Experimental Study on the Dynamic Characteristics of Fractured Coal Under Cumulative Impact
Abstract
:1. Introduction
2. Experimental Design
2.1. Specimen Preparation
2.2. Experimental Procedure
2.3. SHPB System Configuration and Stress Equilibrium Verification
3. Results and Analysis
3.1. Wave Velocity Analysis
3.2. Dynamic Compressive Strength Analysis
3.3. Fractal Characteristics of Fragmentation
3.4. Energy Dissipation Analysis
4. Conclusions
- (1)
- As the number of cumulative impacts increases, the wave velocity of coal samples continuously decreases, following a linear relationship. The rate of wave velocity reduction varies with fracture dip angles, demonstrating angular dependence in fractured coal samples under cumulative impacts.
- (2)
- Dynamic compressive strength progressively decreases with cumulative impacts, showing 25–40% reduction after five impact cycles. Specimens with 30° fracture dip angles exhibit the most significant strength reduction and the highest failure probability under equivalent impact cycles.
- (3)
- Fractured coal fragments demonstrate remarkable self-similarity under cumulative impacts, conforming to fractal distribution characteristics. Increasing impact cycles elevate the fractal dimensions while transforming the fragmentation patterns from large-block tensile failure to small-particle crushing with tensile–shear hybrid failure modes.
- (4)
- A progressive reduction in the energy dissipation rate reveals that cumulative impacts induce significant damage degradation, reducing the energy consumption required for failure. Pre-existing fractures cause measurable energy dissipation reduction, though dip angles show limited influence on the dissipation rates.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, G.F.; Pan, Y.S.; Zhao, S.K. How to realize safe-efficient-intelligent mining of rock burst coal seam. Coal Sci. Technol. 2024, 52, 1–14. (In Chinese) [Google Scholar]
- Ram, S.; Singh, R.; Kumar, A.; Singh, A.K.; Kumar, R.; Rao, A.R.; Rao, V.S. Stability assessment of heightened rib/snook during extraction of a thick coal seam by continuous miner in single lift. Geomech. Geophys. Geo-Energy Geo-Resour. 2022, 8, 74. [Google Scholar] [CrossRef]
- Remennikov, A.; Kalubadanage, D.M.; Yang, X.; Ren, T. The development of specialised modular protective structure on continuous miners against coal burst hazards. Int. J. Prot. Struct. 2022, 13, 182–208. [Google Scholar] [CrossRef]
- Dyrdin, V.V.; Oparin, V.N.; Fofanov, A.A.; Smirnov, V.G.; Kim, T.L. Possible Effect of Main Roof Settlement on Outburst Hazard in Case of Gas Hydrate Dissociation during Coal Mining. J. Min. Sci. 2017, 53, 801–810. [Google Scholar] [CrossRef]
- He, S.; Qin, M.; Qiu, L.; Song, D.; Zhang, X. Early warning of coal dynamic disaster by precursor of AE and EMR “quiet period”. Int. J. Coal Sci. Technol. 2022, 9, 46. [Google Scholar] [CrossRef]
- Roy, P.P.; Sawmliana, C.; Singh, R.K. Design of blasting patterns to induce effective caving in continuous miner depillaring panel—A case study. Min. Technol. 2021, 130, 209–220. [Google Scholar]
- Wang, X.; Wang, J.; Liu, X.; Zhou, X.; Li, N.; Feng, J.; Yang, H. Microcracking evolution and clustering fractal characteristics in coal failure under multi step and cyclic loading. Eng. Fract. Mech. 2024, 310, 110511. [Google Scholar]
- Zhou, X.; Liu, X.; Wang, X.; Xie, H.; Du, P. Failure characteristics and mechanism of coal under the coupling between different confining pressures and disturbance loading. B Eng. Geol. Environ. 2023, 82, 442. [Google Scholar] [CrossRef]
- Song, S.; Ren, T.; Dou, L.; Sun, J.; Yang, X.; Tan, L. Fracture features of brittle coal under uniaxial and cyclic compression loads. Int. J. Coal Sci. Technol. 2023, 82, 442. [Google Scholar] [CrossRef]
- Tan, T.J.; Wang, E.Y.; Wang, X.R.; Ma, L.Z.; Yao, W.L. Resistivity and damage of coal under cyclic loading and unloading. Eng. Geol. 2023, 323, 107234. [Google Scholar]
- Chai, S.; Jia, Y.; Du, Y.; Hu, B.; Li, X. Experimental study on compression mechanical characteristics of filled rock joints after multiple pre-impacts. Sci. Rep. 2022, 12, 13628. [Google Scholar] [CrossRef]
- Liu, X.; Tan, Y.; Ning, J.; Lu, Y.; Gu, Q. Mechanical properties and damage constitutive model of coal in coal-rock combined body. Int. J. Rock Mech. Min. 2018, 110, 140–150. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, G.; Li, M.; Zhang, D.; Deng, B.; Liu, C.; Lu, J. Anisotropic mechanical properties and the permeability evolution of cubic coal under true triaxial stress paths. Rock Mech. Rock Eng. 2019, 52, 2505–2521. [Google Scholar] [CrossRef]
- Tahmasebinia, F.; Zhang, C.; Canbulat, I.; Vardar, O.; Saydam, S. Computing the damage and fracture energy in a coal mass based on joint density. Int. J. Min. Sci. Technol. 2018, 28, 813–817. [Google Scholar] [CrossRef]
- Khan, M.; Xueqiu, H.; Jia, G.; Dazhao, S. Accurate prediction of indicators for engineering failures in complex mining environments. Eng. Fail. Anal. 2023, 155, 107736. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, A. Disturbance response instability theory of rock bursts in coal mines and its application. Geohazard Mech. 2022, 1, 1–17. [Google Scholar] [CrossRef]
- Pan, Y.S.; Song, Y.M.; Liu, J. Pattern, change and new situation of coal mine rockburst prevention and control in China. Chin. J. Rock Mech. Eng. 2023, 42, 2081–2095. [Google Scholar]
- Wojtecki, Ł.; Konicek, P.; Schreiber, J. Effects of torpedo blasting on rockburst prevention during deep coal seam mining in the Upper Silesian Coal Basin. J. Rock Mech. Geotech. 2017, 9, 694–701. [Google Scholar] [CrossRef]
- Shkuratnik, V.L.; Filimonov, Y.L.; Kuchurin, S.V. Experimental investigations into acoustic emission in coal samples under uniaxial loading. J. Min. Sci. 2004, 40, 458–464. [Google Scholar] [CrossRef]
- Xie, H.; Gao, M.; Zhang, R.; Peng, G.; Wang, W.; Li, A. Study on the Mechanical Properties and Mechanical Response of Coal Mining at 1000 m or Deeper. Rock Mech. Rock Eng. 2019, 52, 1475–1490. [Google Scholar] [CrossRef]
- Ranathunga, A.; Perera, M.; Ranjith, P. Influence of CO2 adsorption on the strength and elastic modulus of low rank Australian coal under confining pressure. Int. J. Coal Geol. 2016, 167, 148–156. [Google Scholar] [CrossRef]
- Klepaczko, J.; Bassim, M.; Hsu, T. Fracture toughness of coal under quasi-static and impact loading. Eng. Fail. Anal. 1984, 19, 305–316. [Google Scholar] [CrossRef]
- Klepaczko, J.R. On the role of microcracking inertia in rate sensitivity of coal at high strain rates. Arch. Mech. 1988, 40, 345–358. [Google Scholar]
- Krasnovyd, S.; Konchits, A.; Shanina, B.; Valakh, M.; Yukhymchuk, V.; Skoryk, M.; Molchanov, O.; Kamchatny, O. Coal from the outburst hazardous mine seams: Spectroscopic study. Min. Miner. Deposits. 2023, 17, 93–100. [Google Scholar] [CrossRef]
- Mullagaliyeva, L.; Baimukhametov, S.; Portnov, V.; Yurov, V. On the issue of thermal destruction of coal matter. Eng. J. Satbayev Univ. 2022, 144, 57–61. [Google Scholar] [CrossRef]
- Yao, Q.; Chen, T.; Ju, M.; Liang, S.; Liu, Y.; Li, X. Effects of water intrusion on mechanical properties of and crack propagation in coal. Rock Mech. Rock Eng. 2016, 49, 4699–4709. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, K.; Li, Z.; Li, Z.; Si, L.; Hou, S.; Duan, Y. Experimental study on pore-fracture evolution law in the thermal damage process of coal. Int. J. Rock Mech. Min. 2019, 116, 13–24. [Google Scholar] [CrossRef]
- Wang, X.; Kang, H.; Gao, F. Numerical investigation on the shear behavior of jointed coal mass. Comput. Geotech. 2018, 106, 274–285. [Google Scholar] [CrossRef]
- Xie, B.; Zhang, B.; Zhao, S.; Wei, S. Experimental study on dynamic mechanical properties of multidirectional constrained water-bearing coal samples under dynamic-static coupling loading. Sci. Rep. 2024, 14, 20597. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Li, S.; Qin, G.; Lu, W.; Zhu, Z.; Jia, C.; Wen, H.; Yang, L. Experiments on Mechanical Response and Energy Dissipation Behavior of Rockburst-Prone Coal Samples Under Impact Loading. Shock Vib. 2021, 2021, 9924456. [Google Scholar] [CrossRef]
- Gu, Z.; Shen, R.; Liu, Z.; Zhao, E.; Chen, H.; Yuan, Z.; Chu, X.; Tian, J. Dynamic Characteristics of Coal under Triaxial Constraints Based on the Split–Hopkinson Pressure Bar Test System. Nat. Resour. Res. 2023, 32, 587–601. [Google Scholar] [CrossRef]
- Rahman, T.; Sarkar, K.; Singh, A.K. Correlation of Geomechanical and Dynamic Elastic Properties with the P-Wave Velocity of Lower Gondwana Coal Measure Rocks of India. Int. J. Geomech. 2020, 20, 04020189. [Google Scholar] [CrossRef]
- Chai, S.; Wang, H.; Yu, L.; Shi, J.; Abi, E. Experimental study on static and dynamic compression mechanical properties of filled rock joints. Lat. Am. J. Solids Struct. 2020, 17, 1–15. [Google Scholar] [CrossRef]
- Akdag, S.; Karakus, M.; Nguyen, G.D.; Taheri, A.; Zhang, Q.; Zhao, J. Dynamic response and fracture characteristics of thermally-treated granite under dynamic loading. Int. J. Rock Mech. Min. 2023, 170, 105482. [Google Scholar] [CrossRef]
- Tripathi, A.; Khan, M.M.; Pain, A.; Rai, N.; Iqbal, M.A. Compressive strength of thermally treated Barakar sandstone in Jharia coal mine fire region: Interplay of strength, strain rate, and temperature. Eng. Fract. Mech. 2025, 319, 111002. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Zhang, Y.; Wang, J. Dynamic mechanical properties of coals subject to the low Temperature-Impact load coupling effect. Sci. Rep. 2019, 9, 20218. [Google Scholar] [CrossRef]
- Gong, F.; Ye, H.; Luo, Y. The effect of high loading rate on the behaviour and mechanical properties of Coal-Rock combined body. Shock Vib. 2018, 2018, 4374530. [Google Scholar] [CrossRef]
- Tan, L.; Ren, T.; Yang, X.; He, X. A numerical simulation study on mechanical behaviour of coal with bedding planes under coupled static and dynamic load. Int. J. Min. Sci. Technol. 2018, 28, 791–797. [Google Scholar] [CrossRef]
- Hao, X.; Du, W.; Zhao, Y.; Sun, Z.; Zhang, Q.; Wang, S.; Qiao, H. Dynamic tensile behaviour and crack propagation of coal under coupled static-dynamic loading. Int. J. Min. Sci. Technol. 2020, 30, 659–668. [Google Scholar] [CrossRef]
- Cheng, C.; Xue, S.; Han, Y. Experimental Study on the Mechanical Behavior of Coal under Triaxial Dynamic Compression. Minerals 2022, 12, 1206. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, B.; Wei, Z.; Jiao, Z.; Song, Z.; Zhang, H. Dynamic mechanical responses and crack evolution of burst-prone coal with a single prefabricated fissure. Theor. Appl. Fract. Mech. 2022, 121, 103494. [Google Scholar] [CrossRef]
- Chai, S.; Liu, H.; Song, L.; Li, X.; Fu, X.; Zhou, Y. Static pressure and dynamic impact characteristics of filled jointed rock after frozen-thaw cycle damage. Front. Ecol. Evol. 2023, 11, 1222676. [Google Scholar] [CrossRef]
- Song, L.; Hu, S.S. Two-wave and three-wave method in SHPB data processing. Explos. Shock Waves 2005, 25, 368–373. [Google Scholar]
- Zhang, T.; Yu, L.; Su, H.; Zhang, Q.; Chai, S. Experimental and numerical investigations on the tensile mechanical behavior of marbles containing dynamic damage. Int. J. Min. Sci. Technol. 2021, 32, 89–102. [Google Scholar] [CrossRef]
- Liu, K.; Liu, H.; Zhou, Y.; Liang, G.; Xue, L. Experimental study on the dynamic mechanical and progressive fracture behavior of multi-jointed rock mass under repetitive impact loading. Theor. Appl. Fract. Mech. 2024, 131, 104416. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, W.; Zhao, G.; Meng, X.; Li, Y.; Wu, X.; Li, Y.; Cheng, X. Energy evolution law and fractal characteristics of different rock specimen sizes on dynamic compression. Geofluids 2022, 2022, 339603. [Google Scholar] [CrossRef]
- Panowicz, R.; Janiszewski, J.; Kochanowski, K. Effects of sample geometry imperfections on the results of split Hopkinson pressure bar experiments. Exp. Tech. 2018, 43, 397–403. [Google Scholar] [CrossRef]
- Stopka, G.; Gieleta, R.; Panowicz, R.; Wałach, D.; Kaczmarczyk, G.P. High Strain Rate Response of Sandstones with Different Porosity under Dynamic Loading Using Split Hopkinson Pressure Bar (SHPB). Appl. Sci. 2024, 14, 5347. [Google Scholar] [CrossRef]
Cumulative Impact Effect Times | Fracture Inclination Angle | |||
---|---|---|---|---|
No Fracture | 30° | 60° | 90° | |
0 | 59.74 | 44.43 | 49.10 | 57.69 |
1 | 56.24 | 39.25 | 44.92 | 53.63 |
3 | 49.13 | 34.24 | 39.45 | 46.92 |
5 | 43.92 | 27.35 | 35.49 | 41.78 |
Sample Number | Mass Percentage of Fractured Coal Sample of Each Grain Group/% | ||||||
---|---|---|---|---|---|---|---|
>30 mm | 20~30 mm | 10~20 mm | 5~10 mm | 1~5 mm | 0.5~1 mm | <0.5 mm | |
No fracture-impact effect times-1 | 20.20 | 23.68 | 38.91 | 10.52 | 5.79 | 0.64 | 0.27 |
No fracture-impact effect times-3 | 0.0 | 8.66 | 41.74 | 31.88 | 14.37 | 2.14 | 1.21 |
No fracture-impact effect times-5 | 0.0 | 6.33 | 33.59 | 28.69 | 24.16 | 4.14 | 3.08 |
fracture angle 30°-impact effect times-1 | 0.0 | 23.55 | 42.97 | 12.86 | 16.18 | 2.95 | 1.47 |
fracture angle 30°-impact effect times-3 | 0.0 | 13.18 | 35.54 | 17.03 | 24.34 | 5.92 | 3.99 |
fracture angle 30°-impact effect times-5 | 0.0 | 12.99 | 8.81 | 18.50 | 40.82 | 10.96 | 7.91 |
fracture angle 60°-impact effect times-1 | 0.0 | 18.97 | 37.64 | 25.61 | 14.79 | 1.94 | 1.04 |
fracture angle 60°-impact effect times-3 | 0.0 | 7.47 | 42.04 | 24.11 | 19.62 | 3.83 | 2.93 |
fracture angle 60°-impact effect times-5 | 0.0 | 4.07 | 25.82 | 31.53 | 29.54 | 5.74 | 3.30 |
fracture angle 90°-impact effect times-1 | 0.0 | 36.06 | 42.37 | 13.58 | 6.52 | 0.80 | 0.68 |
fracture angle 90°-impact effect times-3 | 0.0 | 22.9 | 29.3 | 23.3 | 18.79 | 3.56 | 2.08 |
fracture angle 90°-impact effect times-5 | 0.0 | 23.57 | 24.30 | 22.88 | 21.62 | 4.79 | 2.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Liu, F.; Song, L. Experimental Study on the Dynamic Characteristics of Fractured Coal Under Cumulative Impact. Appl. Sci. 2025, 15, 6469. https://doi.org/10.3390/app15126469
Ma J, Liu F, Song L. Experimental Study on the Dynamic Characteristics of Fractured Coal Under Cumulative Impact. Applied Sciences. 2025; 15(12):6469. https://doi.org/10.3390/app15126469
Chicago/Turabian StyleMa, Jiachen, Fengyin Liu, and Lang Song. 2025. "Experimental Study on the Dynamic Characteristics of Fractured Coal Under Cumulative Impact" Applied Sciences 15, no. 12: 6469. https://doi.org/10.3390/app15126469
APA StyleMa, J., Liu, F., & Song, L. (2025). Experimental Study on the Dynamic Characteristics of Fractured Coal Under Cumulative Impact. Applied Sciences, 15(12), 6469. https://doi.org/10.3390/app15126469