Controlled Synthesis, Microstructure Evolution, and Soft Magnetic Properties of Flaky Iron Nitride
Abstract
1. Introduction
2. Experimental Procedures
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Wang, Q.; Yu, Y.; Zhai, S. Optimizing the electromagnetic wave absorption properties of core-shell Fe/FeN/Fe3C@GN nanoparticles by low-temperature NH3 plasma. Carbon 2024, 226, 119237. [Google Scholar] [CrossRef]
- Chang, X.; Liu, S.; Huang, T.; Yan, Z.; Zhao, Y.; Tong, W.; Wang, J. Study on intermediate annealing-twice nitriding process and corrosionresistance of pure iron. Mater. Charact. 2025, 229, 115631. [Google Scholar] [CrossRef]
- Zhuo, S.N.; Sun, H.; Wang, Z.Y.; Ren, H.Y.; Xing, D.F.; Ren, N.Q.; Liu, B.F. A magnetic biochar catalyst with dual active sites of Fe3C and Fe4N derived from floc: The activation mechanism for persulfate on degrading organic pollutant. Chem. Eng. J. 2023, 455, 140702. [Google Scholar] [CrossRef]
- Huang, H.; Shang, X.; Wang, Q.; Cao, M.; Sun, F.; Liu, W.; Xu, Y.; Wang, J.; Zhao, Y.; Ma, X. Epsilon iron carbide derived from Fe4N for ethanol synthesis via esterhydrogenation. J. Energy Chem. 2025, 108, 19–29. [Google Scholar] [CrossRef]
- Bhattacharyya, S. Iron nitride family at reduced dimensions: A review of their synthesis protocols and structural and magnetic properties. J. Phys. Chem. C 2015, 119, 1601–1622. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, Z.; Shen, X. Structures, magnetic and electronic properties of Fe2N adsorbed andinserted capped single-walled carbon nanotubes. Mater. Chem. Phys. 2021, 260, 124098. [Google Scholar] [CrossRef]
- Kikkawa, S.; Masubuchi, Y.J. Magnetic iron nitrides inspired by historic research on a′′-Fe16N2. Prog. Solid State Chem. 2018, 51, 19–26. [Google Scholar] [CrossRef]
- Leineweber, A.; Hickel, T.; Azimi-Manavi, B.; Maisel, S.B. Crystal structures of Fe4C vs. Fe4N analysed by DFT calculations: Fcc-based interstitial superstructures explored. Acta Mater. 2017, 140, 433–442. [Google Scholar]
- Zhang, S.; Meng, X.; Wang, C.; Yu, M. Design and synthesis of Fe4N/MnO/carbon nanofibers for efficientelectromagnetic wave absorption. Chem. Eng. J. 2025, 524, 169749. [Google Scholar]
- Yin, H.; Zhang, C.Z.; Liu, F.; Hou, Y.L. Hybrid of Iron Nitride and Nitrogen-Doped Graphene Aerogel as Synergistic Catalyst for Oxygen Reduction Reaction. Adv. Funct. Mater. 2014, 24, 2930–2937. [Google Scholar] [CrossRef]
- du Marchie van Voorthuysen, E.H.; Chechenin, N.C.; Boerma, D.O. Low-temperature extension of the lehrer diagram and the iron-nitrogen phase diagram. Metall. Mater. Trans. A 2002, 33, 2593–2598. [Google Scholar] [CrossRef]
- Zieschang, A.M.; Bocarsly, J.D.; Dürrschnabel, M.; Molina-Luna, L.; Kleebe, H.J.; Seshadri, R.; Albert, B. Nanoscale Iron Nitride, ε-Fe3N: Preparation from Liquid Ammonia and Magnetic Properties. Chem. Mater. 2017, 29, 621–628. [Google Scholar]
- Yamaguchi, T.; Sakita, M.; Nakamura, M.; Kobira, T. Synthesis and characteristics of Fe4N powders and thin films. J. Magn. Magn. Mater. 2000, 215, 529–531. [Google Scholar] [CrossRef]
- Peng, X.; Yu, S.; Chang, J.; Ge, M.; Li, J.; Ellis, T.; Yang, Y.; Xu, J.; Hong, B.; Jin, D.; et al. Preparation and magnetic properties of Fe4N/Fe soft magnetic composites fabricated by gas nitridation. J. Magn. Magn. Mater. 2020, 500, 166407. [Google Scholar] [CrossRef]
- Wu, K.; Liu, J.; Saha, R.; Ma, B.; Su, D.; Peng, C.; Sun, J.; Wang, J.P. Irregularly Shaped Iron Nitride Nanoparticles as a Potential Candidate for Biomedical Applications: From Synthesis to Characterization. ACS Omega 2020, 5, 11756−11767. [Google Scholar] [CrossRef]
- Zheng, Q.; Yu, M.; Wang, W.; Liu, S.; Liang, X.; Wang, C.; Dai, Y.; Xu, Y. Porous and flake-like γ′-Fe4N@iron oxides with enhanced microwave absorption performance. Ceram. Int. 2021, 47, 8315–8321. [Google Scholar] [CrossRef]
- Liu, Y.; Qie, Y.; Kong, F.; Yang, Z.; Yang, H. Synthesis and magnetism of single-phase γ′-Fe4N by non-ammonia route and applied in oxygen evolution reaction electrocatalysis. Mater. Today Commun. 2022, 30, 103103. [Google Scholar]
- Li, X.; Sun, X.; Wang, J.; Liu, Q. Microstructure and magnetic properties of iron nitride thin films. J. Alloys Compd. 2014, 582, 398–402. [Google Scholar] [CrossRef]
- Lu, Q.H.; Xie, M.L.; Han, G.L.; Zheng, B.; Song, Y.Z.; Qiang, J.; Wang, X.Q.; Wu, Z.G.; Yan, P.X.; Liu, W.M. Controllable synthesis of γ′-Fe4N via prolonged high vacuum magnetic annealing of deposited Fe-N thin films. J. Magn. Magn. Mater. 2019, 474, 76–82. [Google Scholar]
- Liu, S.; Yu, M.; Zheng, Q.; Liang, X.; Xie, S.; Xu, Y.; Wang, C. Optimized impedance matching and enhanced microwave absorbing performance of porous flaky Fe4N wrapped with SiO2. J. Magn. Magn. Mater. 2021, 536, 168119. [Google Scholar] [CrossRef]
- Tan, X.; Wang, S.; Chen, Y.; Zhou, Y.; Li, Z. Design, preparation and characterization of iron nitride magnetic abrasives. J. Alloys Compd. 2019, 774, 443–450. [Google Scholar]
- Li, J.; Estévez, D.; Jiang, K.; Yang, W.; Man, Q.; Chang, C.; Wang, X. Electronic-structure origin of the glass-forming ability and magnetic properties in Fe-RE-B-Nb bulk metallic glasses. J. Alloys Compd. 2014, 617, 332–336. [Google Scholar] [CrossRef]
- Pandey, N.; Gupta, M.; Rawat, R.; Amir, S.; Stahn, J.; Gupta, A. Role of growth parameters on structural and magnetic properties of Fe4N thin films grown by reactive magnetron sputtering. Phys. B Condens. Matter 2019, 572, 36–41. [Google Scholar]
- Yin, W.; Lei, L.; Jiang, X.; Liu, P.; Liu, F.; Li, Y.; Peng, F.; He, D. High pressure synthesis and properties studies on spherical bulk ε-Fe3N. High Press. Res. 2014, 34, 317–326. [Google Scholar]
- Arabczyk, W.; Pelka, R. Studies of the Kinetics of Two Parallel Reactions: Ammonia Decomposition and Nitriding of Iron Catalyst. J. Phys. Chem. A 2009, 113, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Kardonina, N.; Yurovskikh, A.; Kolpakov, A. Transformations in the Fe-N System. Met. Sci. Heat Treat. 2010, 52, 457–467. [Google Scholar] [CrossRef]
- Wróbel, R.; Arabczyk, W. Solid-Gas Reaction with Adsorption as the Rate Limiting Step. J. Phys. Chem. A 2006, 110, 9219–9224. [Google Scholar] [CrossRef]
- Kronmüller, H. Theory of magnetic after-effects in ferromagnetic amorphous alloys. Philos. Mag. B Phys. Condens. Matter 1983, 48, 127–150. [Google Scholar] [CrossRef]
- Bitoh, T.; Makino, A.; Inoue, A. Quasi-Dislocation Dipole-Type Defects and Low Coercivity of Fe-Based Soft Magnetic Glassy Alloys. J. Metastable Nanocryst. Mater. 2005, 24, 427–430. [Google Scholar] [CrossRef]
- Wang, C.; Jin, X.; Li, T.; Jia, Z.; Xue, D. High performance in soft magnetic composites of Fe-Fe4N particles. J. Magn. Magn. Mater. 2024, 605, 172336. [Google Scholar] [CrossRef]
- Khan, W.; Wang, Q.; Jin, X.; Yasin, G. Corrosion, optical and magnetic properties of flexible iron nitride nano thin films deposited on polymer substrate. Phys. B 2017, 524, 71–80. [Google Scholar] [CrossRef]
- Li, W.; Li, W.; Chen, J.; Ying, Y.; Yu, J.; Zheng, J.; Qiao, L.; Li, J.; Che, S. Migration of N element and evolution of microstructure in spark plasma sintered bulk γ′-Fe4N. J. Alloys Compd. 2022, 928, 167201. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhai, S.; Li, X.; Zheng, C.; Wang, Q. Controlled Synthesis, Microstructure Evolution, and Soft Magnetic Properties of Flaky Iron Nitride. Magnetochemistry 2026, 12, 3. https://doi.org/10.3390/magnetochemistry12010003
Zhai S, Li X, Zheng C, Wang Q. Controlled Synthesis, Microstructure Evolution, and Soft Magnetic Properties of Flaky Iron Nitride. Magnetochemistry. 2026; 12(1):3. https://doi.org/10.3390/magnetochemistry12010003
Chicago/Turabian StyleZhai, Sicheng, Xiaoqiang Li, Changkuan Zheng, and Qun Wang. 2026. "Controlled Synthesis, Microstructure Evolution, and Soft Magnetic Properties of Flaky Iron Nitride" Magnetochemistry 12, no. 1: 3. https://doi.org/10.3390/magnetochemistry12010003
APA StyleZhai, S., Li, X., Zheng, C., & Wang, Q. (2026). Controlled Synthesis, Microstructure Evolution, and Soft Magnetic Properties of Flaky Iron Nitride. Magnetochemistry, 12(1), 3. https://doi.org/10.3390/magnetochemistry12010003

