Nanomedicine: The Effective Role of Nanomaterials in Healthcare from Diagnosis to Therapy
Abstract
1. Introduction
2. Methodology
3. Nanomedicine
4. Various Types of Nanoparticles That Are Used in Medical Applications
- -
- Organic nanoparticles are composed of biologically derived substances such as proteins, lipids, carbohydrates, and biodegradable polymers [41]. These particles are often engineered to be smaller than 100 nanometers and are valued for their compatibility with human tissues, making them effective carriers for drug molecules and genetic material [42].
- -
- Inorganic nanoparticles encompass materials such as metal salts, metal oxides, and pure elemental metals. These particles are known for their chemical stability, water solubility, and biocompatibility. In comparison to organic NPs, they offer enhanced control over particle behavior and are less prone to degradation [43].
- -
- Carbon-based nanoparticles include structures like fullerenes, graphene derivatives, and carbon nanotubes. These materials are prized for their remarkable thermal, electrical, and mechanical strength, along with their adaptability for biomedical functions such as targeted drug delivery, tissue scaffolding, and biosensing [44].
5. Key Attributes and Functional Characteristics of Nanotechnology in Medicine
5.1. Wound Treatment and Infection Control
5.2. Antimicrobial Treatments
5.3. Minimizing Cytotoxic Effects on Healthy Cells
5.4. Nanomedicine Diagnostic Technique
6. Emerging Frontiers of Nanotechnology in Modern Medicine
6.1. Tissue Engineering and Cell Treatment
6.2. Targeted Drug Delivery
7. Advanced Nanotechnology Applications in Medicine and Therapy
7.1. Nanobots
7.2. Nanozyme
7.3. Enhancing Radiation Therapy
8. Future and Emerging Prospects
9. Challenges and Limitations
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hassan, A.A.; Ali, M.E.M.; Abdel-Latif, S.A.; Hasani, I.W.; Fahim, Y.A. Efficient removal of Remazol Red dye from aqueous solution using magnetic nickel ferrite nanoparticles synthesized via aqueous reflux. Sci. Rep. 2025, 15, 17527. [Google Scholar] [CrossRef]
- Hassan, A.A.; Fahim, Y.A.; Ali, M.E.M. Efficient removal of Cr (VI) and As (V) from aqueous solution using magnetically separable nickel ferrite nanoparticles. J. Clust. Sci. 2025, 36, 4. [Google Scholar] [CrossRef]
- Toumey, C. Reading Feynman Into Nanotechnology: A Text for a New Science. Techne Res. Philos. Technol. 2008, 12, 33–168. [Google Scholar] [CrossRef]
- Malik, S.; Muhammad, K.; Waheed, Y. Nanotechnology: A revolution in modern industry. Molecules 2023, 28, 661. [Google Scholar] [CrossRef]
- Pautler, M.; Brenner, S. Nanomedicine: Promises and challenges for the future of public health. Int. J. Nanomed. 2010, 5, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Conte, R.; Foggia, R.; Valentino, A.; Di Salle, A.; Kandsi, F.; Calarco, A. Nanotechnology advancements transforming molecular diagnostics: Applications in precision healthcare. Int. J. Nano Dimens. 2024, 15, 152418. [Google Scholar]
- Wong, I.Y.; Bhatia, S.N.; Toner, M. Nanotechnology: Emerging tools for biology and medicine. Genes Dev. 2013, 27, 2397–2408. [Google Scholar] [CrossRef] [PubMed]
- Fahim, Y.A.; Ragab, W.M.; Hasani, I.W.; El-Khawaga, A.M. Biomedical and environmental applications via nanobiocatalysts and enzyme immobilization. Eur. J. Med. Res. 2025, 30, 505. [Google Scholar] [CrossRef]
- Rokunuzzaman, M.K. The Nanotech Revolution: Advancements in Materials and Medical Science. J. Adv. Mater. Eng. 2024, 9, 1–10. [Google Scholar]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.d.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef]
- Ferraris, C.; Cavalli, R.; Panciani, P.P.; Battaglia, L. Overcoming the blood–brain barrier: Successes and challenges in developing nanoparticle-mediated drug delivery systems for the treatment of brain tumours. Int. J. Nanomed. 2020, 15, 2999–3022. [Google Scholar] [CrossRef] [PubMed]
- Mn Iqbal, H.; Mv Rodriguez, A.; Khandia, R.; Munjal, A.; Dhama, K. Recent trends in nanotechnology-based drugs and formulations for targeted therapeutic delivery. Recent Pat. Inflamm. Allergy Drug Discov. 2017, 10, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Rathore, R.; Suhag, D.; Thakur, P.; Thakur, A. Nanobiology of Infectious Diseases. In Advancements in Nanobiology; CRC Press: Boca Raton, FL, USA, 2025; pp. 176–196. [Google Scholar]
- Suhag, D.; Thakur, P.; Thakur, A. Future Perspectives of Nanobiology. In Advancements in Nanobiology; CRC Press: Boca Raton, FL, USA, 2025; pp. 345–361. [Google Scholar]
- Shivakumar, N. Recent Advances in Biological Nanodevices and Biosensors: Insights into Applications and Technological Innovations. Malays. NANO Int. J. 2024, 4, 86–101. [Google Scholar] [CrossRef]
- Mabrouk, M.; Das, D.B.; Salem, Z.A.; Beherei, H.H. Nanomaterials for biomedical applications: Production, characterisations, recent trends and difficulties. Molecules 2021, 26, 1077. [Google Scholar] [CrossRef]
- Chen, H.; Zhen, Z.; Todd, T.; Chu, P.K.; Xie, J. Nanoparticles for improving cancer diagnosis. Mater. Sci. Eng. R Rep. 2013, 74, 35–69. [Google Scholar] [CrossRef]
- Mirza, Z.; Karim, S. Nanoparticles-Based Drug Delivery and Gene Therapy for Breast Cancer: Recent Advancements and Future Challenges; Elsevier: Amsterdam, The Netherlands, 2021; pp. 226–237. [Google Scholar]
- Fahim, Y.A.; Hasani, I.W.; El-Khawaga, A.M.; Abdelhakim, H.K.; Sharaf, N.E.; Lasheen, N.N. Occupational Exposure to Heavy Metal Dust and Its Hazardous Effects on Non-ferrous Foundry Workers’ Health. J. Chem. Health Risks 2024, 14, 473–488. [Google Scholar]
- Koo, O.M.; Rubinstein, I.; Onyuksel, H. Role of nanotechnology in targeted drug delivery and imaging: A concise review. Nanomed. Nanotechnol. Biol. Med. 2005, 1, 193–212. [Google Scholar] [CrossRef]
- Batool, A.; Menaa, F.; Uzair, B.; Khan, B.A.; Menaa, B. Progress and prospects in translating nanobiotechnology in medical theranostics. Curr. Nanosci. 2020, 16, 685–707. [Google Scholar] [CrossRef]
- Wang, J.; Wang, P.; Shao, Y.; He, D. Advancing treatment strategies: A comprehensive review of drug delivery innovations for chronic inflammatory respiratory diseases. Pharmaceutics 2023, 15, 2151. [Google Scholar] [CrossRef]
- Dai, X.J.; Li, W.J.; Xie, D.D.; Liu, B.x.; Gong, L.; Han, H.H. Stimuli-Responsive Nano Drug Delivery Systems for the Treatment of Neurological Diseases. Small 2025, 21, 2410030. [Google Scholar] [CrossRef] [PubMed]
- Sarella, P.N.K.; Vipparthi, A.K.; Valluri, S.; Vegi, S.; Vendi, V.K. Nanorobotics: Pioneering drug delivery and development in pharmaceuticals. Res. J. Pharm. Dos. FORMS Technol. 2024, 16, 81–90. [Google Scholar] [CrossRef]
- Rajendran, S.; Sundararajan, P.; Awasthi, A.; Rajendran, S. Nanorobotics in Medicine: A Systematic Review of Advances, Challenges, and Future Prospects. arXiv 2023, arXiv:2309.10881. [Google Scholar] [CrossRef]
- Chang, Z.; Fu, Q.; Wang, M.; Duan, D. Advances of Nanozyme-Driven Multimodal Sensing Strategies in Point-of-Care Testing. Biosensors 2025, 15, 375. [Google Scholar] [CrossRef]
- Pant, A.; Mackraj, I.; Govender, T. Advances in sepsis diagnosis and management: A paradigm shift towards nanotechnology. J. Biomed. Sci. 2021, 28, 6. [Google Scholar] [CrossRef]
- Babu, A.; Templeton, A.K.; Munshi, A.; Ramesh, R. Nanodrug delivery systems: A promising technology for detection, diagnosis, and treatment of cancer. Aaps Pharmscitech 2014, 15, 709–721. [Google Scholar] [CrossRef]
- Akhtar, Z.B.; Gupta, A.D. Advancements within molecular engineering for regenerative medicine and biomedical applications an investigation analysis towards a computing retrospective. J. Electron. Electromed. Eng. Med. Inform. 2024, 6, 54–72. [Google Scholar] [CrossRef]
- Sayed, N.; Allawadhi, P.; Khurana, A.; Singh, V.; Navik, U.; Pasumarthi, S.K.; Khurana, I.; Banothu, A.K.; Weiskirchen, R.; Bharani, K.K. Gene therapy: Comprehensive overview and therapeutic applications. Life Sci. 2022, 294, 120375. [Google Scholar] [CrossRef]
- Mukherjee, S.; Suleman, S.; Pilloton, R.; Narang, J.; Rani, K. State of the art in smart portable, wearable, ingestible and implantable devices for health status monitoring and disease management. Sensors 2022, 22, 4228. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Liu, H.; Ye, Y.; Lei, Y.; Islam, R.; Tan, S.; Tong, R.; Miao, Y.-B.; Cai, L. Smart nanoparticles for cancer therapy. Signal Transduct. Target. Ther. 2023, 8, 418. [Google Scholar] [CrossRef]
- Stojanov, S.; Berlec, A. Smart bionanomaterials for treatment and diagnosis of inflammatory bowel disease. Nanotechnol. Rev. 2024, 13, 20240057. [Google Scholar] [CrossRef]
- Murahari, M.S.; Yergeri, M.C. Identification and usage of fluorescent probes as nanoparticle contrast agents in detecting cancer. Curr. Pharm. Des. 2013, 19, 4622–4640. [Google Scholar] [CrossRef]
- Kumar, R.; Pulikanti, G.R.; Shankar, K.R.; Rambabu, D.; Mangili, V.; Kumbam, L.R.; Sagara, P.S.; Nakka, N.; Yogesh, M. Surface coating and functionalization of metal and metal oxide nanoparticles for biomedical applications. In Metal Oxides for Biomedical and Biosensor Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 205–231. [Google Scholar]
- Roy, D.B.; Das, S. Advanced Nanostructured Materials for Energy Storage Devices. In Design, Fabrication, and Significance of Advanced Nanostructured Materials; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 187–206. [Google Scholar] [CrossRef]
- Wang, B.; Hu, S.; Teng, Y.; Chen, J.; Wang, H.; Xu, Y.; Wang, K.; Xu, J.; Cheng, Y.; Gao, X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct. Target. Ther. 2024, 9, 200. [Google Scholar] [CrossRef]
- Wani, S.U.D.; Ali, M.; Masoodi, M.H.; Khan, N.A.; Zargar, M.I.; Hassan, R.; Mir, S.A.; Gautam, S.P.; Gangadharappa, H.V.; Osmani, R.A.M. A review on nanoparticles categorization, characterization and applications in drug delivery systems. Vib. Spectrosc. 2022, 121, 103407. [Google Scholar] [CrossRef]
- Gelperina, S.; Kisich, K.; Iseman, M.D.; Heifets, L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am. J. Respir. Crit. Care Med. 2005, 172, 1487–1490. [Google Scholar] [CrossRef]
- Hheidari, A.; Mohammadi, J.; Ghodousi, M.; Mahmoodi, M.; Ebrahimi, S.; Pishbin, E.; Rahdar, A. Metal-based nanoparticle in cancer treatment: Lessons learned and challenges. Front. Bioeng. Biotechnol. 2024, 12, 1436297. [Google Scholar] [CrossRef] [PubMed]
- Eleraky, M.I.; Razek, T.M.A.; Hasani, I.W.; Fahim, Y.A. Adsorptive removal of lead, copper, and nickel using natural and activated Egyptian calcium bentonite clay. Sci. Rep. 2025, 15, 13050. [Google Scholar] [CrossRef] [PubMed]
- Idrees, H.; Zaidi, S.Z.J.; Sabir, A.; Khan, R.U.; Zhang, X.; Hassan, S.-u. A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials 2020, 10, 1970. [Google Scholar] [CrossRef] [PubMed]
- Jiao, M.; Zhang, P.; Meng, J.; Li, Y.; Liu, C.; Luo, X.; Gao, M. Recent advancements in biocompatible inorganic nanoparticles towards biomedical applications. Biomater. Sci. 2018, 6, 726–745. [Google Scholar] [CrossRef]
- Ayanda, O.S.; Mmuoegbulam, A.O.; Okezie, O.; Durumin Iya, N.I.; Mohammed, S.a.E.; James, P.H.; Muhammad, A.B.; Unimke, A.A.; Alim, S.A.; Yahaya, S.M. Recent progress in carbon-based nanomaterials: Critical review. J. Nanoparticle Res. 2024, 26, 106. [Google Scholar] [CrossRef]
- Eker, F.; Duman, H.; Akdaşçi, E.; Bolat, E.; Sarıtaş, S.; Karav, S.; Witkowska, A.M. A comprehensive review of nanoparticles: From classification to application and toxicity. Molecules 2024, 29, 3482. [Google Scholar] [CrossRef]
- Karnwal, A.; Jassim, A.Y.; Mohammed, A.A.; Sharma, V.; Al-Tawaha, A.R.M.S.; Sivanesan, I. Nanotechnology for Healthcare: Plant-Derived Nanoparticles in Disease Treatment and Regenerative Medicine. Pharmaceuticals 2024, 17, 1711. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Webster, T.J. Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today 2009, 4, 66–80. [Google Scholar] [CrossRef]
- Padmanabhan, P.; Kumar, A.; Kumar, S.; Chaudhary, R.K.; Gulyás, B. Nanoparticles in practice for molecular-imaging applications: An overview. Acta Biomater. 2016, 41, 1–16. [Google Scholar] [CrossRef]
- Barua, S.; Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today 2014, 9, 223–243. [Google Scholar] [CrossRef]
- Mubeen, B.; Ansar, A.N.; Rasool, R.; Ullah, I.; Imam, S.S.; Alshehri, S.; Ghoneim, M.M.; Alzarea, S.I.; Nadeem, M.S.; Kazmi, I. Nanotechnology as a novel approach in combating microbes providing an alternative to antibiotics. Antibiotics 2021, 10, 1473. [Google Scholar] [CrossRef]
- Paladini, F.; Pollini, M. Antimicrobial silver nanoparticles for wound healing application: Progress and future trends. Materials 2019, 12, 2540. [Google Scholar] [CrossRef]
- Thwala, L.N.; Ndlovu, S.C.; Mpofu, K.T.; Lugongolo, M.Y.; Mthunzi-Kufa, P. Nanotechnology-based diagnostics for diseases prevalent in developing countries: Current advances in point-of-care tests. Nanomaterials 2023, 13, 1247. [Google Scholar] [CrossRef]
- You, C.; Li, Q.; Wang, X.; Wu, P.; Ho, J.K.; Jin, R.; Zhang, L.; Shao, H.; Han, C. Silver nanoparticle loaded collagen/chitosan scaffolds promote wound healing via regulating fibroblast migration and macrophage activation. Sci. Rep. 2017, 7, 10489. [Google Scholar] [CrossRef] [PubMed]
- Erkoc, P.; Ulucan-Karnak, F. Nanotechnology-based antimicrobial and antiviral surface coating strategies. Prosthesis 2021, 3, 25–52. [Google Scholar] [CrossRef]
- El-Gendy, A.O.; Obaid, Y.; Ahmed, E.; Enwemeka, C.S.; Hassan, M.; Mohamed, T. The antimicrobial effect of gold quantum dots and femtosecond laser irradiation on the growth kinetics of common infectious eye pathogens: An in vitro study. Nanomaterials 2022, 12, 3757. [Google Scholar] [CrossRef] [PubMed]
- Markandan, K.; Tiong, Y.W.; Sankaran, R.; Subramanian, S.; Markandan, U.D.; Chaudhary, V.; Numan, A.; Khalid, M.; Walvekar, R. Emergence of infectious diseases and role of advanced nanomaterials in point-of-care diagnostics: A review. Biotechnol. Genet. Eng. Rev. 2024, 40, 3438–3526. [Google Scholar] [CrossRef]
- Makabenta, J.M.V.; Nabawy, A.; Li, C.-H.; Schmidt-Malan, S.; Patel, R.; Rotello, V.M. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat. Rev. Microbiol. 2021, 19, 23–36. [Google Scholar] [CrossRef]
- Tang, Y.; Xu, H.; Wang, X.; Dong, S.; Guo, L.; Zhang, S.; Yang, X.; Liu, C.; Jiang, X.; Kan, M.; et al. Advances in preparation and application of antibacterial hydrogels. J. Nanobiotechnol. 2023, 21, 300. [Google Scholar] [CrossRef]
- Hamdan, N.; Yamin, A.; Hamid, S.A.; Khodir, W.K.W.A.; Guarino, V. Functionalized antimicrobial nanofibers: Design criteria and recent advances. J. Funct. Biomater. 2021, 12, 59. [Google Scholar] [CrossRef]
- Ifijen, I.H.; Omonmhenle, S.I. Antimicrobial properties of carbon nanotube: A succinct assessment. Biomed. Mater. Devices 2024, 2, 113–120. [Google Scholar] [CrossRef]
- Fahim, Y.A.; El-Khawaga, A.M.; Sallam, R.M.; Elsayed, M.A.; Assar, M.F.A. Immobilized lipase enzyme on green synthesized magnetic nanoparticles using Psidium guava leaves for dye degradation and antimicrobial activities. Sci. Rep. 2024, 14, 8820. [Google Scholar] [CrossRef] [PubMed]
- El-Khawaga, A.M.; Elsayed, M.A.; Fahim, Y.A.; Shalaby, R.E. Promising photocatalytic and antimicrobial activity of novel capsaicin coated cobalt ferrite nanocatalyst. Sci. Rep. 2023, 13, 5353. [Google Scholar] [CrossRef] [PubMed]
- Elabbasy, M.T.; El Bayomi, R.M.; Abdelkarim, E.A.; Hafez, A.E.-S.E.; Othman, M.S.; Ghoniem, M.E.; Samak, M.A.; Alshammari, M.H.; Almarshadi, F.A.; Elsamahy, T. Antibacterial and Antibiofilm Activity of Green-Synthesized Zinc Oxide Nanoparticles Against Multidrug-Resistant Escherichia coli Isolated from Retail Fish. Molecules 2025, 30, 768. [Google Scholar] [CrossRef]
- Azmy, L.; Al-Olayan, E.; Abdelhamid, M.A.A.; Zayed, A.; Gheda, S.F.; Youssif, K.A.; Abou-Zied, H.A.; Abdelmohsen, U.R.; Ibraheem, I.B.M.; Pack, S.P. Antimicrobial Activity of Arthrospira Platensis-Mediated Gold Nanoparticles against Streptococcus Pneumoniae: A Metabolomic and Docking Study. Int. J. Mol. Sci. 2024, 25, 10090. [Google Scholar] [CrossRef]
- Fareid, M.A.; El-Sherbiny, G.M.; Askar, A.A.; Abdelaziz, A.M.; Hegazy, A.M.; Ab Aziz, R.; Hamada, F.A. Impeding Biofilm-Forming Mediated Methicillin-Resistant Staphylococcus aureus and Virulence Genes Using a Biosynthesized Silver Nanoparticles–Antibiotic Combination. Biomolecules 2025, 15, 266. [Google Scholar] [CrossRef]
- Godoy, C.A.; Balic, I.; Moreno, A.A.; Diaz, O.; Arenas Colarte, C.; Bruna Larenas, T.; Gamboa, A.; Caro Fuentes, N. Antimicrobial and Antibiofilm Activity of Chitosan Nanoparticles Against Staphylococcus aureus Strains Isolated from Bovine Mastitis Milk. Pharmaceutics 2025, 17, 186. [Google Scholar] [CrossRef] [PubMed]
- Lekkala, V.D.V.V.; Muktinutalapati, A.V.; Lebaka, V.R.; Lomada, D.; Korivi, M.; Li, W.; Reddy, M.C. Green Synthesis and Characterization of Silver Nanoparticles from Tinospora cordifolia Leaf Extract: Evaluation of Their Antioxidant, Anti-Inflammatory, Antibacterial, and Antibiofilm Efficacies. Nanomaterials 2025, 15, 381. [Google Scholar] [CrossRef]
- Alshammari, T.M. Drug safety: The concept, inception and its importance in patients’ health. Saudi Pharm. J. 2016, 24, 405–412. [Google Scholar] [CrossRef]
- Fahim, Y.A.; Hasani, I.W.; Mahmoud Ragab, W. Promising biomedical applications using superparamagnetic nanoparticles. Eur. J. Med. Res. 2025, 30, 441. [Google Scholar] [CrossRef]
- Singh, R.; Kumar, S. Cancer targeting and diagnosis: Recent trends with carbon nanotubes. Nanomaterials 2022, 12, 2283. [Google Scholar] [CrossRef]
- Ruiz-Hitzky, E.; Darder, M.; Aranda, P.; Ariga, K. Advances in biomimetic and nanostructured biohybrid materials. Adv. Mater. 2010, 22, 323–336. [Google Scholar] [CrossRef]
- Buonanno, A.; Salvatore, M.M.; Feola, A.; Siciliano, A.; Bellavita, R.; Imbò, L.E.; Guida, M.; Andolfi, A.; Nicoletti, R.; Maione, A. Sphaeropsidin A Loaded in Liposomes to Reduce Its Cytotoxicity and Preserve Antifungal Activity Against Candida auris. Molecules 2024, 29, 5949. [Google Scholar] [CrossRef]
- Asadullah Khan, M.; Peng, R.; Liu, C.; Chen, Z. Synthesis, dynamics and applications (cytotoxicity and biocompatibility) of dendrimers: A mini-review. Eur. Polym. J. 2022, 181, 111708. [Google Scholar] [CrossRef]
- Sikora, J.; Błaszkiewicz, P.; Dudkowiak, A.; Jagielska, J.; Żurawski, J. Cytotoxicity of gold nanoparticles to human lymphocytes: A comparison between rod-shaped and spherical nanoparticles. Contemp. Oncol./Współczesna Onkol. 2024, 28, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Yadav, K. Nanotechnology in diabetes management: Revolutionizing treatment and diagnostics. J. Mol. Liq. 2024, 414, 126117. [Google Scholar] [CrossRef]
- Singh, V. Theranostics: Integrated Diagnostics and Therapy Using Nanomedicine. In Nanomedicine; Springer: Berlin/Heidelberg, Germany, 2024; pp. 505–530. [Google Scholar]
- Savaliya, R.; Shah, D.; Singh, R.; Kumar, A.; Shanker, R.; Dhawan, A.; Singh, S. Nanotechnology in disease diagnostic techniques. Curr. Drug Metab. 2015, 16, 645–661. [Google Scholar] [CrossRef]
- Ahmed, M.U.; Saaem, I.; Wu, P.C.; Brown, A.S. Personalized diagnostics and biosensors: A review of the biology and technology needed for personalized medicine. Crit. Rev. Biotechnol. 2014, 34, 180–196. [Google Scholar] [CrossRef]
- Woźniak, M.; Płoska, A.; Siekierzycka, A.; Dobrucki, L.W.; Kalinowski, L.; Dobrucki, I.T. Molecular imaging and nanotechnology—Emerging tools in diagnostics and therapy. Int. J. Mol. Sci. 2022, 23, 2658. [Google Scholar] [CrossRef]
- Fuchigami, T.; Nakayama, T.; Miyanari, Y.; Nozaki, I.; Ishikawa, N.; Tagawa, A.; Yoshida, S.; Munekane, M.; Nakayama, M.; Ogawa, K. Peptide-Based Turn-On Fluorescent Probes for Highly Specific Detection of Survivin Protein in the Cancer Cells. Chem. Biomed. Imaging 2024, 2, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Minges, P.; Eder, M.; Eder, A.-C. Dual-Labeled Small Peptides in Cancer Imaging and Fluorescence-Guided Surgery: Progress and Future Perspectives. Pharmaceuticals 2025, 18, 143. [Google Scholar] [CrossRef]
- Rafiq, Z.; Patel, P.; Kumar, S.; Sofi, H.S.; Macossay, J.; Sheikh, F.A. Advancements of Nanotechnology in Diagnostic Applications. In Application of Nanotechnology in Biomedical Sciences; Springer: Singapore, 2020; pp. 1–15. [Google Scholar] [CrossRef]
- Gallo, E.; Diaferia, C.; Balasco, N.; Sibillano, T.; Roviello, V.; Giannini, C.; Vitagliano, L.; Morelli, G.; Accardo, A. Fabrication of fluorescent nanospheres by heating PEGylated tetratyrosine nanofibers. Sci. Rep. 2021, 11, 2470. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Lee, G.-H.; Kim, S.Y.; Kwon, S.Y.; Kim, H.-R.; Park, S. From diagnosis to treatment: Recent advances in patient-friendly biosensors and implantable devices. ACS Nano 2021, 15, 1960–2004. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, Y.; Chen, X.; Wang, Y.; Li, Z.; Du, S.; Wang, L.; Chen, S. Nanotechnology-based strategies for early cancer diagnosis using circulating tumor cells as a liquid biopsy. Nanotheranostics 2018, 2, 21. [Google Scholar] [CrossRef] [PubMed]
- Taha, B.A.; Kadhim, A.C.; Addie, A.J.; Haider, A.J.; Azzahrani, A.S.; Raizada, P.; Rustagi, S.; Chaudhary, V.; Arsad, N. Advancing cancer diagnostics through multifaceted optical biosensors supported by nanomaterials and artificial intelligence: A panoramic outlook. Microchem. J. 2024, 205, 111307. [Google Scholar] [CrossRef]
- Manzetti, S.; Vasilache, D.; Francesco, E. Emerging carbon-based nanosensor devices: Structures, functions and applications. Adv. Manuf. 2015, 3, 63–72. [Google Scholar] [CrossRef]
- Wanas, W.; Khalifa, D.H.; Gamal, H.; El-Kot, S.M. Nanotechnology for Cancer Research (Diagnosis and Therapy): Recent Progress and Future Prospects. In Interdisciplinary Cancer Research; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Sengar, A. Precision in practice: Nanotechnology and targeted therapies for personalized care. Int. J. Adv. Nano Comput. Anal. 2024, 3, 56–67. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R.; Rab, S. Biosensors applications in medical field: A brief review. Sens. Int. 2021, 2, 100100. [Google Scholar] [CrossRef]
- Shen, Z.; Wu, A.; Chen, X. Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Mol. Pharm. 2017, 14, 1352–1364. [Google Scholar] [CrossRef]
- Nyström, A.M.; Fadeel, B. Safety assessment of nanomaterials: Implications for nanomedicine. J. Control. Release 2012, 161, 403–408. [Google Scholar] [CrossRef]
- Walmsley, G.G.; McArdle, A.; Tevlin, R.; Momeni, A.; Atashroo, D.; Hu, M.S.; Feroze, A.H.; Wong, V.W.; Lorenz, P.H.; Longaker, M.T. Nanotechnology in bone tissue engineering. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1253–1263. [Google Scholar] [CrossRef]
- Nethi, S.K.; Das, S.; Patra, C.R.; Mukherjee, S. Recent advances in inorganic nanomaterials for wound-healing applications. Biomater. Sci. 2019, 7, 2652–2674. [Google Scholar] [CrossRef]
- Malik, S.; Sundarrajan, S.; Hussain, T.; Nazir, A.; Ayyoob, M.; Berto, F.; Ramakrishna, S. Sustainable nanofibers in tissue engineering and biomedical applications. Mater. Des. Process. Commun. 2021, 3, e202. [Google Scholar] [CrossRef]
- Huang, J.; Liu, F.; Su, H.; Xiong, J.; Yang, L.; Xia, J.; Liang, Y. Advanced nanocomposite hydrogels for cartilage tissue engineering. Gels 2022, 8, 138. [Google Scholar] [CrossRef]
- Singh, S. Nanomedicine–nanoscale drugs and delivery systems. J. Nanosci. Nanotechnol. 2010, 10, 7906–7918. [Google Scholar] [CrossRef]
- Muteeb, G.; El-Morsy, M.T.; Abo-Taleb, M.A.; Mohamed, S.K.; Khafaga, D.S.R. Herbal Medicine: Enhancing the Anticancer Potential of Natural Products in Hepatocellular Carcinoma Therapy Through Advanced Drug Delivery Systems. Pharmaceutics 2025, 17, 673. [Google Scholar] [CrossRef] [PubMed]
- Khafaga, D.S.R.; Muteeb, G.; Aswa, D.W.; Aatif, M.; Farhan, M.; Allam, S. Green chemistry: Modern therapies using nanocarriers for treating rare brain cancer metastasis from colon cancer. SLAS Discov. 2025, 31, 100213. [Google Scholar] [CrossRef]
- Muteeb, G.; Khafaga, D.S.R.; El-Morsy, M.T.; Farhan, M.; Aatif, M.; Hosney, M. Targeting tumor-associated macrophages with nanocarrier-based treatment for breast cancer: A step toward developing innovative anti-cancer therapeutics. Heliyon 2024, 10, e37217. [Google Scholar] [CrossRef]
- Perinelli, D.R.; Cespi, M.; Bonacucina, G.; Palmieri, G.F. PEGylated polylactide (PLA) and poly (lactic-co-glycolic acid)(PLGA) copolymers for the design of drug delivery systems. J. Pharm. Investig. 2019, 49, 443–458. [Google Scholar] [CrossRef]
- Kalasin, S.; Surareungchai, W. Challenges of emerging wearable sensors for remote monitoring toward telemedicine healthcare. Anal. Chem. 2023, 95, 1773–1784. [Google Scholar] [CrossRef] [PubMed]
- Egwu, C.O.; Aloke, C.; Onwe, K.T.; Umoke, C.I.; Nwafor, J.; Eyo, R.A.; Chukwu, J.A.; Ufebe, G.O.; Ladokun, J.; Audu, D.T. Nanomaterials in drug delivery: Strengths and opportunities in medicine. Molecules 2024, 29, 2584. [Google Scholar] [CrossRef]
- Herdiana, Y.; Wathoni, N.; Gozali, D.; Shamsuddin, S.; Muchtaridi, M. Chitosan-based nano-smart drug delivery system in breast cancer therapy. Pharmaceutics 2023, 15, 879. [Google Scholar] [CrossRef] [PubMed]
- Ata, T.e.; Al-Ani, I.; Karameh, N.; Atta, M.R.; Dayyih, W.A. Alectinib-Loaded Chitosan–Alginate Nanoparticles: A Novel Synthesis Method with In Vitro and In Vivo Evaluations. Pharmaceutics 2025, 17, 492. [Google Scholar] [CrossRef]
- Shashni, B.; Tran, H.T.; Vong, L.B.; Chung, R.-J.; Nagasaki, Y. Sorafenib-Loaded Silica-Containing Redox Nanoparticle Decreases Tumorigenic Potential of Lewis Lung Carcinoma. Pharmaceutics 2025, 17, 50. [Google Scholar] [CrossRef] [PubMed]
- Alshaer, W.; Lafi, Z.; Nsairat, H.; AlQuaissi, B.; Alqudah, D.A.; Zureigat, H.; Hamad, I. Remote Co-Loading of Doxorubicin and Hydralazine into PEGylated Liposomes: In Vitro Anti-Proliferative Effect Against Breast Cancer. Molecules 2025, 30, 1549. [Google Scholar] [CrossRef]
- Radeva, L.; Zaharieva, M.M.; Spassova, I.; Kovacheva, D.; Pencheva-El Tibi, I.; Najdenski, H.; Yoncheva, K. Biopolymeric Nanogel as a Drug Delivery System for Doxorubicin—Improved Drug Stability and Enhanced Antineoplastic Activity in Skin Cancer Cells. Pharmaceuticals 2024, 17, 186. [Google Scholar] [CrossRef]
- Elmahboub, Y.; Albash, R.; Magdy William, M.; Rayan, A.H.; Hamed, N.O.; Ousman, M.S.; Raslan, N.A.; Mosallam, S. Metformin loaded zein polymeric nanoparticles to augment antitumor activity against Ehrlich carcinoma via activation of AMPK pathway: D-optimal design optimization, in vitro characterization, and in vivo study. Molecules 2024, 29, 1614. [Google Scholar] [CrossRef]
- El-Far, S.W.; Abo El-Enin, H.A.; Abdou, E.M.; Nafea, O.E.; Abdelmonem, R. Targeting colorectal cancer cells with niosomes systems loaded with two anticancer drugs models; comparative in vitro and anticancer studies. Pharmaceuticals 2022, 15, 816. [Google Scholar] [CrossRef]
- Zarepour, A.; Egil, A.C.; Cokol Cakmak, M.; Esmaeili Rad, M.; Cetin, Y.; Aydinlik, S.; Ozaydin Ince, G.; Zarrabi, A. Fabrication of a dual-drug-loaded smart niosome-g-chitosan polymeric platform for lung cancer treatment. Polymers 2023, 15, 298. [Google Scholar] [CrossRef] [PubMed]
- Weerarathna, I.N.; Kumar, P.; Dzoagbe, H.Y.; Kiwanuka, L. Advancements in Micro/Nanorobots in Medicine: Design, Actuation, and Transformative Application. ACS Omega 2025, 10, 5214–5250. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Gao, P.; Wang, J.; Fang, Y.; Hwang, K.C. Advances of medical nanorobots for future cancer treatments. J. Hematol. Oncol. 2023, 16, 74. [Google Scholar] [CrossRef]
- Kavousinejad, S. Simulation of Nanorobots with Artificial Intelligence and Reinforcement Learning for Advanced Cancer Cell Detection and Tracking. arXiv 2024, arXiv:2411.02345. [Google Scholar] [CrossRef]
- Li, J.; Esteban-Fernández de Ávila, B.; Gao, W.; Zhang, L.; Wang, J. Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Sci. Robot. 2017, 2, eaam6431. [Google Scholar] [CrossRef]
- Soto, F.; Wang, J.; Ahmed, R.; Demirci, U. Medical micro/nanorobots in precision medicine. Adv. Sci. 2020, 7, 2002203. [Google Scholar] [CrossRef] [PubMed]
- Jeyachandran, S.; Srinivasan, R.; Ramesh, T.; Parivallal, A.; Lee, J.; Sathiyamoorthi, E. Recent development and application of “nanozyme” artificial enzymes—A review. Biomimetics 2023, 8, 446. [Google Scholar] [CrossRef]
- Shi, X.; Liu, J.; Wang, G. A peroxidase-like magneto-gold nanozyme AuNC@ Fe3O4 with photothermal effect for induced cell apoptosis of hepatocellular carcinoma cells in vitro. Front. Bioeng. Biotechnol. 2023, 11, 1168750. [Google Scholar] [CrossRef]
- Jiang, B.; Yan, L.; Zhang, J.; Zhou, M.; Shi, G.; Tian, X.; Fan, K.; Hao, C.; Yan, X. Biomineralization synthesis of the cobalt nanozyme in SP94-ferritin nanocages for prognostic diagnosis of hepatocellular carcinoma. ACS Appl. Mater. Interfaces 2019, 11, 9747–9755. [Google Scholar] [CrossRef]
- Sen, A.; Oswalia, J.; Yadav, S.; Vachher, M.; Nigam, A. Recent trends in nanozyme research and their potential therapeutic applications. Curr. Res. Biotechnol. 2024, 7, 100205. [Google Scholar] [CrossRef]
- Kwatra, D.; Venugopal, A.; Anant, S. Nanoparticles in radiation therapy: A summary of various approaches to enhance radiosensitization in cancer. Transl. Cancer Res. 2013, 2, 330–342. [Google Scholar]
- Arif, M.; Nawaz, A.F.; Ullah Khan, S.; Mueen, H.; Rashid, F.; Hemeg, H.A.; Rauf, A. Nanotechnology-based radiation therapy to cure cancer and the challenges in its clinical applications. Heliyon 2023, 9, e17252. [Google Scholar] [CrossRef] [PubMed]
- Mazumdar, H.; Khondakar, K.R.; Das, S.; Halder, A.; Kaushik, A. Artificial intelligence for personalized nanomedicine; from material selection to patient outcomes. Expert Opin. Drug Deliv. 2025, 22, 85–108. [Google Scholar] [CrossRef] [PubMed]
- Shapira, A.; Livney, Y.D.; Broxterman, H.J.; Assaraf, Y.G. Nanomedicine for targeted cancer therapy: Towards the overcoming of drug resistance. Drug Resist. Updates 2011, 14, 150–163. [Google Scholar] [CrossRef]
- Chandrakala, V.; Aruna, V.; Angajala, G. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems. Emergent Mater. 2022, 5, 1593–1615. [Google Scholar] [CrossRef] [PubMed]
- Salvador-Morales, C.; Grodzinski, P. Nanotechnology tools enabling biological discovery. ACS Nano 2022, 16, 5062–5084. [Google Scholar] [CrossRef]
- Lenar, N.; Paczosa-Bator, B. Nanosensors and Microsensors for Body Fluid Monitoring: Various Analyte Detection and Construction Solutions. Int. J. Mol. Sci. 2025, 26, 5001. [Google Scholar] [CrossRef]
Nanoparticle | Organism | Size | Ref. |
---|---|---|---|
Capsaicin-coated CoFe2O4 NPs | Gram-positive (S. aureus ATCC 52923) and Gram-negative (E. coli ATCC 52922) | 28.1 to 31.9 nm | [62] |
ZnF-CA-LP NCs | Gram-positive Staphylococcus aureus (S. aureus ATCC 25923) and Gram-negative Escherichia coli (E. coli ATCC 25922) | 35 nm | [61] |
ZnO NPs | Escherichia coli | 12 to 25 nm | [63] |
Au NPs | Streptococcus pneumoniae | 134.8 nm | [64] |
Ag NPs | Methicillin-resistant Staphylococcus aureus | 20 nm | [65] |
Chitosan NPs | Staphylococcus aureus | 20.3 ± 3.2 nm | [66] |
TcAg NPs | Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, and Staphylococcus aureus | 125 nm | [67] |
Nanoparticle | Drug | Type of Cancer | Ref. |
---|---|---|---|
Chitosan–alginate NP | Alectinib | Non-small cell lung cancer | [105] |
Silica-containing antioxidant NP | Sorafenib | Lung carcinoma | [106] |
PEGylated liposomes | Doxorubicin and hydralazine | Breast cancer | [107] |
Chitosan–albumin nanogel | Doxorubicin | Skin cancer | [108] |
Zein NP | Metformin | Ehrlich carcinoma | [109] |
Niosomes | Oxaliplatin or Paclitaxel | Colorectal cancer | [110] |
Niosome | G-Chitosan Polymeric Platform | Lung cancer | [111] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazi, R.N.A.; Hasani, I.W.; Khafaga, D.S.R.; Kabba, S.; Farhan, M.; Aatif, M.; Muteeb, G.; Fahim, Y.A. Nanomedicine: The Effective Role of Nanomaterials in Healthcare from Diagnosis to Therapy. Pharmaceutics 2025, 17, 987. https://doi.org/10.3390/pharmaceutics17080987
Kazi RNA, Hasani IW, Khafaga DSR, Kabba S, Farhan M, Aatif M, Muteeb G, Fahim YA. Nanomedicine: The Effective Role of Nanomaterials in Healthcare from Diagnosis to Therapy. Pharmaceutics. 2025; 17(8):987. https://doi.org/10.3390/pharmaceutics17080987
Chicago/Turabian StyleKazi, Raisa Nazir Ahmed, Ibrahim W. Hasani, Doaa S. R. Khafaga, Samer Kabba, Mohd Farhan, Mohammad Aatif, Ghazala Muteeb, and Yosri A. Fahim. 2025. "Nanomedicine: The Effective Role of Nanomaterials in Healthcare from Diagnosis to Therapy" Pharmaceutics 17, no. 8: 987. https://doi.org/10.3390/pharmaceutics17080987
APA StyleKazi, R. N. A., Hasani, I. W., Khafaga, D. S. R., Kabba, S., Farhan, M., Aatif, M., Muteeb, G., & Fahim, Y. A. (2025). Nanomedicine: The Effective Role of Nanomaterials in Healthcare from Diagnosis to Therapy. Pharmaceutics, 17(8), 987. https://doi.org/10.3390/pharmaceutics17080987