Dynamics of Ferroelastic Domain Walls Associated with the Dielectric Relaxation in CsPbCl3 Single Crystals
Abstract
1. Introduction
2. Materials and Methods
2.1. Single Crystal Growth
2.2. X-Ray Diffraction (XRD)
2.3. Scanning Electron Microscopy (SEM)
2.4. Differential Scanning Calorimetry (DSC)
2.5. Polarized Optical Microscopy (POM)
2.6. Dielectric Measurements
3. Results and Discussion
3.1. Structural and Compositional Characterization
3.2. Structural Phase Transitions
3.3. Evolution of Ferroelastic Domain Walls
3.4. Dielectric Relaxation and Ferroelastic Domain Wall Effects
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jin, B.; Peng, Y.; Zou, C.; Yang, D.; Zhang, X. Electron/exciton–phonon coupling in FAPbBr3 single crystals. Materialia 2025, 44, 102605. [Google Scholar] [CrossRef]
- Jin, B.; Yang, D.; Gong, R.; Sugai, Y.; Lan, D.; Steele, J.A.; Zhang, X. Strain analysis of black-to-yellow phase transitions in CsPbI3. InfoMat 2025, e70084. [Google Scholar] [CrossRef]
- Ghribi, A.; Ben Aich, R.; Boujdaria, K.; Barisien, T.; Legrand, L.; Chamarro, M.; Testelin, C. Dielectric Confinement and Exciton Fine Structure in Lead Halide Perovskite Nanoplatelets. Nanomaterials 2021, 11, 3054. [Google Scholar] [CrossRef]
- Zheng, W.; Huang, P.; Gong, Z.; Tu, D.; Xu, J.; Zou, Q.; Li, R.; You, W.; Bunzli, J.G.; Chen, X. Near-infrared-triggered photon upconversion tuning in all-inorganic cesium lead halide perovskite quantum dots. Nat. Commun. 2018, 9, 3462. [Google Scholar] [CrossRef]
- Liu, X.-K.; Xu, W.; Bai, S.; Jin, Y.; Wang, J.; Friend, R.H.; Gao, F. Metal halide perovskites for light-emitting diodes. Nat. Mater. 2021, 20, 10–21. [Google Scholar] [CrossRef]
- Yang, D.; Zhao, B.; Yang, T.; Lai, R.; Lan, D.; Friend, R.H.; Di, D. Toward stable and efficient perovskite light-emitting diodes. Adv. Funct. Mater. 2022, 32, 2109495. [Google Scholar] [CrossRef]
- Zhou, Y.; Zou, C.; Peng, D.; Jin, B.; Rao, M.; Lan, D.; Yang, D.; Di, D.; Zhang, X. Reduced-Toxicity and Highly Luminescent Germanium-Lead Perovskites Enabled by Strain Reduction for Light-Emitting Diodes. J. Phys. Chem. Lett. 2024, 15, 6443–6450. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wan, Q.; Wang, H.; Carulli, F.; Sun, X.; Zheng, W.; Kong, L.; Zhang, Q.; Zhang, C.; Zhang, Q. Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes. Nat. Photonics 2021, 15, 379–385. [Google Scholar] [CrossRef]
- Xun, J.; Deng, J.; Shen, W.; Li, M.; He, R. Rapid synthesis of highly stable all-inorganic perovskite nanocrystals exhibiting strong blue luminescence. J. Alloys Compd. 2021, 872, 159612. [Google Scholar] [CrossRef]
- Yoo, J.J.; Seo, G.; Chua, M.R.; Park, T.G.; Lu, Y.; Rotermund, F.; Kim, Y.-K.; Moon, C.S.; Jeon, N.J.; Correa-Baena, J.-P. Efficient perovskite solar cells via improved carrier management. Nature 2021, 590, 587–593. [Google Scholar] [CrossRef]
- Ouedraogo, N.A.N.; Chen, Y.; Xiao, Y.Y.; Meng, Q.; Han, C.B.; Yan, H.; Zhang, Y. Stability of all-inorganic perovskite solar cells. Nano Energy 2020, 67, 104249. [Google Scholar] [CrossRef]
- He, Y.; Hadar, I.; Kanatzidis, M.G. Detecting ionizing radiation using halide perovskite semiconductors processed through solution and alternative methods. Nat. Photonics 2022, 16, 14–26. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, F.; Chen, J.; Yang, S.; Xia, X.; Pullerits, T.; Deng, W.; Han, K. Ultrasensitive and Fast All-Inorganic Perovskite-Based Photodetector via Fast Carrier Diffusion. Adv. Mater. 2017, 29, 1703758. [Google Scholar] [CrossRef]
- Zhu, Z.; Deng, W.; Li, W.; Chun, F.; Luo, C.; Xie, M.; Pu, B.; Lin, N.; Gao, B.; Yang, W. Antisolvent-Induced Fastly Grown All-Inorganic Perovskite CsPbCl3 Microcrystal Films for High-Sensitive UV Photodetectors. Adv. Mater. Interfaces 2021, 8, 2001812. [Google Scholar] [CrossRef]
- Rao, Z.; Liang, W.; Huang, H.; Ge, J.; Wang, W.; Pan, S. High sensitivity and rapid response ultraviolet photodetector of a tetragonal CsPbCl3 perovskite single crystal. Opt. Mater. Express 2020, 10, 1374. [Google Scholar] [CrossRef]
- Hayashi, T.; Kobayashi, T.; Iwanaga, M.; Watanabe, M. Exciton dynamics related with phase transitions in CsPbCl3 single crystals. J. Lumin. 2001, 94, 255–259. [Google Scholar] [CrossRef]
- Peters, J.A.; Liu, Z.; De Siena, M.C.; Kanatzidis, M.G.; Wessels, B.W. Photoluminescence spectroscopy of excitonic emission in CsPbCl3 perovskite single crystals. J. Lumin. 2022, 243, 118661. [Google Scholar] [CrossRef]
- Yao, Q.; Zhang, J.; Wang, K.; Jing, L.; Cheng, X.; Shang, C.; Ding, J.; Zhang, W.; Sun, H.; Zhou, T. Broadband and massive Stokes shift luminescence in fully inorganic 2D-layered perovskite CsPb2Cl5: Single crystal growth and self-trapped exciton emission. J. Mater. Chem. C 2021, 9, 7374–7383. [Google Scholar] [CrossRef]
- Yang, T.; Li, F.; Zheng, R. Recent Progress on Cesium Lead Halide Perovskites for Photodetection Applications. ACS Appl. Electron. Mater. 2019, 1, 1348–1366. [Google Scholar] [CrossRef]
- Yang, D.; Huo, D. Cation doping and strain engineering of CsPbBr3-based perovskite light emitting diodes. J. Mater. Chem. C 2020, 8, 6640–6653. [Google Scholar] [CrossRef]
- Liao, M.; Shan, B.; Li, M. In Situ Raman Spectroscopic Studies of Thermal Stability of All-Inorganic Cesium Lead Halide (CsPbX3, X = Cl, Br, I) Perovskite Nanocrystals. J. Phys. Chem. Lett. 2019, 10, 1217–1225. [Google Scholar] [CrossRef] [PubMed]
- Szafrański, M.; Katrusiak, A.; Ståhl, K. Time-dependent transformation routes of perovskites CsPbBr3 and CsPbCl3 under high pressure. J. Mater. Chem. A 2021, 9, 10769–10779. [Google Scholar] [CrossRef]
- Baltog, I.; Mihut, L.; Lefrant, S. Excitonic luminescence in CsPbCl3 crystals under intense excitation. J. Lumin. 1996, 68, 271–277. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, L.; Wang, K.; Zou, B. Pressure-Induced Structural Evolution and Optical Properties of Metal-Halide Perovskite CsPbCl3. J. Phys. Chem. C 2018, 122, 15220–15225. [Google Scholar] [CrossRef]
- Voloshynovskii, A.; Savchyn, P.; Karbovnyk, I.; Myagkota, S.; Cestelli Guidi, M.; Piccinini, M.; Popov, A.I. CsPbCl3 nanocrystals dispersed in the Rb0,8Cs0,2Cl matrix studied by far-infrared spectroscopy. Solid State Commun. 2009, 149, 593–597. [Google Scholar] [CrossRef]
- Xie, H.; Jin, B.; Luo, P.; Zhou, Q.; Yang, D.; Zhang, X. Effects of Ferroelastic Domain Walls on the Macroscopic Transport and Photoluminescent Properties of Bulk CsPbBr3 Single Crystals. ACS Appl. Mater. Interfaces 2024, 16, 54252–54258. [Google Scholar] [CrossRef]
- Luo, P.; He, Z.; Yang, D.; Aktas, O.; Ding, X.; Zhang, X. Elastic and Anelastic Behavior Associated with Structural Transitions in CsPbBr3. J. Phys. Chem. Lett. 2025, 16, 7100–7106. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, D.; Liu, X.; Bai, R.; Ma, X.; Fu, M.; Zhang, B.-B.; Zha, G. Ferroelastic domains enhanced the photoelectric response in a CsPbBr3 single-crystal film detector. J. Phys. Chem. Lett. 2021, 12, 8685–8691. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Shen, X.; Zhang, Y.; Liu, D.; Wu, Y.; Guo, P.; Zhou, W.; Hao, Y. Color-Tunable Photoluminescence and Whispering Gallery Mode Lasing of Alloyed CsPbCl3(1–x) Br3x Microstructures. Adv. Mater. Interfaces 2020, 7, 1902126. [Google Scholar] [CrossRef]
- Ahmed, G.H.; El-Demellawi, J.K.; Yin, J.; Pan, J.; Velusamy, D.B.; Hedhili, M.N.; Alarousu, E.; Bakr, O.M.; Alshareef, H.N.; Mohammed, O.F. Giant Photoluminescence Enhancement in CsPbCl3 Perovskite Nanocrystals by Simultaneous Dual-Surface Passivation. ACS Energy Lett. 2018, 3, 2301–2307. [Google Scholar] [CrossRef]
- Bhat, A.A.; Khandy, S.A.; Islam, I.; Tomar, R. Optical, electrochemical and photocatalytic properties of cobalt doped CsPbCl3 nanostructures: A one-pot synthesis approach. Sci. Rep. 2021, 11, 16473. [Google Scholar] [CrossRef] [PubMed]
- De, A.; Mondal, N.; Samanta, A. Luminescence tuning and exciton dynamics of Mn-doped CsPbCl3 nanocrystals. Nanoscale 2017, 9, 16722–16727. [Google Scholar] [CrossRef] [PubMed]
- Kluherz, K.T.; Mergelsberg, S.T.; Sommer, D.E.; Roh, J.Y.D.; Saslow, S.A.; Biner, D.; Krämer, K.W.; Dunham, S.T.; De Yoreo, J.J.; Gamelin, D.R. Defect structure in quantum-cutting Yb3+-doped CsPbCl3 perovskites probed by x-ray absorption and atomic pair distribution function analysis. Phys. Rev. Mater. 2022, 6, 074601. [Google Scholar] [CrossRef]
- Xu, W.; Liu, J.; Dong, B.; Huang, J.; Shi, H.; Xue, X.; Liu, M. Atomic-scale imaging of ytterbium ions in lead halide perovskites. Sci. Adv. 2023, 9, eadi7931. [Google Scholar] [CrossRef]
- Hirotsu, S.; Sawada, S. Crystal growth and phase transitions of CsPbCl3. Phys. Lett. A 1969, 28, 762–763. [Google Scholar] [CrossRef]
- Lim, A.R.; Jeong, S.-Y. Ferroelastic phase transition of CsPbCl3 single crystals studied by external stress. J. Phys. Condens. Matter 1998, 245, 277–281. [Google Scholar]
- Lim, A.R.; Jeong, S.-Y. Ferroelastic phase transition and twin structure by 133Cs NMR in a CsPbCl3 single crystal. J. Phys. Condens. Matter 2001, 304, 79–85. [Google Scholar] [CrossRef]
- Lim, A.R.; Jeong, S.-Y. Twin structure by 133Cs NMR in ferroelastic CsPbCl3 crystal. Solid State Commun. 1999, 110, 131–136. [Google Scholar] [CrossRef]
- He, Y.; Stoumpos, C.C.; Hadar, I.; Luo, Z.; McCall, K.M.; Liu, Z.; Chung, D.Y.; Wessels, B.W.; Kanatzidis, M.G. Demonstration of Energy-Resolved gamma-Ray Detection at Room Temperature by the CsPbCl3 Perovskite Semiconductor. J. Am. Chem. Soc. 2021, 143, 2068–2077. [Google Scholar] [CrossRef] [PubMed]
- Dintakurti, S.S.H.; Walker, D.; Bird, T.A.; Fang, Y.; White, T.; Hanna, J.V. A powder XRD, solid state NMR and calorimetric study of the phase evolution in mechanochemically synthesized dual cation (Csx(CH3NH3)1-x)PbX3 lead halide perovskite systems. Phys. Chem. Chem. Phys. 2022, 24, 18004–18021. [Google Scholar] [CrossRef]
- Gui, P.; Zhou, H.; Yao, F.; Song, Z.; Li, B.; Fang, G. Space-Confined Growth of Individual Wide Bandgap Single Crystal CsPbCl3 Microplatelet for Near-Ultraviolet Photodetection. Small 2019, 15, e1902618. [Google Scholar] [CrossRef]
- Cheng, Z.; Liu, K.; Yang, J.; Chen, X.; Xie, X.; Li, B.; Zhang, Z.; Liu, L.; Shan, C.; Shen, D. High-performance planar-type ultraviolet photodetector based on high-quality CH3NH3PbCl3 perovskite single crystals. ACS Appl. Mater. Interfaces 2019, 11, 34144–34150. [Google Scholar] [CrossRef] [PubMed]
- Saidaminov, M.I.; Adinolfi, V.; Comin, R.; Abdelhady, A.L.; Peng, W.; Dursun, I.; Yuan, M.; Hoogland, S.; Sargent, E.H.; Bakr, O.M. Planar-integrated single-crystalline perovskite photodetectors. Nat. Commun. 2015, 6, 8724. [Google Scholar] [CrossRef]
- Kobayashi, M.; Omata, K.; Sugimoto, S.; Tamagawa, Y.; Kuroiwa, T.; Asada, H.; Takeuchi, H.; Kondo, S. Scintillation characteristics of CsPbCl3 single crystals. Nucl. Instrum. Methods Phys. Res. A 2008, 592, 369–373. [Google Scholar] [CrossRef]
- Mykhaylyk, V.B.; Rudko, M.; Kraus, H.; Kapustianyk, V.; Kolomiets, V.; Vitoratou, N.; Chornodolskyy, Y.; Voloshinovskii, A.S.; Vasylechko, L. Ultra-fast low temperature scintillation and X-ray luminescence of CsPbCl3 crystals. J. Mater. Chem. C 2023, 11, 656–665. [Google Scholar] [CrossRef]
- Ding, J.; Yan, Q. Progress in organic-inorganic hybrid halide perovskite single crystal: Growth techniques and applications. Sci. China Mater. 2017, 60, 1063–1078. [Google Scholar] [CrossRef]
- Li, H.; Shen, N.; Chen, S.; Guo, F.; Xu, B. Recent Progress on Synthesis, Intrinsic Properties and Optoelectronic Applications of Perovskite Single Crystals. Adv. Funct. Mater. 2023, 33, 2214339. [Google Scholar] [CrossRef]
- Wang, W.; Cai, M.; Liu, X.; Ji, K.; Yu, X.; Dai, S. Metal halide perovskite single crystal growth and application for X-ray detectors. J. Mater. Chem. C 2023, 11, 12105–12127. [Google Scholar] [CrossRef]
- Coelho, A.A. TOPAS-Academic; Coelho Software: Brisbane, Australia, 2020. [Google Scholar]
- Linaburg, M.R.; McClure, E.T.; Majher, J.D.; Woodward, P.M. Cs1–xRbxPbCl3 and Cs1–xRbxPbBr3 Solid Solutions: Understanding Octahedral Tilting in Lead Halide Perovskites. Chem. Mat. 2017, 29, 3507–3514. [Google Scholar] [CrossRef]
- Ghaithan, H.M.; Qaid, S.M.H.; Alahmed, Z.A.; Bawazir, H.S.; Aldwayyan, A.S. Electronic Structure and Optical Properties of Inorganic Pm3m and Pnma CsPbX3 (X = Cl, Br, I) Perovskite: A Theoretical Understanding from Density Functional Theory Calculations. Materials 2023, 16, 6232. [Google Scholar] [CrossRef]
- Cape, J.A.; White, R.L.; Feigelson, R.S. EPR Study of the Structure of CsPbCl3. J. Appl. Phys. 1969, 40, 5001–5005. [Google Scholar] [CrossRef]
- Carabatos-Nédelec, C.; Oussaïd, M.; Nitsch, K. Raman scattering investigation of cesium plumbochloride, CsPbCl3, phase transitions. J. Raman Spectrosc. 2003, 34, 388–393. [Google Scholar] [CrossRef]
- Stefanski, M.; Ptak, M.; Sieradzki, A.; Strek, W. Optical characterization of Yb3+: CsPbCl3 perovskite powder. Chem. Eng. J. 2021, 408, 127347. [Google Scholar] [CrossRef]
- Cohen, M.I.; Young, K.F.; Chang, T.-T.; Brower, W.S. Phase Transitions in CsPbCl3. J. Appl. Phys. 1971, 42, 5267–5272. [Google Scholar] [CrossRef]
- Kachhap, S.; Singh, S.; Singh, A.K.; Singh, S.K. Lanthanide-doped inorganic halide perovskites (CsPbX3): Novel properties and emerging applications. J. Mater. Chem. C 2022, 10, 3647–3676. [Google Scholar] [CrossRef]
- Hirotsu, S. Experimental studies of structural phase transitions in CsPbCl3. J. Phys. Soc. Jpn. 1971, 31, 552–560. [Google Scholar] [CrossRef]
- Carpenter, M.A. Static and dynamic strain coupling behaviour of ferroic and multiferroic perovskites from resonant ultrasound spectroscopy. J. Phys. Condens. Matter 2015, 27, 263201. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Zhou, J.; Hu, J.; Huo, D.; Zhang, X.; Carpenter, M.A. Magnetoelastic coupling and microstructure dynamics associated with spin-orbit coupling in the ferrimagnetic/ferroelastic ordered double perovskite Ba2FeReO6. Phys. Rev. B 2023, 107, 144108. [Google Scholar] [CrossRef]
- Redfern, S.; Wang, C.; Hong, J.; Catalan, G.; Scott, J. Elastic and electrical anomalies at low-temperature phase transitions in BiFeO3. J. Phys. Condens. Matter 2008, 20, 452205. [Google Scholar] [CrossRef]
- Yang, D.; Harrison, R.J.; Schiemer, J.A.; Lampronti, G.I.; Liu, X.; Zhang, F.; Ding, H.; Liu, Y.G.; Carpenter, M.A. Magnetostructural coupling behavior at the ferromagnetic transition in double-perovskite Sr2FeMoO6. Phys. Rev. B 2016, 93, 024101. [Google Scholar] [CrossRef]
- Carpenter, M.A.; Salje, E.K.H.; Howard, C.J. Magnetoelastic coupling and multiferroic ferroelastic/magnetic phase transitions in the perovskite KMnF3. Phys. Rev. B 2012, 85, 224430. [Google Scholar] [CrossRef]
- Harrison, R.J.; Redfern, S.A. The influence of transformation twins on the seismic-frequency elastic and anelastic properties of perovskite: Dynamical mechanical analysis of single crystal LaAlO3. Phys. Earth Planet. Inter. 2002, 134, 253–272. [Google Scholar] [CrossRef]
- Warwick, A.R.; Íñiguez, J.; Haynes, P.D.; Bristowe, N.C. First-principles study of ferroelastic twins in halide perovskites. J. Phys. Chem. Lett. 2019, 10, 1416–1421. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, M.; Ramdas, S.; Rao, C. Antiferroelectric transition in CsPbCl3. Phys. Lett. A 1969, 29, 528. [Google Scholar] [CrossRef]
- Xu, F.; Trolier-McKinstry, S.; Ren, W.; Xu, B.; Xie, Z.-L.; Hemker, K. Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films. J. Appl. Phys. 2001, 89, 1336–1348. [Google Scholar] [CrossRef]
- Arlt, G.; Pertsev, N.A. Force constant and effective mass of 90° domain walls in ferroelectric ceramics. J. Appl. Phys. 1991, 70, 2283–2289. [Google Scholar] [CrossRef]
- Ang, C.; Yu, Z. dc electric-field dependence of the dielectric constant in polar dielectrics: Multipolarization mechanism model. Phys. Rev. B 2004, 69, 174109. [Google Scholar] [CrossRef]
- Jin, L.; Porokhonskyy, V.; Damjanovic, D. Domain wall contributions in Pb(Zr,Ti)O3 ceramics at morphotropic phase boundary: A study of dielectric dispersion. Appl. Phys. Lett. 2010, 96, 242902. [Google Scholar] [CrossRef]
- Catalan, G.; Seidel, J.; Ramesh, R.; Scott, J.F. Domain wall nanoelectronics. Rev. Mod. Phys. 2012, 84, 119–156. [Google Scholar] [CrossRef]
- Bassiri-Gharb, N.; Fujii, I.; Hong, E.; Trolier-McKinstry, S.; Taylor, D.V.; Damjanovic, D. Domain wall contributions to the properties of piezoelectric thin films. J. Electroceram. 2007, 19, 49–67. [Google Scholar] [CrossRef]
- Mondal, N.; De, A.; Samanta, A. Achieving Near-Unity Photoluminescence Efficiency for Blue-Violet-Emitting Perovskite Nanocrystals. ACS Energy Lett. 2018, 4, 32–39. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yu, Z.; Zou, C.; Yang, D. Dynamics of Ferroelastic Domain Walls Associated with the Dielectric Relaxation in CsPbCl3 Single Crystals. Nanomaterials 2026, 16, 57. https://doi.org/10.3390/nano16010057
Yu Z, Zou C, Yang D. Dynamics of Ferroelastic Domain Walls Associated with the Dielectric Relaxation in CsPbCl3 Single Crystals. Nanomaterials. 2026; 16(1):57. https://doi.org/10.3390/nano16010057
Chicago/Turabian StyleYu, Zijun, Chen Zou, and Dexin Yang. 2026. "Dynamics of Ferroelastic Domain Walls Associated with the Dielectric Relaxation in CsPbCl3 Single Crystals" Nanomaterials 16, no. 1: 57. https://doi.org/10.3390/nano16010057
APA StyleYu, Z., Zou, C., & Yang, D. (2026). Dynamics of Ferroelastic Domain Walls Associated with the Dielectric Relaxation in CsPbCl3 Single Crystals. Nanomaterials, 16(1), 57. https://doi.org/10.3390/nano16010057

