Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (247)

Search Parameters:
Keywords = dissipated energy up to fracture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5966 KiB  
Article
Study on Mechanism and Constitutive Modelling of Secondary Anisotropy of Surrounding Rock of Deep Tunnels
by Kang Yi, Peilin Gong, Zhiguo Lu, Chao Su and Kaijie Duan
Symmetry 2025, 17(8), 1234; https://doi.org/10.3390/sym17081234 - 4 Aug 2025
Abstract
Crack initiation, propagation, and slippage serve as the key mesoscopic mechanisms contributing to the deterioration of deep tunnel surrounding rocks. In this study, a secondary anisotropy of deep tunnels surrounding rocks was proposed: The axial-displacement constraint of deep tunnels forces cracks in the [...] Read more.
Crack initiation, propagation, and slippage serve as the key mesoscopic mechanisms contributing to the deterioration of deep tunnel surrounding rocks. In this study, a secondary anisotropy of deep tunnels surrounding rocks was proposed: The axial-displacement constraint of deep tunnels forces cracks in the surrounding rock to initiate, propagate, and slip in planes parallel to the tunnel axial direction. These cracks have no significant effect on the axial strength of the surrounding rock but significantly reduce the tangential strength, resulting in the secondary anisotropy. First, the secondary anisotropy was verified by a hybrid stress–strain controlled true triaxial test of sandstone specimens, a CT 3D (computed tomography three-dimensional) reconstruction of a fractured sandstone specimen, a numerical simulation of heterogeneous rock specimens, and field borehole TV (television) images. Subsequently, a novel SSA (strain-softening and secondary anisotropy) constitutive model was developed to characterise the secondary anisotropy of the surrounding rock and developed using C++ into a numerical form that can be called by FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions). Finally, effects of secondary anisotropy on a deep tunnel surrounding rock were analysed by comparing the results calculated by the SSA model and a uniform strain-softening model. The results show that considering the secondary anisotropy, the extent of strain-softening of the surrounding rock was mitigated, particularly the axial strain-softening. Moreover, it reduced the surface displacement, plastic zone, and dissipated plastic strain energy of the surrounding rock. The proposed SSA model can precisely characterise the objectively existent secondary anisotropy, enhancing the accuracy of numerical simulations for tunnels, particularly for deep tunnels. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

22 pages, 6962 KiB  
Article
Suppression of Delamination in CFRP Laminates with Ply Discontinuity Using Polyamide Mesh
by M. J. Mohammad Fikry, Keisuke Iizuka, Hayato Nakatani, Satoru Yoneyama, Vladimir Vinogradov, Jun Koyanagi and Shinji Ogihara
J. Compos. Sci. 2025, 9(8), 414; https://doi.org/10.3390/jcs9080414 - 4 Aug 2025
Viewed by 109
Abstract
Carbon fiber-reinforced plastics (CFRPs) offer excellent in-plane mechanical performance, but their relatively low interlaminar fracture toughness makes them vulnerable to delamination, particularly around intralaminar discontinuities such as resin-rich regions or fiber gaps. This study investigates the effectiveness of polyamide (PA) mesh inserts in [...] Read more.
Carbon fiber-reinforced plastics (CFRPs) offer excellent in-plane mechanical performance, but their relatively low interlaminar fracture toughness makes them vulnerable to delamination, particularly around intralaminar discontinuities such as resin-rich regions or fiber gaps. This study investigates the effectiveness of polyamide (PA) mesh inserts in improving interlaminar toughness and suppressing delamination in CFRP laminates with such features. Two PA mesh configurations were evaluated: a fully embedded continuous layer and a 20 mm cut mesh strip placed between continuous and discontinuous plies near critical regions. Fracture toughness tests showed that PA mesh insertion improved interlaminar toughness approximately 2.4-fold compared to neat CFRP, primarily due to a mechanical interlocking mechanism that disrupts crack propagation and enhances energy dissipation. Uniaxial tensile tests with digital image correlation revealed that while initial matrix cracking occurred at similar stress levels, the stress at which complete delamination occurred was approximately 60% higher in specimens with a 20 mm mesh and up to 92% higher in specimens with fully embedded mesh. The fully embedded mesh provided consistent delamination resistance across the laminate, while the 20 mm insert localized strain redistribution and preserved global mechanical performance. These findings demonstrate that PA mesh is an effective interleaving material for enhancing damage tolerance in CFRP laminates with internal discontinuities. Full article
Show Figures

Figure 1

26 pages, 23183 KiB  
Article
Fracture Behaviour of Basalt Fibre-Reinforced Lightweight Geopolymer Concrete: A Multidimensional Analysis
by Jutao Tao, Mingxia Jing, Qingshun Yang and Feng Liang
Materials 2025, 18(15), 3549; https://doi.org/10.3390/ma18153549 - 29 Jul 2025
Viewed by 271
Abstract
This study introduced basalt fibres as a reinforcing material and employed notched beam three-point bending tests combined with digital image correlation (DIC) technology to comprehensively evaluate key fracture parameters—namely, initial fracture toughness, unstable fracture toughness, fracture energy, and ductility index—of expanded polystyrene (EPS)-based [...] Read more.
This study introduced basalt fibres as a reinforcing material and employed notched beam three-point bending tests combined with digital image correlation (DIC) technology to comprehensively evaluate key fracture parameters—namely, initial fracture toughness, unstable fracture toughness, fracture energy, and ductility index—of expanded polystyrene (EPS)-based geopolymer concrete with different mix proportions. The results demonstrate that the optimal fracture performance was achieved when the basalt fibre volume content was 0.4% and the EPS content was 20%, resulting in respective increases of 12.07%, 28.73%, 98.92%, and 111.27% in the above parameters. To investigate the toughening mechanisms, scanning electron microscopy was used to observe the fibre–matrix interfacial bonding and crack morphology, while X-ray micro-computed tomography enabled detailed three-dimensional visualisation of internal porosity and crack development, confirming the crack-bridging and energy-dissipating roles of basalt fibres. Furthermore, the crack propagation process was simulated using the extended finite element method, and the evolution of fracture-related parameters was quantitatively analysed using a linear superposition progressive assumption. A simplified predictive model was proposed to estimate fracture toughness and fracture energy based on the initial cracking load, peak load, and compressive strength. The findings provide theoretical support and practical guidance for the engineering application of basalt fibre-reinforced EPS-based geopolymer lightweight concrete. Full article
Show Figures

Figure 1

17 pages, 7633 KiB  
Article
Mechanical Behavior Characteristics of Sandstone and Constitutive Models of Energy Damage Under Different Strain Rates
by Wuyan Xu and Cun Zhang
Appl. Sci. 2025, 15(14), 7954; https://doi.org/10.3390/app15147954 - 17 Jul 2025
Viewed by 212
Abstract
To explore the influence of mine roof on the damage and failure of sandstone surrounding rock under different pressure rates, mechanical experiments with different strain rates were carried out on sandstone rock samples. The strength, deformation, failure, energy and damage characteristics of rock [...] Read more.
To explore the influence of mine roof on the damage and failure of sandstone surrounding rock under different pressure rates, mechanical experiments with different strain rates were carried out on sandstone rock samples. The strength, deformation, failure, energy and damage characteristics of rock samples with different strain rates were also discussed. The research results show that with the increases in the strain rate, peak stress, and elastic modulus show a monotonically increasing trend, while the peak strain decreases in the reverse direction. At a low strain rate, the proportion of the mass fraction of complete rock blocks in the rock sample is relatively high, and the shape integrity is good, while rock samples with a high strain rate retain more small-sized fragmented rock blocks. This indicates that under high-rate loading, the bifurcation phenomenon of secondary cracks is obvious. The rock samples undergo a failure form dominated by small-sized fragments, with severe damage to the rock samples and significant fractal characteristics of the fragments. At the initial stage of loading, the primary fractures close, and the rock samples mainly dissipate energy in the forms of frictional slip and mineral fragmentation. In the middle stage of loading, the residual fractures are compacted, and the dissipative strain energy keeps increasing continuously. In the later stage of loading, secondary cracks accelerate their expansion, and elastic strain energy is released sharply, eventually leading to brittle failure of the rock sample. Under a low strain rate, secondary cracks slowly expand along the clay–quartz interface and cause intergranular failure of the rock sample. However, a high strain rate inhibits the stress relaxation of the clay, forces the energy to transfer to the quartz crystal, promotes the penetration of secondary cracks through the quartz crystal, and triggers transgranular failure. A constitutive model based on energy damage was further constructed, which can accurately characterize the nonlinear hardening characteristics and strength-deformation laws of rock samples with different strain rates. The evolution process of its energy damage can be divided into the unchanged stage, the slow growth stage, and the accelerated growth stage. The characteristics of this stage reveal the sudden change mechanism from the dissipation of elastic strain energy of rock samples to the unstable propagation of secondary cracks, clarify the cumulative influence of strain rate on damage, and provide a theoretical basis for the dynamic assessment of surrounding rock damage and disaster early warning when the mine roof comes under pressure. Full article
Show Figures

Figure 1

23 pages, 36557 KiB  
Article
Mixed-Mode Fracture Behavior of Penta-Graphene: A Molecular Dynamics Perspective on Defect Sensitivity and Crack Evolution
by Afia Aziz Kona, Aaron Lutheran and Alireza Tabarraei
Solids 2025, 6(3), 36; https://doi.org/10.3390/solids6030036 - 11 Jul 2025
Viewed by 446
Abstract
This study employs molecular dynamics (MD) simulations to investigate the mechanical response and fracture behavior of penta-graphene, a novel two-dimensional carbon allotrope composed entirely of pentagonal rings with mixed sp2–sp3 hybridization and pronounced mechanical anisotropy. Atomistic simulations are carried out [...] Read more.
This study employs molecular dynamics (MD) simulations to investigate the mechanical response and fracture behavior of penta-graphene, a novel two-dimensional carbon allotrope composed entirely of pentagonal rings with mixed sp2–sp3 hybridization and pronounced mechanical anisotropy. Atomistic simulations are carried out to evaluate the impact of structural defects on mechanical performance and to elucidate crack propagation mechanisms. The results reveal that void defects involving sp3-hybridized carbon atoms cause a more significant degradation in mechanical strength compared to those involving sp2 atoms. During fracture, local atomic rearrangements and bond reconstructions lead to the formation of energetically favorable ring structures—such as hexagons and octagons—at the crack tip, promoting enhanced energy dissipation and fracture resistance. A central focus of this work is the evaluation of the critical stress intensity factor (SIF) under mixed-mode (I/II) loading conditions. The simulations demonstrate that the critical SIF is influenced by the loading phase angle, with pure mode I exhibiting a higher SIF than pure mode II. Notably, penta-graphene shows a critical SIF significantly higher than that of graphene, indicating exceptional fracture toughness that is rare among ultra-thin two-dimensional materials. This enhanced toughness is primarily attributed to penta-graphene’s capacity for substantial out-of-plane deformation prior to failure, which redistributes stress near the crack tip, delays crack initiation, and increases energy absorption. Additionally, the study examines crack growth paths as a function of loading phase angle, revealing that branching and kinking can occur even under pure mode I loading. Full article
Show Figures

Figure 1

17 pages, 1488 KiB  
Article
Study on Seepage Model of Staged-Fractured Horizontal Well in Low Permeability Reservoir
by Jian Song, Zongxiao Ren, Zhan Qu, Xinzhu Wang, Jiajun Cao, Xuemei Luo and Miao Wang
Processes 2025, 13(6), 1934; https://doi.org/10.3390/pr13061934 - 18 Jun 2025
Viewed by 293
Abstract
This study addresses the coupled influence of the threshold pressure gradient and stress sensitivity during the seepage process in low-permeability reservoirs. By integrating Laplace transform, perturbation transform, the image principle, and the superposition principle, a non-steady-state seepage model for segmented-fractured horizontal wells considering [...] Read more.
This study addresses the coupled influence of the threshold pressure gradient and stress sensitivity during the seepage process in low-permeability reservoirs. By integrating Laplace transform, perturbation transform, the image principle, and the superposition principle, a non-steady-state seepage model for segmented-fractured horizontal wells considering both effects is established for the first time. The analytical solution of the point source function including the threshold pressure gradient (λ) and stress sensitivity effect (permeability modulus α) is innovatively derived and extended to closed-boundary reservoirs. The model accuracy is verified by CMG numerical simulation (with an error of only 1.02%). Based on this, the seepage process is divided into four stages: I linear flow (pressure derivative slope of 0.5), II fracture radial flow (slope of 0), III dual radial flow (slope of 0.36), and IV pseudo-radial flow (slope of 0). Sensitivity analysis indicates the following: (1) The threshold pressure gradient significantly increases the seepage resistance in the late stage (the pressure curve shows a significant upward curvature when λ = 0.1 MPa/m); (2) Stress sensitivity dominates the energy dissipation in the middle and late stages (a closed-boundary-like feature is presented when α > 0.1 MPa−1); (3) The half-length of fractures dominates the early flow (a 100 m fracture reduces the pressure drop by 40% compared to a 20 m fracture). This model resolves the accuracy deficiency of traditional single-effect models and provides theoretical support for the development effect evaluation and well test interpretation of fractured horizontal wells in low-permeability reservoirs. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

24 pages, 8513 KiB  
Article
Dynamic Compressive Behavior and Fracture Mechanisms of Binary Mineral Admixture-Modified Concrete
by Jianqing Bu, Qin Liu, Longwei Zhang, Shujie Li and Liping Zhang
Materials 2025, 18(12), 2883; https://doi.org/10.3390/ma18122883 - 18 Jun 2025
Viewed by 290
Abstract
Fly ash and slag powder, as two of the most widely utilized industrial solid waste-based mineral admixtures, have demonstrated through extensive validation that their combined incorporation technology effectively enhances the mechanical properties and microstructural characteristics of concrete. Systematic investigations remain imperative regarding material [...] Read more.
Fly ash and slag powder, as two of the most widely utilized industrial solid waste-based mineral admixtures, have demonstrated through extensive validation that their combined incorporation technology effectively enhances the mechanical properties and microstructural characteristics of concrete. Systematic investigations remain imperative regarding material response mechanisms under dynamic loading conditions. This study conducted microstructural analysis, static compression tests, and dynamic Split Hopkinson Pressure Bar (SHPB) impact compression tests on concrete specimens, complemented by dynamic impact simulations employing an established three-dimensional mesoscale concrete aggregate model. Through integrated analysis of macroscopic mechanical test results, mesoscale numerical simulations, and microstructural characterization data, the research systematically elucidated the influence mechanisms of different mineral admixture combinations on concrete’s dynamic mechanical behavior, energy dissipation characteristics, and fracture mechanisms. The results showed that all specimens exhibited strain rate enhancement characteristics as the strain rate increased. As the admixture approach transitioned from non-admixture to single admixture and subsequently to binary admixture, the dynamic strength, elastic modulus, and DIF of concrete increased progressively. Both the energy dissipation capacity and its proportion relative to total energy absorption showed continuous enhancement. The simulated stress–strain curves, failure modes, and fracture processes show good agreement with experimental results, this effectively verifies both the scientific validity of the mesoscale concrete model’s multiscale modeling approach and the reliability of the numerical simulations. Compared to FHC1, FMHC1’s mesoscale structure can more effectively convert externally applied energy into stored internal energy, thereby achieving superior dynamic compressive energy dissipation capacity. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

36 pages, 26627 KiB  
Article
NSA-CHG: An Intelligent Prediction Framework for Real-Time TBM Parameter Optimization in Complex Geological Conditions
by Youliang Chen, Wencan Guan, Rafig Azzam and Siyu Chen
AI 2025, 6(6), 127; https://doi.org/10.3390/ai6060127 - 16 Jun 2025
Viewed by 1622
Abstract
This study proposes an intelligent prediction framework integrating native sparse attention (NSA) with the Chen-Guan (CHG) algorithm to optimize tunnel boring machine (TBM) operations in heterogeneous geological environments. The framework resolves critical limitations of conventional experience-driven approaches that inadequately address the nonlinear coupling [...] Read more.
This study proposes an intelligent prediction framework integrating native sparse attention (NSA) with the Chen-Guan (CHG) algorithm to optimize tunnel boring machine (TBM) operations in heterogeneous geological environments. The framework resolves critical limitations of conventional experience-driven approaches that inadequately address the nonlinear coupling between the spatial heterogeneity of rock mass parameters and mechanical system responses. Three principal innovations are introduced: (1) a hardware-compatible sparse attention architecture achieving O(n) computational complexity while preserving high-fidelity geological feature extraction capabilities; (2) an adaptive kernel function optimization mechanism that reduces confidence interval width by 41.3% through synergistic integration of boundary likelihood-driven kernel selection with Chebyshev inequality-based posterior estimation; and (3) a physics-enhanced modelling methodology combining non-Hertzian contact mechanics with eddy field evolution equations. Validation experiments employing field data from the Pujiang Town Plot 125-2 Tunnel Project demonstrated superior performance metrics, including 92.4% ± 1.8% warning accuracy for fractured zones, ≤28 ms optimization response time, and ≤4.7% relative error in energy dissipation analysis. Comparative analysis revealed a 32.7% reduction in root mean square error (p < 0.01) and 4.8-fold inference speed acceleration relative to conventional methods, establishing a novel data–physics fusion paradigm for TBM control with substantial implications for intelligent tunnelling in complex geological formations. Full article
Show Figures

Figure 1

16 pages, 3741 KiB  
Article
Mechanical Properties of Large-Volume Waste Concrete Lumps Cemented by Desert Mortar: Laboratory Tests
by Hui Chen, Zhiyuan Qi, Baiyun Yu and Xinyu Li
Buildings 2025, 15(12), 2060; https://doi.org/10.3390/buildings15122060 - 15 Jun 2025
Viewed by 451
Abstract
In response to the high cost and environmental impact of backfill materials in Xinjiang mines, an eco-friendly, large-volume composite was developed by bonding desert-sand mortar to waste concrete. A rock-filled concrete process produced a highly flowable mortar from desert sand, cement, and fly [...] Read more.
In response to the high cost and environmental impact of backfill materials in Xinjiang mines, an eco-friendly, large-volume composite was developed by bonding desert-sand mortar to waste concrete. A rock-filled concrete process produced a highly flowable mortar from desert sand, cement, and fly ash. Waste concrete blocks served as coarse aggregate. Specimens were cured for 28 days, then subjected to uniaxial compression tests on a mining rock-mechanics system using water-to-binder ratios of 0.30, 0.35, and 0.40 and aggregate sizes of 30–40 mm, 40–50 mm, and 50–60 mm. Mechanical performance—failure modes, stress–strain response, and related properties—was systematically evaluated. Crack propagation was tracked via digital image correlation (DIC) and acoustic emission (AE) techniques. Failure patterns indicated that the pure-mortar specimens exhibited classic brittle fractures with through-going cracks. Aggregate-containing specimens showed mixed-mode failure, with cracks flowing around aggregates and secondary branches forming non-through-going damage networks. Optimization identified a 0.30 water-to-binder ratio (Groups 3 and 6) as optimal, yielding an average strength of 25 MPa. Among the aggregate sizes, 40–50 mm (Group 7) performed best, with 22.58 MPa. The AE data revealed a three-stage evolution—linear-elastic, nonlinear crack growth, and critical failure—with signal density positively correlating to fracture energy. DIC maps showed unidirectional energy release in pure-mortar specimens, whereas aggregate-containing specimens displayed chaotic energy patterns. This confirms that aggregates alter stress fields at crack tips and redirect energy-dissipation paths, shifting failure from single-crack propagation to a multi-scale damage network. These results provide a theoretical basis and technical support for the resource-efficient use of mining waste and advance green backfill technology, thereby contributing to the sustainable development of mining operations. Full article
Show Figures

Figure 1

21 pages, 4282 KiB  
Article
Stability Assessment of Hazardous Rock Masses and Rockfall Trajectory Prediction Using LiDAR Point Clouds
by Rao Zhu, Yonghua Xia, Shucai Zhang and Yingke Wang
Appl. Sci. 2025, 15(12), 6709; https://doi.org/10.3390/app15126709 - 15 Jun 2025
Viewed by 440
Abstract
This study aims to mitigate slope-collapse hazards that threaten life and property at the Lujiawan resettlement site in Wanbi Town, Dayao County, Yunnan Province, within the Guanyinyan hydropower reservoir. It integrates centimeter-level point-cloud data collected by a DJI Matrice 350 RTK equipped with [...] Read more.
This study aims to mitigate slope-collapse hazards that threaten life and property at the Lujiawan resettlement site in Wanbi Town, Dayao County, Yunnan Province, within the Guanyinyan hydropower reservoir. It integrates centimeter-level point-cloud data collected by a DJI Matrice 350 RTK equipped with a Zenmuse L2 airborne LiDAR (Light Detection And Ranging) sensor with detailed structural-joint survey data. First, qualitative structural interpretation is conducted with stereographic projection. Next, safety factors are quantified using the limit-equilibrium method, establishing a dual qualitative–quantitative diagnostic framework. This framework delineates six hazardous rock zones (WY1–WY6), dominated by toppling and free-fall failure modes, and evaluates their stability under combined rainfall infiltration, seismic loading, and ambient conditions. Subsequently, six-degree-of-freedom Monte Carlo simulations incorporating realistic three-dimensional terrain and block geometry are performed in RAMMS::ROCKFALL (Rapid Mass Movements Simulation—Rockfall). The resulting spatial patterns of rockfall velocity, kinetic energy, and rebound height elucidate their evolution coupled with slope height, surface morphology, and block shape. Results show peak velocities ranging from 20 to 42 m s−1 and maximum kinetic energies between 0.16 and 1.4 MJ. Most rockfall trajectories terminate within 0–80 m of the cliff base. All six identified hazardous rock masses pose varying levels of threat to residential structures at the slope foot, highlighting substantial spatial variability in hazard distribution. Drawing on the preceding diagnostic results and dynamic simulations, we recommend a three-tier “zonal defense with in situ energy dissipation” scheme: (i) install 500–2000 kJ flexible barriers along the crest and upper slope to rapidly attenuate rockfall energy; (ii) place guiding or deflection structures at mid-slope to steer blocks and dissipate momentum; and (iii) deploy high-capacity flexible nets combined with a catchment basin at the slope foot to intercept residual blocks. This staged arrangement maximizes energy attenuation and overall risk reduction. This study shows that integrating high-resolution 3D point clouds with rigid-body contact dynamics overcomes the spatial discontinuities of conventional surveys. The approach substantially improves the accuracy and efficiency of hazardous rock stability assessments and rockfall trajectory predictions, offering a quantifiable, reproducible mitigation framework for long slopes, large rock volumes, and densely fractured cliff faces. Full article
(This article belongs to the Special Issue Emerging Trends in Rock Mechanics and Rock Engineering)
Show Figures

Figure 1

16 pages, 3848 KiB  
Article
Experimental Study on the Dynamic Characteristics of Fractured Coal Under Cumulative Impact
by Jiachen Ma, Fengyin Liu and Lang Song
Appl. Sci. 2025, 15(12), 6469; https://doi.org/10.3390/app15126469 - 9 Jun 2025
Viewed by 360
Abstract
The dynamic characteristics of fractured coal under cumulative impact are an important basis for evaluating the safety and stability of mining engineering. In order to study the dynamic mechanical properties of fractured coal under cumulative impact, the split-Hopkinson pressure bar (SHPB) device is [...] Read more.
The dynamic characteristics of fractured coal under cumulative impact are an important basis for evaluating the safety and stability of mining engineering. In order to study the dynamic mechanical properties of fractured coal under cumulative impact, the split-Hopkinson pressure bar (SHPB) device is used to conduct dynamic impact tests on fractured coal under cumulative impact. The wave velocity variation, dynamic compressive strength, fractal characteristics of fragmentation and energy dissipation properties of fractured coal samples under different impact times are analyzed. The results indicate that as the number of cumulative impacts increases, the decreasing trend of wave velocity of the coal samples conforms to the linear change relationship, and the rate of reduction varies with fracture inclination angles, demonstrating an inclination-dependent behavior. The dynamic compressive strength and energy dissipation rate of coal samples continuously decrease with the increase in cumulative impact times. The dynamic strength of the samples decreases approximately 25–40% after five time impacts. Coal samples with a fracture inclination angle of 30° show the largest decrease in dynamic compressive strength and are most prone to failure. As the number of cumulative impacts increases, the fractal dimension of the coal samples gradually increases, and the fragmentation mode transitions from large-size block failure to fine-grain pulverization. The failure mechanism converts from tensile failure to a mixed tensile–shear failure mode. The research findings provide a scientific basis for studying the mechanism of dynamic disasters in fractured coal samples under disturbance impact. Full article
Show Figures

Figure 1

22 pages, 7158 KiB  
Article
Experimental Study on the Seismic Performance of Pre-Inserted Prefabricated Shear Walls
by Quanbiao Xu, Shenghang Yang, Benyue Li, Mingwei Xu and Mingshan Zhang
Buildings 2025, 15(11), 1945; https://doi.org/10.3390/buildings15111945 - 4 Jun 2025
Viewed by 364
Abstract
The pre-inserted method for precast shear walls involves casting concealed beams at floor slabs between upper and lower structures, with precast concrete supports spaced at intervals. Vertical rebars at the base of upper walls are pre-inserted and anchored in the beams before slab [...] Read more.
The pre-inserted method for precast shear walls involves casting concealed beams at floor slabs between upper and lower structures, with precast concrete supports spaced at intervals. Vertical rebars at the base of upper walls are pre-inserted and anchored in the beams before slab casting. It offers advantages such as convenient construction without the need for grouting, demonstrating broad application prospects and significant promotional value. To evaluate seismic performance, quasi-static cyclic loading tests were conducted on five specimens: three full-scale pre-inserted precast walls and two cast-in-place counterparts. Under increasing lateral displacement, low axial-load specimens failed via tensile fracture of the outermost rebars, while high axial-load specimens failed by concrete crushing in compression. The test results showed that under identical axial-load ratios, the precast walls exhibited comparable bearing capacity, stiffness degradation, and energy dissipation to cast-in-place walls, but superior deformation ductility. The ultimate drift ratios of pre-inserted walls exceeded those of cast-in-place walls by 16.7% (axial-load ratio 0.2) and 22.2% (axial-load ratio 0.4), demonstrating robust seismic performance. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

16 pages, 5631 KiB  
Article
Dynamic Damage Characteristics of Red Sandstone: An Investigation of Experiments and Numerical Simulations
by Yelin Qian, Ying Su, Ruicai Han, Changchun Li and Ran An
Buildings 2025, 15(11), 1845; https://doi.org/10.3390/buildings15111845 - 27 May 2025
Viewed by 374
Abstract
This study investigates damage characteristics of red sandstone under dynamic loads to clarify the effects of construction disturbances and blasting on the stability of surrounding rock during mountain tunnel construction in water-rich strata. Dynamic impact experiments at various loads were conducted using the [...] Read more.
This study investigates damage characteristics of red sandstone under dynamic loads to clarify the effects of construction disturbances and blasting on the stability of surrounding rock during mountain tunnel construction in water-rich strata. Dynamic impact experiments at various loads were conducted using the Split Hopkinson Pressure Bar (SHPB) instrument, complemented by simulations of the fracturing process in saturated sandstone using finite element software. This analysis systematically examines the post-fracture granularity mass fraction, stress-strain curves, peak stress-average strain rate relationship, and fracture patterns. The dynamic response mechanism of red sandstone during the process of tunnel blasting construction was thoroughly investigated. Experimental results reveal that the peak stress and failure strain exhibit strain rate dependency, increasing from 45.65 MPa to 115.34 MPa and 0.95% to 5.23%, respectively, as strain rate elevates from 35.53 s−1 to 118.71 s−1. The failure process of red sandstone is divided into four stages: crack closure, nearly elastic phase, rapid crack development, and rapid unloading. Dynamic peak stress and average strain rate in sandstone demonstrate an approximately linear relationship, with the correlation coefficient being 0.962. Under different impact loads, fractures in specimens typically expand from the edges to the center and evolve from internal squeezing fractures to external development. Peak stress, degree of specimen breakage, and energy dissipation during fracturing are significantly influenced by the strain rate. The numerical simulations confirmed experimental findings while elucidating the failure mechanism in surrounding rocks under varying strain rates. This work pioneers a multiscale analysis framework bridging numerical simulation with a blasting construction site, addressing the critical gap in time-dependent deformation during tunnel excavation. Full article
Show Figures

Figure 1

32 pages, 11290 KiB  
Article
Material Characterization and Stress-State-Dependent Failure Criteria of AASHTO M180 Guardrail Steel: Experimental and Numerical Investigation
by Qusai A. Alomari, Tewodros Y. Yosef, Robert W. Bielenberg, Ronald K. Faller, Mehrdad Negahban, Zesheng Zhang, Wenlong Li and Brandt M. Humphrey
Materials 2025, 18(11), 2523; https://doi.org/10.3390/ma18112523 - 27 May 2025
Viewed by 544
Abstract
As a key roadside safety feature, longitudinal guardrail steel barriers are purposefully designed to contain and redirect errant vehicles to prevent roadway departure, dissipate impact energy through plastic deformation, and reduce the severity of vehicle crashes. Nevertheless, these systems should be carefully designed [...] Read more.
As a key roadside safety feature, longitudinal guardrail steel barriers are purposefully designed to contain and redirect errant vehicles to prevent roadway departure, dissipate impact energy through plastic deformation, and reduce the severity of vehicle crashes. Nevertheless, these systems should be carefully designed and assessed, as localized rupturing, especially near splice or impact locations, can lead to catastrophic failures, compromising vehicle containment, violating crash safety standards, and ultimately jeopardizing the safety of occupants and other road users. Before conducting full-scale crash testing, finite element analysis (FEA) tools are widely employed to evaluate the design efficiency, optimize system configurations, and preemptively identify potential failure modes prior to expensive physical crash testing. To accurately assess system behavior, calibrated material models and precise failure criteria must be utilized in these simulations. Despite the existence of numerous failure criteria and material models, the material characteristics of AASHTO M-180 guardrail steel have not been fully investigated. This paper significantly advances the FE modeling of ductile fracture in guardrail steel, addressing a critical need within the roadside safety community. This study formulates stress-state-dependent failure criteria and proposes advanced material modeling techniques. Extensive experimental testing was conducted on steel specimens having various triaxiality and Lode parameter values to reproduce a wide spectrum of complex, three-dimensional stress-state loading conditions. The test results were then used to identify material properties and construct a failure surface. Subsequent FEA, which incorporated the Generalized Incremental Stress-State-Dependent Damage Model (GISSMO) in conjunction with two LS-DYNA material models, illustrates the capability of the developed surface and material input parameters to predict material behavior under various stress states accurately. A parametric study was completed to further validate the proposed models, highlighting their robustness and reliability. Full article
(This article belongs to the Special Issue From Materials to Applications: High-Performance Steel Structures)
Show Figures

Figure 1

17 pages, 3502 KiB  
Article
Overcoming Low-Polarity Limitations in Polyphenylene Oxide Electrospinning: Chemical Functionalization and Polymer Hybridization for Interlaminar Toughening of Carbon Fiber Composites
by Yuan Huang, Yi Wei, Canyi Huang, Yiping Qiu, Bohong Gu and Bo Yang
Polymers 2025, 17(11), 1480; https://doi.org/10.3390/polym17111480 - 27 May 2025
Viewed by 518
Abstract
This study investigates the optimization of polyphenylene oxide (PPO) electrospinning for interlaminar toughening in composites, using sulfonation modification and physical blending with polylactic acid (PLA) and polystyrene (PS). Both strategies showed excellent electrospinning performance, significantly reducing fiber diameter (PPO: 12.1 ± 5.8 μm; [...] Read more.
This study investigates the optimization of polyphenylene oxide (PPO) electrospinning for interlaminar toughening in composites, using sulfonation modification and physical blending with polylactic acid (PLA) and polystyrene (PS). Both strategies showed excellent electrospinning performance, significantly reducing fiber diameter (PPO: 12.1 ± 5.8 μm; sulfonated PPO: 524 ± 42 nm; PPO-PLA: 4.73 ± 0.94 μm; PPO-PS: 3.43 ± 0.34 μm). In addition, the PPO-PS fibers were uniform, while PPO-PLA exhibited a mixture of fine and coarse fibers due to phase separation. Interlaminar fracture toughness testing showed that PPO-PS offered the greatest toughening, with GICini and GICpre increasing by 223% and 232%, respectively, compared to the values of the untoughened sample, and by 65% and 61.5% compared to those of the PPO sample. GIIC of the PPO-PS sample was 196% greater than that of the untoughened sample and 30% higher than that of the PPO sample. Scanning electron microscope (SEM) analysis of fracture morphology revealed that the high-toughness system dissipated energy through fiber bridging, plastic deformation, and multi-scale crack deflection, while the low-toughness samples failed due to interface debonding or cohesive failure. This work demonstrates that PPO-PS veils enhance interlaminar toughness through interface reinforcement and multiple toughening mechanisms, providing an effective approach for high-performance composites. Full article
(This article belongs to the Special Issue Advanced Epoxy-Based Materials, 5th Edition)
Show Figures

Figure 1

Back to TopTop