Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,100)

Search Parameters:
Keywords = domain wall

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1805 KB  
Article
Mechanistic Origin of a Stable Magnetic Vortex in Three-Dimensional Pyramid Fe Thin Films
by Juharni, Liliany N. Pamasi, Ni’matil Mabarroh, Azusa N. Hattori, Hidekazu Tanaka, Nobuyoshi Hosoito, Satoru Yoshimura and Ken Hattori
Magnetism 2026, 6(1), 6; https://doi.org/10.3390/magnetism6010006 - 9 Jan 2026
Viewed by 26
Abstract
A magnetic vortex, characterized by curling in-plane magnetization, is generally unstable in two-dimensional (2D) ferromagnetic thin films. Here, we demonstrated that this vortex could be stable in three-dimensional (3D) pyramid-shaped Fe thin films and elucidated mechanistic origin of the stable vortex. Magnetization measurements [...] Read more.
A magnetic vortex, characterized by curling in-plane magnetization, is generally unstable in two-dimensional (2D) ferromagnetic thin films. Here, we demonstrated that this vortex could be stable in three-dimensional (3D) pyramid-shaped Fe thin films and elucidated mechanistic origin of the stable vortex. Magnetization measurements reveal characteristic MH hysteresis loops with a pronounced bending and a gradual slope near zero magnetization, contrasting strongly with the abrupt switching seen in 2D films. By decomposing the magnetization processes on each facet in pyramid, we identify the sequence of vortex formation, stabilization, and annihilation. The key factor is the 3D geometry: non-coplanar facet junctions at the ridge lines act as structural singularities that naturally pin domain walls (DWs). These ridge lines restrict DW motion, confine local magnetic structures, and mediate inter-facet interactions, creating geometrical constraints enhancing vortex stability. Vortex formation is driven by magnetostatic energy minimization, as in 2D films. However, ridge-induced weakening of inter-facet exchange becomes the dominant factor in the 3D pyramidal structure. Overall, the interplay of shape anisotropy, magnetostatic, exchange, and Zeeman energies under 3D constraints provides a clear framework for vortex stability, offering the first mechanistic insight into stable vortices in 3D ferromagnetic films and supporting future 3D magnetic devices. Full article
Show Figures

Graphical abstract

17 pages, 1967 KB  
Article
Micromagnetic Analysis of Monolayer L10-FePt and Bilayer L10-FePt/Fe Ultrathin Films
by Nikolaos Maniotis
Magnetism 2026, 6(1), 5; https://doi.org/10.3390/magnetism6010005 - 9 Jan 2026
Viewed by 32
Abstract
This work presents a micromagnetic investigation of monolayer L10 FePt and FePt/Fe bilayer thin films to clarify the role of thickness, composition, and exchange coupling in their magnetic behavior. Simulations were performed using the Landau–Lifshitz–Gilbert formalism implemented in OOMMF, with realistic [...] Read more.
This work presents a micromagnetic investigation of monolayer L10 FePt and FePt/Fe bilayer thin films to clarify the role of thickness, composition, and exchange coupling in their magnetic behavior. Simulations were performed using the Landau–Lifshitz–Gilbert formalism implemented in OOMMF, with realistic material parameters and geometries. For FePt monolayers, film thicknesses of 1–20 nm were examined, revealing a non-monotonic coercivity trend: the coercive field increased from 35 mT at 1 nm to 136 mT at 10 nm and decreased to 69 mT at 20 nm. This evolution indicates a transition from localized reversal to domain-wall-mediated switching once the film exceeds the exchange length (10–20 nm). Additional simulations varying Fe concentration (48–68%) through the exchange stiffness constant showed that higher Fe content strengthens magnetic coupling and increases coercivity. Bilayer systems combining a 2 nm FePt layer with Fe layers of 10 and 12 nm exhibited rectangular, saturated loops, confirming strong exchange coupling and exchange-spring behavior. The results identify 2 nm FePt as the optimal thickness for achieving full saturation, balanced coercivity, and thermal stability in FePt/Fe thin-film architectures. Full article
Show Figures

Figure 1

14 pages, 2540 KB  
Article
Modelling Stress-Dependent Magnetic Permeability Using Two-Domain Approach with an Effective Anisotropic Wall Energy in Grain-Oriented Electrical Steel
by Tadeusz Szumiata, Roman Szewczyk, Paweł Rękas and Michał Nowicki
Materials 2026, 19(2), 274; https://doi.org/10.3390/ma19020274 - 9 Jan 2026
Viewed by 25
Abstract
The magnetoelastic effect in grain-oriented electrical steels arises from interactions between magnetocrystalline anisotropy, domain wall confinement, and applied mechanical stress. This presents a comprehensive model based on the minimization of total magnetic energy in a two-domain system separated by a 180° Bloch wall. [...] Read more.
The magnetoelastic effect in grain-oriented electrical steels arises from interactions between magnetocrystalline anisotropy, domain wall confinement, and applied mechanical stress. This presents a comprehensive model based on the minimization of total magnetic energy in a two-domain system separated by a 180° Bloch wall. The model uniquely permits independent variation in the magnetization angle and external field direction, allowing accurate representation of energy competition among magnetostatic coupling, inter-domain interactions, and multi-component anisotropic confinement. The effective anisotropic wall energy incorporates isotropic, uniaxial, and six-fold crystallographic anisotropies modified by stress-induced terms. The Bloch wall position and the actual direction of magnetization are the variables that minimize the energy. Transformation to dimensionless variables enables efficient parameter identification via tri-division search. Experimental validation on M120-27s grain-oriented steel demonstrates that the model quantitatively reproduces stress-dependent 2D permeability tensors across arbitrary cutting orientations with very good quality, confirmed by determination coefficient R-squared exceeding 98%, which verifies the physical validity of the proposed model. This satisfactory agreement, together with the concept of anisotropic domain wall effective energy, represents a genuine novelty in the analysis of low-field magnetic permeability in grain-oriented electrical steels. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Graphical abstract

34 pages, 3118 KB  
Article
Spatial and Energetic Organization of Coherent Structures in Couette–Poiseuille Turbulent Channels
by Sergio Gandía-Barberá and Sergio Hoyas
Fluids 2026, 11(1), 18; https://doi.org/10.3390/fluids11010018 - 8 Jan 2026
Viewed by 109
Abstract
Coherent structures play a pivotal role in wall-bounded turbulence, serving as primary carriers of momentum, energy, and scalar quantities across the flow. This study examines coherent structures, specifically streamwise streaks and intense Reynolds stress regions (Q structures), within a novel DNS dataset capturing [...] Read more.
Coherent structures play a pivotal role in wall-bounded turbulence, serving as primary carriers of momentum, energy, and scalar quantities across the flow. This study examines coherent structures, specifically streamwise streaks and intense Reynolds stress regions (Q structures), within a novel DNS dataset capturing a stepped transition from pure Poiseuille flow to pure Couette flow at Reτ250, based on the stationary wall. Structures are identified using a percolation algorithm to ensure well-defined boundaries, followed by three-dimensional clustering in Cartesian coordinates. They are further classified as wall-attached or wall-detached based on their proximity to the domain walls. Intense Reynolds stress structures are categorized into quadrants according to the signs of their averaged velocity components. The statistical properties of these structures—encompassing geometric characteristics, energy content, and spatial distribution—are thoroughly analyzed. Particular emphasis is placed on how these properties evolve across the transition from Poiseuille to Couette flow. The results reveal that increasing mean shear in Couette-like cases significantly influences the energy content and spatial distribution of the structures while their geometric characteristics remain relatively consistent across the dataset. This spatial distribution is closely linked to the large-scale structures of the streamwise velocity component in Couette flow, confirming that these structures are genuine physical features rather than artificial artifacts of the flow. Full article
(This article belongs to the Special Issue Modelling Flows in Pipes and Channels)
Show Figures

Figure 1

38 pages, 8851 KB  
Article
Numerical Investigation of Rim Seal Flow in a Single-Stage Axial Turbine
by Tuong Linh Nha, Duc Anh Nguyen, Phan Anh Trinh, Gia-Diem Pham and Cong Truong Dinh
Eng 2026, 7(1), 31; https://doi.org/10.3390/eng7010031 - 7 Jan 2026
Viewed by 73
Abstract
This study investigates rim seal flow in axial turbine configurations through a combined experimental–numerical approach, with the objective of identifying sealing-flow conditions that minimize ingestion while limiting aerodynamic losses. Experimental measurements from the University of BATH are used to validate computational methodology, ensuring [...] Read more.
This study investigates rim seal flow in axial turbine configurations through a combined experimental–numerical approach, with the objective of identifying sealing-flow conditions that minimize ingestion while limiting aerodynamic losses. Experimental measurements from the University of BATH are used to validate computational methodology, ensuring consistency with established sealing-effectiveness trends. The work places particular emphasis on the influence of computational domain selection and interface treatment, which is shown to strongly affect the prediction of ingestion mechanisms. A key contribution of this study is the systematic assessment of multiple domain configurations, demonstrating that a frozen rotor MRF formulation provides the most reliable steady-state representation of pressure-driven ingress, whereas stationary and non-interface domains tend to overpredict sealing effectiveness. A simplified thin-seal model is also evaluated and found to offer an efficient alternative for global performance predictions. Furthermore, a statistical orifice-based model is introduced to estimate minimum sealing flow for different rim seal geometries, providing a practical engineering tool for purge-flow scaling. The effects of pre-swirl injection are examined and shown to substantially reduce rotor wall shear and moment coefficient, contributing to lower windage losses without significantly modifying sealing characteristics. Unsteady flow features are explored using a harmonic balance method, revealing Kelvin–Helmholtz-type instabilities that drive large-scale structures within the rim seal cavity, particularly near design-speed operation. Finally, results highlight a clear trade-off between sealing-flow rate and turbine isentropic efficiency, underlining the importance of optimized purge-flow management. Full article
Show Figures

Figure 1

18 pages, 2219 KB  
Article
Integrative Transcriptomic and Systems Biology Analyses Identify TCB1 as a Calcium-Responsive Gene in Cryptococcus neoformans
by Andrea Gomes Tavanti, Júlia Catarina Vieira Reuwsaat, Heryk Motta, Eamim Daidrê Squizani, Rodrigo Silva Araujo Streit, Patrícia Aline Gröhs Ferrareze, Matheus da Silva Camargo, Bruno Cesar Feltes, Marilene Henning Vainstein, Charley Christian Staats and Lívia Kmetzsch
Microorganisms 2026, 14(1), 122; https://doi.org/10.3390/microorganisms14010122 - 7 Jan 2026
Viewed by 152
Abstract
Cryptococcus neoformans is a pathogenic yeast and the leading cause of cryptococcosis in humans. The calcium-calcineurin signaling pathway plays a central role in stress adaptation and virulence. To identify the uncharacterized regulators of fungal adaptation, we utilized an integrative systems biology approach, combining [...] Read more.
Cryptococcus neoformans is a pathogenic yeast and the leading cause of cryptococcosis in humans. The calcium-calcineurin signaling pathway plays a central role in stress adaptation and virulence. To identify the uncharacterized regulators of fungal adaptation, we utilized an integrative systems biology approach, combining differential gene expression and network analysis using transcriptomic data from three key components of the calcium-calcineurin pathway (Cna1, Crz1, and Pmc1). Our workflow identified the CNAG_00522 gene product, which we designated tricalbin 1 (TCB1) due to its conserved calcium and lipid-binding C2 domains. TCB1 expression was found to be regulated by both Cna1 and Pmc1. Network analyses positioned Tcb1 as a bottleneck linking general stress response and cellular processes. Further molecular characterization confirmed that TCB1 expression is temperature and calcium-responsive. Functional studies of the tcb1Δ mutant revealed an enlarged capsule, increased GXM shedding, and enhanced viability under host-mimicking conditions. However, phenotypic screening demonstrated that the tcb1Δ mutant does not display sensitivity to cell wall or osmotic stressors, and TCB1 deletion did not attenuate virulence in the Tenebrio larval model. These findings suggest that TCB1 functions as a specialized regulator of fungal growth at 37 °C, capsule size, and GXM shedding. This study validates our integrative approach for guiding the identification of these complex regulators. Full article
Show Figures

Figure 1

13 pages, 1389 KB  
Article
Genome-Wide Identification and Phylogenetic Analysis of Cell Wall Remodeling Genes in Carica papaya L.
by Miguel Salvador-Adriano, Miguel Angel Reyes-López, José Alberto Narváez-Zapata, Raymundo Rosas-Quijano and Didiana Gálvez-López
Appl. Biosci. 2026, 5(1), 2; https://doi.org/10.3390/applbiosci5010002 - 1 Jan 2026
Viewed by 346
Abstract
Fruit softening in Carica papaya L. is a significant postharvest limitation, primarily driven by the dynamic remodeling of cell wall polysaccharides. In this study, we conducted a genome-wide identification and in silico characterization of gene families involved in cell wall assembly and disassembly [...] Read more.
Fruit softening in Carica papaya L. is a significant postharvest limitation, primarily driven by the dynamic remodeling of cell wall polysaccharides. In this study, we conducted a genome-wide identification and in silico characterization of gene families involved in cell wall assembly and disassembly in papaya. A total of 181 genes were identified and classified into metabolic pathways: hemicellulose (58), pectin (69), extensin (24), expansin (13), and cellulose (17). These genes encode 176 predicted proteins, ranging in size from 100 to 1093 amino acids, featuring family-specific catalytic domains, including glycosyl hydrolases, transferases, and serine/threonine kinases. Phylogenetic analyses revealed strong conservation within the expansin-A and pectin polygalacturonase subfamilies, while hemicellulose-related XTH genes exhibited significant diversification. Experimental validation of nine XTH members confirmed this diversification, with amplicons ranging from 322 to 1370 bp, consistent with computational predictions. Notably, CpXTH1 and CpXTH32 produced bands of approximately 1200 and 1400 bp, respectively. These findings underscore the complexity of papaya cell wall gene families and provide a molecular framework for understanding fruit softening. Given that postharvest losses of papaya in Mexico exceed 34.7% of production (approximately 150,000 tons annually), our results offer valuable genomic resources for biotechnological strategies aimed at extending shelf life and reducing economic losses. Full article
Show Figures

Figure 1

22 pages, 4723 KB  
Article
Effect of Paraffin Microcapsule and Carbon Nanotube Content on the Thermal Behavior of Thermoplastic Polyurethane Nanocomposites with Thermal Energy Storage Capability
by Daniele Rigotti, Andrea Dorigato and Alessandro Pegoretti
J. Compos. Sci. 2026, 10(1), 10; https://doi.org/10.3390/jcs10010010 - 1 Jan 2026
Viewed by 178
Abstract
The development of multifunctional polymer composites capable of both heat conduction and latent heat storage is of great interest for advanced thermal management applications. In this work, thermoplastic polyurethane (TPU) nanocomposites containing microencapsulated paraffin-based phase change materials (PCMs) and multi-walled carbon nanotubes (MWCNTs) [...] Read more.
The development of multifunctional polymer composites capable of both heat conduction and latent heat storage is of great interest for advanced thermal management applications. In this work, thermoplastic polyurethane (TPU) nanocomposites containing microencapsulated paraffin-based phase change materials (PCMs) and multi-walled carbon nanotubes (MWCNTs) were systematically investigated. The microstructure, thermal stability, specific heat capacity, thermal diffusivity and conductivity of these composites were analyzed as a function of the PCM and MWCNTs content. SEM observations revealed the homogeneous dispersion of PCM microcapsules and the presence of localized MWCNT aggregates in PCM-rich domains. Thermal diffusivity measurements indicated a monotonic decrease with increasing temperature for all compositions, from 0.097 mm2·s−1 at 5 °C to 0.091 mm2·s−1 at 25 °C for neat TPU, and from 0.186 mm2·s−1 to 0.173 mm2·s−1 for TPU with 5 vol.% MWCNTs. Distinct non-linear behavior was observed around 25 °C, i.e., in correspondence to the paraffin melting, where the apparent diffusivity temporarily decreased due to latent heat absorption. The trend of the thermal conductivity (λ) was determined by the competing effects of PCM and MWCNTs: PCM addition reduced λ at 25 °C from 0.162 W·m−1·K−1 (neat TPU) to 0.128 W·m−1·K−1 at 30 vol.% PCM, whereas the incorporation of 5 vol.% of MWCNTs increased λ up to 0.309 W·m−1·K−1. In PCM-containing nanocomposites, MWCNT networks efficiently bridged the polymer–microcapsule interfaces, creating continuous conductive pathways that mitigated the insulating effect of the encapsulated paraffin and ensured stable heat transfer even across the solid–liquid transition. A one-dimensional transient heat-transfer model confirmed that increasing the matrix thermal conductivity accelerates the melting of the PCM, improving the dynamic thermal buffering capacity of these materials. Therefore, these results underlined the potential of TPU/MWCNT/PCM composites as versatile materials for applications requiring both rapid heat dissipation and effective thermal management. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

73 pages, 3131 KB  
Review
Magnetic Barkhausen Noise Sensor: A Comprehensive Review of Recent Advances in Non-Destructive Testing and Material Characterization
by Polyxeni Vourna, Pinelopi P. Falara, Aphrodite Ktena, Evangelos V. Hristoforou and Nikolaos D. Papadopoulos
Sensors 2026, 26(1), 258; https://doi.org/10.3390/s26010258 - 31 Dec 2025
Viewed by 341
Abstract
Magnetic Barkhausen noise (MBN) represents a powerful non-destructive testing and material characterization methodology enabling quantitative assessment of microstructural features, mechanical properties, and stress states in ferromagnetic materials. This comprehensive review synthesizes recent advances spanning theoretical foundations, sensor design, signal processing methodologies, and industrial [...] Read more.
Magnetic Barkhausen noise (MBN) represents a powerful non-destructive testing and material characterization methodology enabling quantitative assessment of microstructural features, mechanical properties, and stress states in ferromagnetic materials. This comprehensive review synthesizes recent advances spanning theoretical foundations, sensor design, signal processing methodologies, and industrial applications. The physical basis rooted in domain wall dynamics and statistical mechanics provides rigorous frameworks for interpreting MBN signals in terms of grain structure, dislocation density, phase composition, and residual stress. Contemporary instrumentation innovations including miniaturized sensors, multi-parameter systems, and high-entropy alloy cores enable measurements in challenging environments. Advanced signal processing techniques—encompassing time-domain analysis, frequency-domain spectral methods, time–frequency transforms, and machine learning algorithms—extract comprehensive material information from raw Barkhausen signals. Deep learning approaches demonstrate superior performance for automated material classification and property prediction compared to traditional statistical methods. Industrial applications span manufacturing quality control, structural health monitoring, railway infrastructure assessment, and predictive maintenance strategies. Key achievements include establishing quantitative correlations between material properties and stress states, with measurement uncertainties of ±15–20 MPa for stress and ±20 HV for hardness. Emerging challenges include standardization imperatives, characterization of advanced materials, machine learning robustness, and autonomous system integration. Future developments prioritizing international standards, physics-informed neural networks, multimodal sensor fusion, and wireless monitoring networks will accelerate industrial adoption supporting safe, efficient engineering practice across diverse sectors. Full article
(This article belongs to the Special Issue Recent Trends and Advances in Magnetic Sensors)
Show Figures

Figure 1

11 pages, 5555 KB  
Article
Dynamics of Ferroelastic Domain Walls Associated with the Dielectric Relaxation in CsPbCl3 Single Crystals
by Zijun Yu, Chen Zou and Dexin Yang
Nanomaterials 2026, 16(1), 57; https://doi.org/10.3390/nano16010057 - 31 Dec 2025
Viewed by 209
Abstract
Cesium lead chloride (CsPbCl3) is a stable, wide-bandgap perovskite with significant potential for ultraviolet (UV) photodetection and blue light-emitting diodes (LEDs). However, the dynamical mechanisms of ferroelastic domain walls associated with the dielectric relaxations in a single-crystal have rarely been reported. [...] Read more.
Cesium lead chloride (CsPbCl3) is a stable, wide-bandgap perovskite with significant potential for ultraviolet (UV) photodetection and blue light-emitting diodes (LEDs). However, the dynamical mechanisms of ferroelastic domain walls associated with the dielectric relaxations in a single-crystal have rarely been reported. In this work, we observed reversible phase transitions from cubic to tetragonal, and further to orthorhombic symmetry, accompanied by the formation and evolution of strip-like ferroelastic domain walls, using in situ X-ray diffraction (XRD), differential scanning calorimetry (DSC), polarized optical microscopy (POM), and dielectric measurements. Notably, the dielectric studies revealed low temperature (~170–180 K) frequency-dependent loss peaks that we attribute to the pinning of polarized domain walls by chloride vacancies. We also found that the formation or disappearance of ferroelastic domain walls near the octahedral tilting transition temperatures leads to pronounced anomalies in the dielectric permittivity. These findings clarify the intrinsic phase behavior of CsPbCl3 single crystals and underscore the significant contribution of ferroelastic domain walls to its dielectric response, providing insights for optimizing its optoelectronic performance. Full article
Show Figures

Graphical abstract

11 pages, 6726 KB  
Article
Bench-Scale Study of Magnetically Influenced Dynamic Response in a Sloshing Tank
by Harun Tayfun Söylemez and İbrahim Özkol
Appl. Sci. 2026, 16(1), 360; https://doi.org/10.3390/app16010360 - 29 Dec 2025
Viewed by 115
Abstract
Liquid sloshing in partially filled tanks is commonly studied because of its influence on vehicle stability, structural loading, and control performance. In experimental investigations, sloshing measurements can be contaminated by mechanically induced fluid–structure interactions originating from the actuation system itself. This study presents [...] Read more.
Liquid sloshing in partially filled tanks is commonly studied because of its influence on vehicle stability, structural loading, and control performance. In experimental investigations, sloshing measurements can be contaminated by mechanically induced fluid–structure interactions originating from the actuation system itself. This study presents a bench-scale experimental investigation of the interaction between static magnetic fields and the dynamic response of a mechanically excited water-tank system, with particular emphasis on distinguishing sloshing-related motion from higher-frequency mechanical effects. A rectangular acrylic tank was subjected to near-resonant horizontal excitation at a fixed fill height. A ferromagnetic steel plate was mounted externally beneath the tank and kept identical in all experiments, while either permanent magnets or mass-matched nonmagnetic dummies were attached externally to one sidewall. Two configurations were examined: a symmetric split-wall layout (15 + 15) magnets and a single-wall high-field arrangement with 30 magnets (Mag–30@L) together with its dummy control (Dummy–30@L). The center-of-gravity motion CGy(t) was reconstructed from four load cells and analyzed in the time and frequency domains. Band-limited analysis of the primary sloshing mode near 0.55 Hz revealed no statistically significant influence of the magnetic field, indicating that static magnets do not measurably affect the fundamental sloshing dynamics under the present conditions. In contrast, a higher-frequency response component in the 10–20 Hz range, attributed to mechanically induced fluid–structure interaction associated with actuator reversal dynamics, was consistently attenuated when magnets were present; this component is absent in corresponding CFD simulations and is, therefore, not associated with sloshing motion. Given the extremely small magnetic Reynolds and Stuart numbers for water, the observations do not support any volumetric magnetohydrodynamic mechanism; instead, they demonstrate a modest magnetic influence on a mechanically excited, high-frequency coupled mode specific to the present experimental system. The study is intentionally limited to bench scale and provides a reproducible dataset that may inform future investigations of magnetically influenced fluid–structure interactions in experimental sloshing rigs. Full article
Show Figures

Figure 1

21 pages, 5675 KB  
Article
Numerical Simulation of the Formation of Frozen Walls in Subway Cross Passages Under Seepage Conditions
by Xin Liu, Huijie Cheng, Juan Deng, Xuefu Zhang, Zhaohui Sun, Linfeng Wang, Fuping Zheng and Yuchao Xia
Appl. Sci. 2026, 16(1), 308; https://doi.org/10.3390/app16010308 - 28 Dec 2025
Viewed by 134
Abstract
The artificial ground freezing (AGF) technique is widely used in the construction of subway cross passages due to its advantages of good water sealing, strong adaptability, and minimal environmental impact. However, groundwater seepage adversely affects the formation of the frozen wall. The functional [...] Read more.
The artificial ground freezing (AGF) technique is widely used in the construction of subway cross passages due to its advantages of good water sealing, strong adaptability, and minimal environmental impact. However, groundwater seepage adversely affects the formation of the frozen wall. The functional relationship between the content of unfrozen water and the temperature in saturated sandy gravel was obtained using frequency domain reflectometry (FDR). Based on the theories of heat transfer and seepage in porous media, a coupled hydrothermal mathematical model of saturated ground considering phase change was established. This model was verified using results from a model test and a freezing project for a subway cross passage. Building on this, the influence of seepage velocity on the formation and closure time of the frozen wall was studied, and prediction formulas for closure times under different seepage velocities were proposed. The results demonstrate the effectiveness of the VG–Clapeyron model in predicting the unfrozen water content in saturated sandy gravel. Groundwater seepage is the core factor affecting the formation of the frozen wall. As seepage velocity increases, closure times for both the cross passage and the pump room are significantly delayed, and the difference between their respective closure times increases. The upstream sidewall is the weak link in frozen wall expansion under seepage conditions. Monitoring of the temperature field in this area should be strengthened to track the formation of the frozen wall. Full article
Show Figures

Figure 1

24 pages, 5201 KB  
Article
Three-Dimensional Reconstruction of Indoor Building Components Based on Multi-Dimensional Primitive Modeling Method
by Jaeyoung Lee, Soomin Kim and Sungchul Hong
ISPRS Int. J. Geo-Inf. 2026, 15(1), 10; https://doi.org/10.3390/ijgi15010010 - 23 Dec 2025
Viewed by 322
Abstract
The integration of Building Information Modeling (BIM) and Digital Twin (DT) has emerged as an innovative tool in the architecture, engineering, and construction (AEC) domain. To successfully utilize BIM and DT, it is crucial to update the 3D model in a timely and [...] Read more.
The integration of Building Information Modeling (BIM) and Digital Twin (DT) has emerged as an innovative tool in the architecture, engineering, and construction (AEC) domain. To successfully utilize BIM and DT, it is crucial to update the 3D model in a timely and accurate manner. However, limitations remain when handling massive point clouds to reconstruct complex indoor structures with varying ceiling and floor heights. This study proposes a semi-automatic 3D model reconstruction method. First, point clouds are aligned with 3D Cartesian axes and the spatial extent of the indoor space is measured. Subsequently, the point clouds are projected onto each coordinate plane to hierarchically extract structural elements of a building component, such as boundary lines, rectangles, and cuboids. Boolean operations are then applied to the cuboids to reconstruct a 3D wireframe model. Additionally, wall points are segmented to identify openings like doors and windows. For validation, the method was applied to three typical building components with Manhattan-world structures: an office, a hallway, and a stairway. The reconstructed models were evaluated using reference points, resulting in positional accuracies of 0.033 m, 0.034 m, and 0.030 m, respectively. Finally, the resulting wireframe model served as a reference to build an as-built BIM model. Full article
Show Figures

Figure 1

10 pages, 4824 KB  
Article
Controlled Synthesis, Microstructure Evolution, and Soft Magnetic Properties of Flaky Iron Nitride
by Sicheng Zhai, Xiaoqiang Li, Changkuan Zheng and Qun Wang
Magnetochemistry 2026, 12(1), 3; https://doi.org/10.3390/magnetochemistry12010003 - 23 Dec 2025
Viewed by 229
Abstract
Ball milling treatment facilitates the transformation of carbonyl iron powders from a spherical to a flaky morphology, while simultaneously introducing numerous defects that approach the nanometer scale in one dimension. Flaky iron nitride was synthesized via the gas nitridation in an NH3 [...] Read more.
Ball milling treatment facilitates the transformation of carbonyl iron powders from a spherical to a flaky morphology, while simultaneously introducing numerous defects that approach the nanometer scale in one dimension. Flaky iron nitride was synthesized via the gas nitridation in an NH3/N2 atmosphere. The microstructure, morphology, and magnetic properties of the samples nitrided at different temperatures were characterized using XRD, SEM, TEM, and VSM. The formation of γ′-Fe4N and ε-Fe3N phases impedes domain wall movement, resulting in a slight increase in the Hc of the samples. Notably, γ′-Fe4N positively influences the magnetic properties of iron nitride. As the nitriding temperature rises, the content of the γ′-Fe4N phase initially increases before subsequently declining. Consequently, the flaky iron nitride synthesized at 610 °C exhibits excellent soft magnetic properties with a high Ms value reaching up to 177.1 emu/g and a low Hc value, indicating its potential applications in the field of magnetic materials. Full article
Show Figures

Figure 1

18 pages, 3937 KB  
Article
A Novel SPH-Based Approach to Predicting Explosion-Induced Failure and Containment in 18650 Battery Systems
by Murat Demiral, Erol Gültekin and Murat Otkur
Appl. Sci. 2026, 16(1), 153; https://doi.org/10.3390/app16010153 - 23 Dec 2025
Viewed by 176
Abstract
This study presents a comprehensive smoothed particle hydrodynamics (SPH) framework developed to investigate the thermomechanical response and failure behavior of cylindrical 18650-type lithium-ion battery cans under explosion conditions. The model captures the coupled evolution of gas pressure, temperature, and particle dynamics, as well [...] Read more.
This study presents a comprehensive smoothed particle hydrodynamics (SPH) framework developed to investigate the thermomechanical response and failure behavior of cylindrical 18650-type lithium-ion battery cans under explosion conditions. The model captures the coupled evolution of gas pressure, temperature, and particle dynamics, as well as the resulting deformation and fracture of the metallic enclosure. Parametric analyses were conducted to evaluate the influence of the internal gas domain geometry, can wall thickness, and initial pressure on the structural response, along with the subsequent post-explosion interaction between the escaping gas and external protective coverage. The results demonstrate the strong dependence of failure initiation on gas confinement geometry and highlight the existence of transient thermodynamic asymmetries within the gas domain that govern the impulse transferred to the can wall. The proposed modeling approach provides a physically consistent means of reproducing the key stages of battery explosion—from internal pressurization to external gas impact—and offers valuable insights for designing safer and more resilient energy storage enclosures. Full article
(This article belongs to the Special Issue Advances in Structural Integrity and Failure Analysis)
Show Figures

Figure 1

Back to TopTop