Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (380)

Search Parameters:
Keywords = dissociation kinetics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5973 KB  
Article
Plasma-Activated Solid Superacid Catalysts: Boosting Phenylalanine Esterification on SO42−/TiO2-HZSM-5
by Liping Shi, Mengxing Yan, Wenling Xu, Wenchao Zhu, Baohe Tian, Xinhong Liu and Changhui Zhu
Catalysts 2026, 16(2), 128; https://doi.org/10.3390/catal16020128 - 29 Jan 2026
Abstract
To address the challenges of zwitterionic dissociation and steric hindrance in the esterification of α-aromatic amino acids, this study prepared the solid superacid catalyst SO42−/TiO2/HZSM-5 (STH) and its plasma-modified derivative SO42−/TiO2/HZSM-5 (STH-RF) via [...] Read more.
To address the challenges of zwitterionic dissociation and steric hindrance in the esterification of α-aromatic amino acids, this study prepared the solid superacid catalyst SO42−/TiO2/HZSM-5 (STH) and its plasma-modified derivative SO42−/TiO2/HZSM-5 (STH-RF) via an aging-impregnation method. Systematic characterization revealed that plasma modification optimizes the crystal morphology and particle dispersion of the catalyst, while also achieving pore clearance and an increase in the specific surface area. Furthermore, it gradationally enhances acidic properties by increasing the abundance of strong acid and Lewis acid sites, and promotes uniform loading and stable bonding of the SO42− active component. Performance evaluation using the synthesis of L-phenylalanine methyl ester as a model reaction demonstrated that STH-RF exhibits optimal catalytic activity, affording a product yield of 85.7%, which is significantly higher than that of unmodified STH (19%) and the homogeneous catalyst H2SO4 (63%). This superior performance originates from a “structure–acidity” synergistic effect, combining the thermodynamic advantage of a lower energy barrier for the rate-determining step (12.6 Kcal·mol−1) with efficient kinetics under optimal process conditions (1.0 MPa, 2000 rpm, 170 °C). Moreover, STH-RF maintained a yield above 80% after four consecutive reaction cycles, indicating excellent stability. This work provides a novel catalytic system for the green and efficient synthesis of highly hindered α-amino acid derivatives, holding significant theoretical and practical implications. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

10 pages, 1670 KB  
Article
Fyn–Saracatinib Complex Structure Reveals an Active State-like Conformation
by Hai Minh Ta, Banumathi Sankaran, Eric D. Roush, Josephine C. Ferreon, Allan Chris M. Ferreon and Choel Kim
Int. J. Mol. Sci. 2026, 27(3), 1143; https://doi.org/10.3390/ijms27031143 - 23 Jan 2026
Viewed by 96
Abstract
Fyn is a Src-family tyrosine kinase implicated in synaptic dysfunction and neuroinflammation across multiple neurodegenerative disorders, including Alzheimer’s disease (AD) and Parkinson’s disease (PD). Saracatinib (AZD0530) is a potent Src-family inhibitor that has been explored as a repurposed therapeutic; however, its clinical utility [...] Read more.
Fyn is a Src-family tyrosine kinase implicated in synaptic dysfunction and neuroinflammation across multiple neurodegenerative disorders, including Alzheimer’s disease (AD) and Parkinson’s disease (PD). Saracatinib (AZD0530) is a potent Src-family inhibitor that has been explored as a repurposed therapeutic; however, its clinical utility is limited by poor kinase selectivity caused by high sequence conservation within Src-family ATP-binding sites. Here, we combine surface plasmon resonance (SPR) and X-ray crystallography to define saracatinib recognition by the Fyn kinase domain (KD). SPR single-cycle kinetics shows that saracatinib binds the isolated Fyn KD and full-length Fyn with low-nanomolar affinity, whereas dasatinib binds with subnanomolar affinity and markedly slower dissociation. We determined the crystal structure of the Fyn KD-saracatinib complex at 2.22 Å resolution. The kinase adopts an active-like conformation with the DFG motif and αC-helix in the ‘in’ state and a conserved β3 αC Lys-Glu salt bridge. Saracatinib occupies the adenine and ribose pockets, and engages the hinge through direct and water-mediated hydrogen bonding while complementing a hydrophobic back pocket by van der Waals contacts. Comparison with reported saracatinib-bound structures of other kinases suggests that the active-state geometry observed for Fyn creates a pocket not observed in inactive-like complexes, providing a structural handle for designing Fyn-selective inhibitors. Comparison with all saracatinib-bound kinase co-structures currently available in the PDB (ALK2 and PKMYT1) indicates a conserved monodentate hinge binding mode but kinase-dependent αC-helix conformations, providing a structural rationale for designing Fyn-selective analogues. Full article
Show Figures

Figure 1

48 pages, 8652 KB  
Review
Advances in Alkaline Water Electrolysis—The Role of In Situ Ionic Activation in Green Hydrogen Production
by Vladimir M. Nikolić, Katarina M. Dimić-Mišić, Slađana Lj. Maslovara, Dejana P. Popović, Mihajlo N. Gigov, Sanja S. Krstić and Milica P. Marčeta Kaninski
Catalysts 2026, 16(1), 98; https://doi.org/10.3390/catal16010098 - 18 Jan 2026
Viewed by 312
Abstract
Alkaline water electrolysis remains one of the leading and most mature technologies for large-scale hydrogen production. Its advantages stem from the use of inexpensive, earth-abundant materials and well-established industrial deployment, yet the technology continues to face challenges, including sluggish hydrogen evolution reaction (HER) [...] Read more.
Alkaline water electrolysis remains one of the leading and most mature technologies for large-scale hydrogen production. Its advantages stem from the use of inexpensive, earth-abundant materials and well-established industrial deployment, yet the technology continues to face challenges, including sluggish hydrogen evolution reaction (HER) kinetics and energy-efficiency limitations compared with acidic electrolysis systems. This review provides a comprehensive overview of the fundamental principles governing alkaline electrolysis, encompassing electrolyte chemistry, electrode materials, electrochemical mechanisms, and the roles of overpotentials, cell resistances, and surface morphology in determining system performance. Key developments in catalytic materials are discussed, highlighting both noble-metal and non-noble-metal electrocatalysts, as well as advanced approaches to surface modification and nanostructuring designed to enhance catalytic activity and long-term stability. Particular emphasis is placed on the emerging strategy of in situ ionic activation, wherein transition-metal ions and oxyanions are introduced directly into the operating electrolyte. These species dynamically interact with electrode surfaces under polarization, inducing real-time surface reconstruction, improving water dissociation kinetics, tuning hydrogen adsorption energies, and extending electrode durability. Results derived from polarization measurements, electrochemical impedance spectroscopy, and surface morphology analyses consistently demonstrate that ionic activators, such as Ni–Co–Mo systems, significantly increase the HER performance through substantial increase in surface roughness and increased intrinsic electrocatalytic activity through synergy of d-metals. By integrating both historical context and recent research findings, this review underscores the potential of ionic activation as a scalable and cost-effective way toward improving the efficiency of alkaline water electrolysis and accelerating progress toward sustainable, large-scale green hydrogen production. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

13 pages, 6116 KB  
Article
Effect of Silver Promoter on the H2 Gasochromic Recovery Behavior of Pt-Decorated WO3 Nanowires
by Dandan Liu, Ziheng Geng, Aiyan Han, Rongjiao Che, Ping Yu, Huan Liu and Yunqi Liu
Int. J. Mol. Sci. 2026, 27(2), 833; https://doi.org/10.3390/ijms27020833 - 14 Jan 2026
Viewed by 102
Abstract
The hydrogen gasochromic phenomenon offers a new strategy for real-time sensing technologies for hydrogen leakage to ensure hydrogen safety. However, the limited recovery kinetics impede the cycling and further practical applications. Herein, we designed a series of PtAg-decorated WO3 nanowires via the [...] Read more.
The hydrogen gasochromic phenomenon offers a new strategy for real-time sensing technologies for hydrogen leakage to ensure hydrogen safety. However, the limited recovery kinetics impede the cycling and further practical applications. Herein, we designed a series of PtAg-decorated WO3 nanowires via the chemical reduction deposition method, which could exhibit obvious and reversible color changes for H2 detection. With the assistance of Ag, the oxygen adsorption and dissociation were accelerated; then, the sample could exhibit a constant rapid recovery rate. The crystalline Pt-Ag/WO3 nanowires could attain a 50% recovery degree within 52 s, and the recovery time of the Pt-Ag/WO3 sample was reduced to one fifth that of Pt/WO3. This study provides a fundamental solution to the challenge of slow recovery kinetics in H2 gasochromic crystalline materials. Full article
Show Figures

Figure 1

41 pages, 1214 KB  
Article
Mathematical Stability Analysis of the Full SREBP-2 Pathway Model: Insights into Cholesterol Homeostasis
by Mostafa Bachar
Axioms 2025, 14(12), 905; https://doi.org/10.3390/axioms14120905 - 9 Dec 2025
Viewed by 293
Abstract
We present a mathematical analysis of the sterol regulatory element-binding protein 2 (SREBP-2) pathway, a key regulator of intracellular cholesterol homeostasis. Using a compartment model formulated as a nonlinear system of ordinary differential equations, we investigate stability via M-matrix theory and norm-based [...] Read more.
We present a mathematical analysis of the sterol regulatory element-binding protein 2 (SREBP-2) pathway, a key regulator of intracellular cholesterol homeostasis. Using a compartment model formulated as a nonlinear system of ordinary differential equations, we investigate stability via M-matrix theory and norm-based criteria. We show that the Frobenius norm BF1 cannot ensure stability, whereas the infinity norm condition B<1 provides a practical guarantee that the spectral radius ρ(B)<1. The spectral norm B2 yields sharper intermediate bounds. Numerical simulations confirm these results, highlighting parameter regions of stability and showing that the dissociation rate k1 has the strongest influence on system behavior. These findings demonstrate the robustness of the criterion, clarify the role of dissociation kinetics in cholesterol regulation, and provide a rigorous framework for assessing homeostatic control in the SREBP-2 pathway. Full article
(This article belongs to the Special Issue New Perspectives in Bifurcations Analysis of Dynamical Systems)
Show Figures

Figure 1

38 pages, 1426 KB  
Review
Strategies for Regulating the Release Kinetics of Bioactive Compounds from Biopolymeric Hydrogels
by Mizanur Rahman, Shahla Teimouri, Poly Rani Roy, António Raposo, Hmidan A. Alturki and Stefan Kasapis
Gels 2025, 11(12), 986; https://doi.org/10.3390/gels11120986 - 8 Dec 2025
Viewed by 916
Abstract
Bioactive compounds are widely recognized for their ability to enhance health and prevent diseases due to their various biological activities. However, these compounds are very sensitive to environmental factors, which can reduce their solubility, bioavailability, permeability, and stability, necessitating carriers to protect and [...] Read more.
Bioactive compounds are widely recognized for their ability to enhance health and prevent diseases due to their various biological activities. However, these compounds are very sensitive to environmental factors, which can reduce their solubility, bioavailability, permeability, and stability, necessitating carriers to protect and ensure targeted delivery. To develop an effective delivery system, it is essential to assess the key factors that influence the release behaviour of bioactive compounds. Therefore, the primary aim of this study is to evaluate how the conditions of the release media, the attributes of hydrogels, and the characteristics of the entrapped bioactive compounds regulate the release kinetics of these compounds. Prior to create suitable carriers, it is essential to comprehend the mechanisms of digestion and absorption of these compounds. Consequently, absorption and the factors influencing stability and bioavailability of bioactives were reviewed first. The conditions of release media, especially the pH, ionic characteristics, temperature, and the nature of solvent served as a critical determinant in the release of bioactive substances by affecting the functional groups, electrostatic interactions between carrier and entrapped bioactive compound, dissociation and conformational changes in polymers. The properties of delivery systems can be controlled using polymers, crosslinkers, plasticizers, and specific environmental factors. The application of dual crosslinkers or a combination of physical and chemical crosslinkers enhanced the efficiency of the crosslinking process, subsequently improving the overall release profile of bioactive compounds from the matrices. Therefore, this review explored several options for enhancing the delivery system. Full article
(This article belongs to the Special Issue Natural Bioactive Compounds and Gels)
Show Figures

Figure 1

17 pages, 3590 KB  
Article
Biophysical and Functional Characterization of a Thermally Stable Bifunctional Serine Protease Inhibitor from Cleome viscosa Seeds
by Manohar Radhakrishnan, Vajravijayan Senthilvadivelu, Eswar Kumar Nadendla, Kundan Sivashanmugan and Gunasekaran Krishnasamy
Int. J. Mol. Sci. 2025, 26(24), 11792; https://doi.org/10.3390/ijms262411792 - 5 Dec 2025
Viewed by 464
Abstract
Plant protease inhibitors (PPI) play a significant role against microbes, insects, and, to a considerable extent, human pathogens. PPIs inactivate hydrolase enzymes or depolarize the plasma membrane of the pathogens, thereby inhibiting their growth, replication, and invasion. Here, an active serine protease inhibitor [...] Read more.
Plant protease inhibitors (PPI) play a significant role against microbes, insects, and, to a considerable extent, human pathogens. PPIs inactivate hydrolase enzymes or depolarize the plasma membrane of the pathogens, thereby inhibiting their growth, replication, and invasion. Here, an active serine protease inhibitor was isolated and purified from the seeds of Cleome viscosa. The purified inhibitor was homogenous and exhibited a molecular weight of around 12 kDa as a monomer. The secondary structure analysis indicated that the inhibitor was predominantly composed of α-helical content. The kinetics experiments demonstrated a noncompetitive mode of inhibition towards serine protease when casein was used as the enzyme substrate. The inhibitor formed a stable complex with serine protease, having a likely 1:1 stoichiometry, as inferred from ITC, and the dissociation constant was examined to be Kd = 1.9 × 10−6 M with a Gibbs free energy of ΔG = −8.079 (kcal/mol). The inhibitor exhibits stable protease inhibition up to 90 °C. Further, in vitro preliminary studies revealed its inhibitory effects against HSV-2 function, evidence that it may have a role in the treatment of viral infections. Full article
(This article belongs to the Topic Enzymes and Enzyme Inhibitors in Drug Research)
Show Figures

Figure 1

25 pages, 1726 KB  
Review
A Review of the Visualization Analysis of the Pore-Scale Formation and Decomposition of CO2 Hydrates for Carbon Capture and Storage
by Xuefen Yan, Jiaxin Liu, Atsuki Komiya, Rachid Bennacer and Lin Chen
Energies 2025, 18(23), 6344; https://doi.org/10.3390/en18236344 - 3 Dec 2025
Viewed by 601
Abstract
Utilizing microfluidic models, this review synthesizes experimental and simulation insights into the pore-scale behavior of hydrates during formation and decomposition in porous media. It outlines the fundamental characteristics of CO2 hydrates and their significance in porous media, with a focus on major [...] Read more.
Utilizing microfluidic models, this review synthesizes experimental and simulation insights into the pore-scale behavior of hydrates during formation and decomposition in porous media. It outlines the fundamental characteristics of CO2 hydrates and their significance in porous media, with a focus on major advancements in hydrate nucleation, growth, distribution, and decomposition kinetics. This study details various porous media systems, visualization experimental setups, and observation techniques employed in experimental research. Key factors, including temperature, pressure, salinity, and pore characteristics, are analyzed to determine their influence on hydrate formation (nucleation, growth kinetics, and phase equilibrium) and decomposition (dissociation kinetics and efficiency) behaviors. In terms of numerical simulation, we distinguishes multiscale numerical simulation methods for the molecular scale, the pore scale, and then the reactor scale, including molecular dynamics simulation, the phase field model, the pore network model, and the macroscopic kinetics model, and discusses the role of simulation in revealing the micro-mechanisms and predicting macroscopic behaviors. This article also summarizes the application of relevant numerical simulation methods (such as MD, CFD, and LBM) in revealing the micro-mechanism of hydrates. Therefore, this review offers critical insights into the micro-mechanisms of carbon dioxide hydrate behavior in porous media, thereby undergirding the theoretical basis for optimizing related engineering designs. Full article
(This article belongs to the Section L: Energy Sources)
Show Figures

Figure 1

14 pages, 9457 KB  
Article
Mechanistic Insights into the Effect of Ca on the Oxidation Behavior of Fe3O4: A Combined DFT and AIMD Study
by Huiqing Jiang, Yaozu Wang, Zhengjian Liu, Xin Yang, Fangyu Guo and Jianliang Zhang
Metals 2025, 15(12), 1321; https://doi.org/10.3390/met15121321 - 29 Nov 2025
Viewed by 376
Abstract
With the increasing adoption of traveling grate machines, increasing the proportion of pellets in blast furnace burdens has become a key strategy for reducing carbon emissions in ironmaking. Magnetite (Fe3O4) is not only the core raw material for pellet [...] Read more.
With the increasing adoption of traveling grate machines, increasing the proportion of pellets in blast furnace burdens has become a key strategy for reducing carbon emissions in ironmaking. Magnetite (Fe3O4) is not only the core raw material for pellet production but also serves as an important transition metal oxide catalyst, widely used in various fields due to its unique electronic structure and surface activity. This study employed density functional theory (DFT) and ab initio molecular dynamics (AIMD) to simulate the oxidation process of a Ca-doped Fe3O4 (110) surface at 1073 K, revealing the inhibition mechanism of the gangue element Ca and its impact on surface catalytic activity at the atomic scale. The results demonstrate that Ca segregates on the Fe3O4 surface, where it adsorbs and activates O2 molecules, thereby delaying O2 migration to active iron bridge sites and subsequent dissociation, which ultimately inhibits the oxidation kinetics. Electronic structure analysis indicates that the breakage of the O–O bond is accompanied by a sharp decrease in system energy (stabilizing at approximately −509 eV); it also clearly elucidates the charge transfer process and the mechanism of Fe-O bond formation during this exothermic reaction. This research provides a theoretical foundation for the development of fluxed pellets and high-temperature-resistant catalysts. Full article
Show Figures

Figure 1

15 pages, 2994 KB  
Article
Boosting Hydrogen Generation with Platinum Nanoparticles Decorated on HTiNbO5 via NaBH4 Hydrolysis
by Juliana Peña Gómez, Geraldo Magela de Lima, Veronica Evangelista Machado, Noemí Cristina Silva de Souza, José D. Ardisson, Tiago Almeida Silva, Fabrício Vieira de Andrade and Renata Pereira Lopes Moreira
Processes 2025, 13(12), 3832; https://doi.org/10.3390/pr13123832 - 27 Nov 2025
Viewed by 463
Abstract
In this study, we report the preparation of platinum nanoparticles (Pt NPs) deposited on HTiNbO5 and the application of the resultant material in the catalytic decomposition of sodium borohydride (NaBH4) to generate hydrogen. The starting material, KTiNbO5, was [...] Read more.
In this study, we report the preparation of platinum nanoparticles (Pt NPs) deposited on HTiNbO5 and the application of the resultant material in the catalytic decomposition of sodium borohydride (NaBH4) to generate hydrogen. The starting material, KTiNbO5, was prepared through a solid-state process involving Nb2O5, K2CO3, and TiO2. The subsequent treatment with HNO3 resulted in the exchange of potassium by protons, rendering HTiNbO5. This material served as support for Pt nanoparticles (3.6 ± 0.7 nm), producing Pt NPs/HTiNbO5. All compounds were characterized using TGA, FTIR, XRD, Raman, SEM-EDS, and HRTEM. The influence of different factors on the reaction kinetics was evaluated, resulting in a hydrogen generation rate (HGR) of 22,790.18 mL min1gcat1 at 50 °C. The activation energy (41.83 kJ mol−1) was also determined. A mechanistic study with deuterated water revealed a kinetic isotopic effect (KIE) value of 1.27, indicating the dissociation of B-H from BH4 as the rate-determining step of the process. Furthermore, the reuse and durability of the material were evaluated, revealing a catalyst performance close to 100% over the 10 tested cycles. Therefore, it can be concluded that the synthesized material, Pt-nanoparticles dispersed on HTiNbO5, exhibits excellent performance and is suitable for hydrogen evolution from NaBH4. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

16 pages, 1894 KB  
Article
In Vitro Characterization of the Published Glypican-3-Targeting Peptide TJ12P2 Reveals a Lack of Specificity and Potency
by Eva-Maria Burger, Charlice Hill, Robert Wodtke, Kristof Zarschler, Markus Laube, Cornelius K. Donat, Sandra Hauser, Klaus Kopka, Jens Pietzsch and Sven Stadlbauer
Pharmaceuticals 2025, 18(11), 1656; https://doi.org/10.3390/ph18111656 - 1 Nov 2025
Viewed by 797
Abstract
Background/Objectives: The cell surface proteoglycan glypican-3 (GPC3) is reportedly overexpressed in hepatocellular carcinoma (HCC) tissues, but not in benign liver tissues, rendering this protein a potential target for radionuclide theranostic approaches. Peptides are generally a promising class of targeting molecules for the development [...] Read more.
Background/Objectives: The cell surface proteoglycan glypican-3 (GPC3) is reportedly overexpressed in hepatocellular carcinoma (HCC) tissues, but not in benign liver tissues, rendering this protein a potential target for radionuclide theranostic approaches. Peptides are generally a promising class of targeting molecules for the development of radioligands because they combine straightforward synthetic access with favorable pharmacokinetics. Among the published peptides with disclosed structures, one of the most promising radioligands is [18F]AlF-NOTA-TJ12P2, which has a reported comparably high binding affinity to GPC3 and a high hydrophilicity. In this study, we aimed to design novel GPC3-targeting radioligands based on the TJ12P2 peptidic scaffold. Methods: Peptides were synthesized on solid phase using an Fmoc protecting group strategy. For comparative investigations, the reference nanobody HN3 was expressed in E. coli, isolated and subsequently modified with NODA-GA or SulfoCy3. The binding of native peptides, scrambled variants and reference nanobodies to GPC3 was investigated by surface plasmon resonance (SPR) interaction analysis, and fluorescently labeled versions of peptides and nanobodies were used for fluorescence microscopy in HepG2 (GPC3+) or SK Hep1 (GPC3−) cells. The chelator-bearing peptides were radiolabeled with gallium-67 and their stability towards radiolysis and in human serum was investigated. The binding of radiolabeled peptides and nanobodies to HepG2 cells was assessed in real-time ligand binding experiments. Results: The synthesized native peptides did not exhibit binding towards GPC3 in SPR interaction analyses, and the observed response was comparable to that of the scrambled variants at equal concentrations. Additionally, no binding to or uptake of the fluorescent constructs into cells was observed with fluorescence microscopy regardless of cellular GPC3 expression level. In real-time radioligand binding experiments, very fast association and dissociation of the gallium-67 labeled peptides to GPC3 positive HepG2 cells was observed, suggesting either extremely fast binding kinetics or unspecific binding of the peptides. Conclusions: Taken together, these findings suggest that the peptide TJ12P2 lacks specific binding to GPC3 in vitro and might not serve as a basis for the development of radioligands targeting GPC3. Full article
Show Figures

Figure 1

25 pages, 5253 KB  
Article
Formulation of Sustainable Materials from Agar/Glycerol/Water Gels: An Alternative to Polyurethane Foams in Single-Use Applications
by Perrine Pipart, Bruno Bresson, Alba Marcellan, Théo Merland, Yvette Tran, Jean-Charles Gorges, Olivier Carion and Dominique Hourdet
Gels 2025, 11(10), 842; https://doi.org/10.3390/gels11100842 - 21 Oct 2025
Viewed by 1424
Abstract
New compostable materials have been developed to replace single-use soft materials such as polyurethane foams (PUR). To this end, eco-friendly systems have been formulated on the basis of agar gels prepared in mixed solvent (glycerol/water) to meet specifications, i.e., stiffness of several hundred [...] Read more.
New compostable materials have been developed to replace single-use soft materials such as polyurethane foams (PUR). To this end, eco-friendly systems have been formulated on the basis of agar gels prepared in mixed solvent (glycerol/water) to meet specifications, i.e., stiffness of several hundred kPa, reasonable extensibility, and good stability when exposed to open air. While the addition of glycerol slows down gelation kinetics, mechanical properties are improved up to a glycerol content of 80 wt%, with enhanced extensibility of the gels while maintaining high Young’s moduli. Swelling analyses of mixed gels, in water or pure glycerol, demonstrate the preservation of an energetic network, with no change in volume, in pure water and the transition towards an entropic network in glycerol related to the partial dissociation of helix bundles. Dimensional and mechanical analysis of gels aged in an open atmosphere at room temperature shows that the hygroscopic character of glycerol enables sufficient water retention to maintain the physical network, with antagonistic effects linked to relative increases in glycerol, which tends to weaken the network, and agar, which on the contrary strengthens it. Complementary analyses carried out on aged agar gels formulated with an initial glycerol/water mass composition of 60/40, the most suitable for the targeted development, enabled the comparison of the properties of agar gels favorably with those of PURs and verified their stability during long-term storage, as well as their non-toxicity and compostability. Full article
(This article belongs to the Special Issue Food Hydrocolloids and Hydrogels: Rheology and Texture Analysis)
Show Figures

Figure 1

13 pages, 2404 KB  
Article
Strain Effect in PdCu Alloy Metallene for Enhanced Formic Acid Electrooxidation Reaction
by Kaili Wang, Zhen Cao and Jia He
Catalysts 2025, 15(10), 967; https://doi.org/10.3390/catal15100967 - 10 Oct 2025
Cited by 1 | Viewed by 799
Abstract
Developing high-activity and high-durability Pd-based electrocatalysts is an important strategy to promote their commercial application. Herein, a smaller particle size and ultrathin sheet-like PdCu alloy metallene (PdCuene) were successfully prepared by using a one-pot wet chemistry method for FAOR. Experimental measurements indicated that [...] Read more.
Developing high-activity and high-durability Pd-based electrocatalysts is an important strategy to promote their commercial application. Herein, a smaller particle size and ultrathin sheet-like PdCu alloy metallene (PdCuene) were successfully prepared by using a one-pot wet chemistry method for FAOR. Experimental measurements indicated that the introduction Cu into Pd lattice induces a significant compressive strain effect through lattice mismatch between Pd and Cu, and the strain effect optimizes the electronic structure of Pd, as well as the high electrochemical surface area, increased exposure of active sites, and appropriate lattice strain have been demonstrated as factors that influence the enhancement of intrinsic activity and the acceleration of kinetics, thereby improving FAOR performance. Moreover, the stronger lattice strain of 0.85% would facilitate surface adsorption and dissociation of formic acid. Specifically, the optimized PdCuene exhibits enhanced mass activity and specific activity with current densities of 2.31 A mgPd−1 and 4.09 mA cm−2, respectively, which transcend the activities of Pd metallene (1.44 A mgPd−1 and 2.73 mA cm−2) and commercial Pd/C (0.6 A mgPd−1 and 1.53 mA cm−2). Meanwhile, PdCuene displayed obvious enhanced durability. The work provides an approach to modulate the lattice strain engineering, which represents a highly promising strategy for designing efficient FAOR electrocatalysts. Full article
(This article belongs to the Special Issue Nanostructured Catalysts for Emerging Electrochemical Technologies)
Show Figures

Figure 1

18 pages, 966 KB  
Article
Computational Modelling Suggests Bacteriostatic Saline Does Not Reverse Botulinum Toxin-Induced Brow Ptosis
by Eqram Rahman, Alain Michon, Parinitha Rao, A. Q. M. Omar Sharif, William Richard Webb and Jean D. A. Carruthers
Toxins 2025, 17(10), 498; https://doi.org/10.3390/toxins17100498 - 7 Oct 2025
Cited by 1 | Viewed by 2135
Abstract
Anecdotal reports have recently circulated suggesting that intramuscular injection of bacteriostatic saline (BS)—which contains benzyl alcohol (BnOH)—can reverse botulinum toxin type A (BoNTA)-induced brow ptosis. Given the well-established intracellular persistence of BoNTA’s light chain and its irreversible cleavage of SNAP-25, such rapid functional [...] Read more.
Anecdotal reports have recently circulated suggesting that intramuscular injection of bacteriostatic saline (BS)—which contains benzyl alcohol (BnOH)—can reverse botulinum toxin type A (BoNTA)-induced brow ptosis. Given the well-established intracellular persistence of BoNTA’s light chain and its irreversible cleavage of SNAP-25, such rapid functional recovery challenges existing pharmacological understanding. This study employed high-resolution pharmacokinetic/pharmacodynamic (PK/PD) modelling using the AesthetiSim™ platform to systematically evaluate this hypothesis. A total of 30,000 virtual patients were randomized to receive BoNTA alone, BoNTA followed by BS injection, or BoNTA followed by normal saline (NS) at Day 7. The model incorporated BoNTA diffusion, internalization, SNAP-25 cleavage, neuromuscular output, and transient BS effects on membrane permeability and endosomal trafficking. Simulated recovery trajectories were tracked over 90 days. The primary outcome, time to 80% restoration of baseline frontalis muscle force (T80), averaged 42.0 days in the BoNTA-only group and 35.5 days in the BS group (Δ = −6.5 days; p < 0.001). Only 13.9% of BS-treated patients reached the T80 threshold by Day 30. Partial reactivation (T30) occurred earlier with BS (21.8 ± 5.3 days vs. 27.3 ± 4.9 days), and the area under the effect curve (AUEC) was increased by 9.7%, reflecting higher overall muscle function over time. In molecular simulations, BnOH produced a minor rightward shift in the BoNTA–SNAP-25 dissociation curve, but receptor occupancy remained above 90% at therapeutic toxin concentrations, suggesting no meaningful impairment of binding affinity. A global Sobol sensitivity analysis demonstrated that the primary driver of recovery kinetics was intracellular LC degradation (49% of T80 variance), while BS-modulated extracellular parameters collectively contributed less than 20%. These findings indicate that BS does not reverse the molecular action of BoNTA but may transiently influence recovery kinetics via non-receptor-mediated pathways such as increased membrane permeability or altered vesicular trafficking. The magnitude and variability of this effect do not support the notion of a true pharmacologic reversal. Instead, these results emphasize the need for mechanistic scrutiny when evaluating rapid-reversal claims, particularly those propagated through anecdotal or social media channels without supporting biological plausibility. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

13 pages, 2044 KB  
Article
Mechanism for Nucleotidyl Transfer in LINE-1 ORF2p Revealed by QM/MM Simulations
by Igor V. Polyakov, Kirill D. Miroshnichenko, Tatiana I. Mulashkina, Anna M. Kulakova and Maria G. Khrenova
Int. J. Mol. Sci. 2025, 26(17), 8661; https://doi.org/10.3390/ijms26178661 - 5 Sep 2025
Viewed by 1518
Abstract
The Long Interspersed Element-1 (L1) retrotransposon is an ancient genetic parasite that comprises a significant part of the human genome. ORF2p is a multifunctional enzyme with endonuclease (EN) and reverse transcriptase (RT) activities that mediate target-primed reverse transcription of RNA into DNA. Structural [...] Read more.
The Long Interspersed Element-1 (L1) retrotransposon is an ancient genetic parasite that comprises a significant part of the human genome. ORF2p is a multifunctional enzyme with endonuclease (EN) and reverse transcriptase (RT) activities that mediate target-primed reverse transcription of RNA into DNA. Structural studies of LINE-1 ORF2p consistently show a single Mg2+ cation in the reverse transcriptase active site, conflicting with the common DNA polymerase mechanism which involves two divalent cations. We explored a reaction pathway of the DNA elongation based on the recent high-resolution ternary complex structure of the ORF2p. The combined quantum and molecular mechanics approach at the QM (PBE0-D3/6-31G**)/MM (CHARMM) level is employed for biased umbrella sampling molecular dynamics simulations followed by umbrella integration utilized to obtain the free energy profile. The nucleotidyl transfer reaction proceeds in a single step with a free energy barrier of 15.1 ± 0.8 kcal/mol, and 7.8 ± 1.2 kcal/mol product stabilization relative to reagents. Concerted nucleophilic attack by DNA O3′ and proton transfer to Asp703 occur without a second catalytic metal ion. Estimated rate constant ∼60 s−1 aligns with RT kinetics, while analysis of the Laplacian of the electron density along the cleaving P-O bond identifies a dissociative mechanism. Full article
(This article belongs to the Special Issue Molecular Mechanism in DNA Replication and Repair)
Show Figures

Graphical abstract

Back to TopTop