprehensively understanding the printing parameters using fused deposition modeling (FDM) combined with hot-melt extrusion (HME) technologies. HPMC-AS/HPC-EF was used as the drug delivery matrix and carbamazepine (CBZ) was used as a model drug to investigate the in vitro drug delivery performance of the printed tablets. Methodology: Thermogravimetric analysis (TGA) was employed to assess the thermal compatibility of CBZ with HPMC-AS/HPC-EF excipients up to 230 °C, surpassing typical processing temperatures (160–200 °C). The formation of stable amorphous solid dispersions (ASDs) was validated using differential scanning calorimetry (DSC), hot-stage polarized light microscopy (PLM), and powder X-ray diffraction (PXRD). A 15-group full factorial design was then used to evaluate the effects of the fan speed (20–100%), platform temperature (40–80 °C), and printing speed (20–100 mm/s) on the tablet properties. Response surface modeling (RSM) with inverse square-root transformation was applied to analyze the dissolution kinetics, specifically t50% (time for 50% drug release) and Q4h (drug released at 4 h). Results: TGA confirmed the thermal compatibility of CBZ with HPMC-AS/HPC-EF, enabling stable ASD formation validated by DSC, PLM, and PXRD. The full factorial design revealed that printing speed was the dominant parameter governing dissolution behavior, with high speeds accelerating release and low speeds prolonging release through porosity-modulated diffusion control. RSM quadratic models showed optimal fits for t50% (R2 = 0.9936) and Q4h (R2 = 0.9019), highlighting the predictability of release kinetics via process parameter tuning. This work demonstrates the adaptability of polymer composite AM for tailoring drug release profiles, balancing mechanical integrity, release kinetics, and manufacturing scalability to advance multifunctional 3D-printed drug delivery devices in pharmaceutics. Full article
Show Figures

Graphical abstract

16 pages, 1365 KiB  
Article
Generation of Formates Following 20 kHz Sonication of DSPE-mPEG2000 PEGylated Phospholipid Micelles
by Perouza Parsamian and Paul Pantano
Pharmaceutics 2025, 17(8), 1008; https://doi.org/10.3390/pharmaceutics17081008 - 1 Aug 2025
Viewed by 326
Abstract
Background: Previous research has demonstrated that 20 kHz probe or 37 kHz bath sonication of poloxamers comprising polypropylene glycol (PPG) and polyethylene glycol (PEG) blocks can generate degradation byproducts that are toxic to mammalian cells and organisms. Herein, an investigation of a [...] Read more.
Background: Previous research has demonstrated that 20 kHz probe or 37 kHz bath sonication of poloxamers comprising polypropylene glycol (PPG) and polyethylene glycol (PEG) blocks can generate degradation byproducts that are toxic to mammalian cells and organisms. Herein, an investigation of a PEGylated phospholipid micelle was undertaken to identify low-molecular-weight sonolytic degradation byproducts that could be cytotoxic. The concern here lies with the fact that sonication is a frequently employed step in drug delivery manufacturing processes, during which PEGylated phospholipids can be subjected to shear forces and other extreme oxidative and thermal conditions. Methods: Control and 20 kHz-sonicated micelles of DSPE-mPEG2000 were analyzed using dynamic light scattering (DLS) and zeta potential analyses to study colloidal properties, matrix-assisted laser desorption/ionization–time of flight (MALDI-TOF) mass spectroscopy (MS) and proton nuclear magnetic resonance (1H-NMR) spectroscopy to study the structural integrity of DSPE-mPEG2000, and 1H-NMR spectroscopy and high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection to quantitate the formation of low-molecular-weight degradation byproducts. Results: MALDI-TOF-MS analyses of 20 kHz-sonicated DSPE-mPEG2000 revealed the loss of ethylene glycol moieties in accordance with depolymerization of the PEG chain; 1H-NMR spectroscopy showed the presence of formate, a known oxidative/thermal degradation product of PEG; and HPLC-UV showed that the generation of formate was dependent on 20 kHz probe sonication time between 5 and 60 min. Conclusions: It was found that 20 kHz sonication can degrade the PEG chain of DSPE-mPEG2000, altering the micelle’s PEG corona and generating formate, a known ocular toxicant. Full article
Show Figures

Graphical abstract

48 pages, 1556 KiB  
Review
Extemporaneous Compounding, Pharmacy Preparations and Related Product Care in the Netherlands
by Herman J. Woerdenbag, Boy van Basten, Christien Oussoren, Oscar S. N. M. Smeets, Astrid Annaciri-Donkers, Mirjam Crul, J. Marina Maurer, Kirsten J. M. Schimmel, E. Marleen Kemper, Marjolijn N. Lub-de Hooge, Nanno Schreuder, Melissa Eikmann, Arwin S. Ramcharan, Richard B. Lantink, Julian Quodbach, Hendrikus H. Boersma, Oscar Kelder, Karin H. M. Larmené-Beld, Paul P. H. Le Brun, Robbert Jan Kok, Reinout C. A. Schellekens, Oscar Breukels, Henderik W. Frijlink and Bahez Garebadd Show full author list remove Hide full author list
Pharmaceutics 2025, 17(8), 1005; https://doi.org/10.3390/pharmaceutics17081005 - 31 Jul 2025
Viewed by 383
Abstract
Background/Objectives: In many parts of the world, pharmacists hold the primary responsibility for providing safe and effective pharmacotherapy. A key aspect is the availability of appropriate medicines for each individual patient. When industrially manufactured medicines are unsuitable or unavailable, pharmacists can prepare [...] Read more.
Background/Objectives: In many parts of the world, pharmacists hold the primary responsibility for providing safe and effective pharmacotherapy. A key aspect is the availability of appropriate medicines for each individual patient. When industrially manufactured medicines are unsuitable or unavailable, pharmacists can prepare tailor-made medicines. While this principle applies globally, practices vary between countries. In the Netherlands, the preparation of medicines in pharmacies is well-established and integrated into routine healthcare. This narrative review explores the role and significance of extemporaneous compounding, pharmacy preparations and related product care in the Netherlands. Methods: Pharmacists involved in pharmacy preparations across various professional sectors, including community and hospital pharmacies, central compounding facilities, academia, and the professional pharmacists’ organisation, provided detailed and expert insights based on the literature and policy documents while also sharing their critical perspectives. Results: We present arguments supporting the need for pharmacy preparations and examine their position and role in community and hospital pharmacies in the Netherlands. Additional topics are discussed, including the regulatory and legal framework, outsourcing, quality assurance, standardisation, education, and international context. Specific pharmacy preparation topics, often with a research component and a strong focus on product care, are highlighted, including paediatric dosage forms, swallowing difficulties and feeding tubes, hospital-at-home care, reconstitution of oncolytic drugs and biologicals, total parenteral nutrition (TPN), advanced therapy medicinal products (ATMPs), radiopharmaceuticals and optical tracers, clinical trial medication, robotisation in reconstitution, and patient-centric solid oral dosage forms. Conclusions: The widespread acceptance of pharmacy preparations in the Netherlands is the result of a unique combination of strict adherence to tailored regulations that ensure quality and safety, and patient-oriented flexibility in design, formulation, and production. This approach is further reinforced by the standardisation of a broad range of formulations and procedures across primary, secondary and tertiary care, as well as by continuous research-driven innovation to develop new medicines, formulations, and production methods. Full article
Show Figures

Graphical abstract

22 pages, 5738 KiB  
Article
Effect of Solute Concentration and Filtration Rate on the Scale Production of a Physically Stable Amorphous Solid Form of Nilotinib
by Zhihui Yuan, Bowen Zhang, Asad Nawaz and Zunhua Li
Pharmaceutics 2025, 17(8), 998; https://doi.org/10.3390/pharmaceutics17080998 - 31 Jul 2025
Viewed by 243
Abstract
Background/Objectives: Amorphous solid drugs exhibit physical instability and a propensity for crystallization, which leads to reduced solubility and bioavailability. Hence, this study optimized scale manufacturing parameters for producing a physically stable amorphous solid form of nilotinib using neutralization precipitation. Methods: A systematic evaluation [...] Read more.
Background/Objectives: Amorphous solid drugs exhibit physical instability and a propensity for crystallization, which leads to reduced solubility and bioavailability. Hence, this study optimized scale manufacturing parameters for producing a physically stable amorphous solid form of nilotinib using neutralization precipitation. Methods: A systematic evaluation of the effects of the solute concentration and filtration rate on amorphous physical stability was conducted using the pair distribution function (PDF), principal component analysis (PCA), and reduced crystallization temperature (Rc) values. Results: It showed concentration-dependent crystallization resistance, with optimal physical stability achieved at a solute concentration of 0.126 mol/L and a 124 mL/min filtration rate. Experiments carried out at a scale of 50 g confirmed the stability of the production process. Conclusions: These findings provide a validated framework for developing lab-scale amorphous drug products with improved shelf-life stability, assessed using indirect indicators (PDF, Rc) and confirmed through accelerated stability tests. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

32 pages, 2027 KiB  
Review
Harnessing the Loop: The Perspective of Circular RNA in Modern Therapeutics
by Yang-Yang Zhao, Fu-Ming Zhu, Yong-Juan Zhang and Huanhuan Y. Wei
Vaccines 2025, 13(8), 821; https://doi.org/10.3390/vaccines13080821 - 31 Jul 2025
Viewed by 376
Abstract
Circular RNAs (circRNAs) have emerged as a transformative class of RNA therapeutics, distinguished by their closed-loop structure conferring nuclease resistance, reduced immunogenicity, and sustained translational activity. While challenges in pharmacokinetic control and manufacturing standardization require resolution, emerging synergies between computational design tools and [...] Read more.
Circular RNAs (circRNAs) have emerged as a transformative class of RNA therapeutics, distinguished by their closed-loop structure conferring nuclease resistance, reduced immunogenicity, and sustained translational activity. While challenges in pharmacokinetic control and manufacturing standardization require resolution, emerging synergies between computational design tools and modular delivery platforms are accelerating clinical translation. In this review, we synthesize recent advances in circRNA therapeutics, with a focused analysis of their stability and immunogenic properties in vaccine and drug development. Notably, key synthesis strategies, delivery platforms, and AI-driven optimization methods enabling scalable production are discussed. Moreover, we summarize preclinical and emerging clinical studies that underscore the potential of circRNA in vaccine development and protein replacement therapies. As both a promising expression vehicle and programmable regulatory molecule, circRNA represents a versatile platform poised to advance next-generation biologics and precision medicine. Full article
(This article belongs to the Special Issue Evaluating the Immune Response to RNA Vaccine)
Show Figures

Figure 1

21 pages, 3471 KiB  
Review
Nanomedicine: The Effective Role of Nanomaterials in Healthcare from Diagnosis to Therapy
by Raisa Nazir Ahmed Kazi, Ibrahim W. Hasani, Doaa S. R. Khafaga, Samer Kabba, Mohd Farhan, Mohammad Aatif, Ghazala Muteeb and Yosri A. Fahim
Pharmaceutics 2025, 17(8), 987; https://doi.org/10.3390/pharmaceutics17080987 - 30 Jul 2025
Viewed by 267
Abstract
Nanotechnology is revolutionizing medicine by enabling highly precise diagnostics, targeted therapies, and personalized healthcare solutions. This review explores the multifaceted applications of nanotechnology across medical fields such as oncology and infectious disease control. Engineered nanoparticles (NPs), such as liposomes, polymeric carriers, and carbon-based [...] Read more.
Nanotechnology is revolutionizing medicine by enabling highly precise diagnostics, targeted therapies, and personalized healthcare solutions. This review explores the multifaceted applications of nanotechnology across medical fields such as oncology and infectious disease control. Engineered nanoparticles (NPs), such as liposomes, polymeric carriers, and carbon-based nanomaterials, enhance drug solubility, protect therapeutic agents from degradation, and enable site-specific delivery, thereby reducing toxicity to healthy tissues. In diagnostics, nanosensors and contrast agents provide ultra-sensitive detection of biomarkers, supporting early diagnosis and real-time monitoring. Nanotechnology also contributes to regenerative medicine, antimicrobial therapies, wearable devices, and theranostics, which integrate treatment and diagnosis into unified systems. Advanced innovations such as nanobots and smart nanosystems further extend these capabilities, enabling responsive drug delivery and minimally invasive interventions. Despite its immense potential, nanomedicine faces challenges, including biocompatibility, environmental safety, manufacturing scalability, and regulatory oversight. Addressing these issues is essential for clinical translation and public acceptance. In summary, nanotechnology offers transformative tools that are reshaping medical diagnostics, therapeutics, and disease prevention. Through continued research and interdisciplinary collaboration, it holds the potential to significantly enhance treatment outcomes, reduce healthcare costs, and usher in a new era of precise and personalized medicine. Full article
Show Figures

Figure 1

43 pages, 1414 KiB  
Review
Bacteriophage Therapy: Discovery, Development, and FDA Approval Pathways
by Sarfaraz K. Niazi
Pharmaceuticals 2025, 18(8), 1115; https://doi.org/10.3390/ph18081115 - 26 Jul 2025
Viewed by 569
Abstract
The escalating global crisis of antimicrobial resistance, responsible for approximately 1.27 million deaths in 2019, has catalyzed renewed interest in bacteriophage therapy as a viable therapeutic alternative. With projections indicating that drug-resistant bacteria could cause over 39 million deaths worldwide by 2050, developing [...] Read more.
The escalating global crisis of antimicrobial resistance, responsible for approximately 1.27 million deaths in 2019, has catalyzed renewed interest in bacteriophage therapy as a viable therapeutic alternative. With projections indicating that drug-resistant bacteria could cause over 39 million deaths worldwide by 2050, developing alternative antimicrobial strategies has become critically urgent. This comprehensive review examines the scientific foundation of bacteriophage therapy, traces its historical development from early Soviet applications through contemporary regulatory frameworks, and provides strategic guidance for developers seeking FDA approval for bacteriophage-based therapeutics. We analyze the current regulatory landscape across major jurisdictions, including manufacturing requirements and clinical development pathways essential for successful market authorization. Approximately 90 clinical trials involving bacteriophages are ongoing worldwide, with 41 studies in the United States demonstrating significant momentum in this field. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

Back to TopTop