Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (766)

Search Parameters:
Keywords = display adhesive

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4351 KB  
Article
A Conductive, Photothermal and Antioxidant ε-Poly-L-Lysine/Carbon Nanotube Hydrogel as a Candidate Dressing for Chronic Diabetic Wounds
by Jinqiang Zhu, Wenjun Qin, Bo Wu, Haining Li, Cui Cheng, Xiao Han and Xiwen Jiang
Polymers 2026, 18(3), 332; https://doi.org/10.3390/polym18030332 - 26 Jan 2026
Abstract
Background: Chronic diabetic wounds, particularly diabetic foot ulcers (DFUs), are prone to recurrent infection and delayed healing, resulting in substantial morbidity, mortality, and economic burden. Multifunctional wound dressings that combine antibacterial, antioxidant, conductive, and self-healing properties may help to address the complex microenvironment [...] Read more.
Background: Chronic diabetic wounds, particularly diabetic foot ulcers (DFUs), are prone to recurrent infection and delayed healing, resulting in substantial morbidity, mortality, and economic burden. Multifunctional wound dressings that combine antibacterial, antioxidant, conductive, and self-healing properties may help to address the complex microenvironment of chronic diabetic wounds. Methods: In this study, ε-poly-L-lysine and amino-terminated polyethylene glycol were grafted onto carboxylated single-walled carbon nanotubes (SWCNTs) via amide coupling to obtain ε-PL-CNT-PEG. Aminated chondroitin sulfate (CS-ADH) and a catechol–metal coordination complex of protocatechualdehyde and Fe3+ (PA@Fe) were then used to construct a dynamic covalently cross-linked hydrogel network through Schiff-base chemistry. The obtained hydrogels (Gel0–3, Gel4) were characterized for photothermal performance, rheological behavior, microstructure, swelling/degradation, adhesiveness, antioxidant capacity, electrical conductivity, cytocompatibility, hemocompatibility, and antibacterial activity in the presence and absence of near-infrared (NIR, 808 nm) irradiation. Results: ε-PL-CNT-PEG showed good aqueous dispersibility, NIR-induced photothermal conversion, and improved cytocompatibility after surface modification. Incorporation of ε-PL-CNT-PEG into the PA@Fe/CS-ADH network yielded conductive hydrogels with porous microstructures and storage modulus (G′) higher than loss modulus (G′′) over the tested frequency range, indicating stable gel-like behavior. The hydrogels exhibited self-healing under alternating strain and macroscopic rejoining after cutting. Swelling and degradation studies demonstrated pH-dependent degradation, with faster degradation in mildly acidic conditions (pH 5.0), mimicking infected chronic diabetic wounds. The hydrogels adhered to diverse substrates and tolerated joint movements. Gel4 showed notable DPPH• and H2O2 scavenging (≈65% and ≈60%, respectively, within several hours). The electrical conductivity was 0.19 ± 0.0X mS/cm for Gel0–3 and 0.21 ± 0.0Y mS/cm for Gel4 (mean ± SD, n = 3), falling within the range reported for human skin. In vitro, NIH3T3 cells maintained >90% viability in the presence of hydrogel extracts, and hemolysis ratios remained below 5%. Hydrogels containing ε-PL-CNT-PEG displayed enhanced antibacterial effects against Escherichia coli and Staphylococcus aureus, and NIR irradiation further reduced bacterial survival, with some formulations achieving near-complete inhibition under low-power (0.2–0.3 W/cm2) 808 nm irradiation. Conclusions: A dynamic, conductive hydrogel based on PA@Fe, CS-ADH, and ε-PL-CNT-PEG was successfully developed. The hydrogel combines photothermal antibacterial activity, antioxidant capacity, electrical conductivity, self-healing behavior, adhesiveness, cytocompatibility, and hemocompatibility. These properties suggest potential for application as a wound dressing for chronic diabetic wounds, including diabetic foot ulcers, although further in vivo studies are required to validate therapeutic efficacy. Full article
(This article belongs to the Section Polymer Networks and Gels)
27 pages, 10800 KB  
Article
Integrative RNA-Seq and TCGA-BRCA Analyses Highlight the Role of LINC01133 in Triple-Negative Breast Cancer
by Leandro Teodoro Júnior, Henrique César de Jesus-Ferreira, Mari Cleide Sogayar and Milton Yutaka Nishiyama-Jr.
Biomedicines 2026, 14(2), 268; https://doi.org/10.3390/biomedicines14020268 - 24 Jan 2026
Viewed by 60
Abstract
Background: Triple-negative breast cancers (TNBCs) are among the most aggressive breast tumors, due not only to the absence of clinically functional biomarkers used in other molecular subtypes, but also their marked heterogeneity and pronounced migratory and invasive behavior. The search for new molecules [...] Read more.
Background: Triple-negative breast cancers (TNBCs) are among the most aggressive breast tumors, due not only to the absence of clinically functional biomarkers used in other molecular subtypes, but also their marked heterogeneity and pronounced migratory and invasive behavior. The search for new molecules of interest for risk prediction, diagnosis and therapy stems from the class of long non-coding RNAs (lncRNAs), which often display context-dependent (“dual”) functions and tissue specificity. Among them, lncRNA LINC01133 stands out for its dysregulation across cancer, although its molecular role in TNBC remains unclear. Methods: In the present study, we used the human TNBC cell line Hs578T to generate a cell panel comprising the parental line (Hs578T_wt), the control line (Hs578T_ctr), and the LINC01133 knockout line (Hs578T_ko). Subsequently, we performed bulk RNA-Seq to identify KO-associated Differentially Expressed Genes (DEGs) using ko_vs_ctr as the primary contrast. Functional interpretation was achieved by Over-Representation Analysis (ORA) using Gene Ontology. We then conducted a comparative patient-cohort analysis using TCGA-BRCA Basal-like/TNBC cases (TCGA/BRCA n = 1098; Basal-like/TNBC n = 199), classified with the AIMS algorithm, and evaluated concordance between KO-associated signatures and patient tumor expression patterns via trend-based analyses across the LINC01133 expression levels and associated genes. Results: A total of 265 KO-dominant DEGs were identified in Hs578T_ko, reflecting transcriptional changes consistent with tumor progression, with enrichment of pathways associated with LINC01133 knockout including cell adhesion, cell–cell interactions, epithelial–mesenchymal transition (EMT), and extracellular matrix (ECM) remodeling. The main DEGs included ITIH5, GLUL, CACNB2, PDX1, ASPN, PTGER3, MFAP4, PI15, EPHB6, and CPA3 with additional candidates, such as KAZN and the lncRNA gene SSC4D, which have been implicated in migration/invasion, ECM remodeling, or signaling across multiple tumor contexts. Translational analyses in TCGA-BRCA basal-like tumors suggested a descriptive association in which lower LINC01133 levels were accompanied by shifts in the expression trends of genes linked to ECM/EMT programs and modulation of genes related to cell adhesion and protease inhibition. Conclusions: These results suggest a transcriptional model in which LINC01133 is associated with TNBC-related gene expression programs in a concentration-dependent manner, with loss of LINC01133 being associated with a transcriptomic shift toward pro-migratory/ECM remodeling signatures. While functional validation is required to establish causality, these data support LINC01133 as a molecule of interest in breast cancer research. Full article
(This article belongs to the Special Issue Bioinformatics Analysis of RNA for Human Health and Disease)
Show Figures

Figure 1

16 pages, 5391 KB  
Article
QTL mfh2.1 Integrates Phytohormone Dynamics to Mediate Carpel Separation and Cavity Formation in Cucumber Fruit (Cucumis sativus)
by Sang Shang, Linting Qiu, Xiaobin Zhang, Chenwei Fan, Feifan Chen, Libo Tian and Yuhui Wang
Horticulturae 2026, 12(1), 124; https://doi.org/10.3390/horticulturae12010124 - 22 Jan 2026
Viewed by 32
Abstract
Hollowness of the cucumber fruit, caused by carpel separation during growth, severely impacts fruit quality. Several Sikkim cucumber accessions originating from the India–Pakistan region exhibit pronounced internal cavities. We previously identified the QTL mfh2.1 as a key contributor to this phenotype. In this [...] Read more.
Hollowness of the cucumber fruit, caused by carpel separation during growth, severely impacts fruit quality. Several Sikkim cucumber accessions originating from the India–Pakistan region exhibit pronounced internal cavities. We previously identified the QTL mfh2.1 as a key contributor to this phenotype. In this study, we investigated the genetic and physiological basis of fruit hollowness in the Sikkim cucumber line WI7120 through an integrative analysis combining histological staining, HPLC for hormonal profiling, and fine mapping using a large F2 segregation population. Comparative analysis between the hollow-fruited WI7120 and the non-hollow line 9930 revealed distinct growth dynamics: WI7120 displayed accelerated radial expansion and aberrant cell patterning at carpel junctions. Histological examination using paraffin sectioning uncovered disorganized endocarp cell arrangements in WI7120 occurring as early as pre-anthesis (0 days post-pollination), with enlarged suture cells that likely facilitate tissue separation during fruit enlargement. Hormonal assays indicated elevated levels of gibberellin (GA) and zeatin (ZT), along with reduced indole-butyric acid (IBA) in WI7120, suggesting that a hormonal imbalance and mechanical stress contribute to compromised cell adhesion. By screening ~2000 F2 individuals with SSR and InDel markers, we refined the mfh2.1 locus to a 50.92 kb interval on chromosome 2, pinpointing CsRPT4Bb—encoding a 26S proteasome subunit—as the candidate gene. A non-synonymous SNP (I135V) in CsRPT4Bb was associated with tissue-specific expression patterns during cavity formation, implicating proteasome-mediated cellular remodeling in carpel cohesion. Spatial-temporal expression analysis further revealed upregulation of CsRPT4Bb in the WI7120 exocarp during fruit expansion, potentially influencing cell wall dynamics. This study demonstrates a coordinated interplay among genetic, hormonal, and mechanical factors underlying cucumber fruit hollowness, offering new avenues for breeding cultivars with improved fruit integrity and postharvest quality. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

22 pages, 5760 KB  
Article
Polylactide/Polycaprolactone Nanofiber Scaffold Enhances Primary Cortical Neuron Growth
by Valeriia S. Shtol, Anastasiia D. Tsareva, Kirill A. Arsentiev, Sophia P. Konovalova, Suanda A. Tlimahova, Dmitry V. Klinov, Dimitri A. Ivanov and Pavel E. Musienko
Polymers 2026, 18(2), 294; https://doi.org/10.3390/polym18020294 - 21 Jan 2026
Viewed by 124
Abstract
Spinal cord injury (SCI) remains a major clinical challenge due to the limited regenerative capacity of the central nervous system (CNS). Effective scaffolds for repair must combine mechanical compatibility with host tissue, controlled degradation matching the time course of regeneration, and microarchitectural features [...] Read more.
Spinal cord injury (SCI) remains a major clinical challenge due to the limited regenerative capacity of the central nervous system (CNS). Effective scaffolds for repair must combine mechanical compatibility with host tissue, controlled degradation matching the time course of regeneration, and microarchitectural features that promote neuronal survival. Electrospun nanofibrous scaffolds mimic the structural and mechanical features of the extracellular matrix, providing critical cues for neuronal adhesion and glial modulation in neural regeneration. Here, we fabricated biodegradable poly(lactic acid)/poly(ε-caprolactone) (PLA/PCL) scaffolds using a dichloromethane/tetrahydrofuran (DCM/THF) solvent system to induce surface porosity via solvent-driven phase separation. The DCM/THF solvent system formulation produced nanofibers with porous surfaces and increased area for cell interaction. PLA/PCL scaffolds showed a Young’s modulus of ~26 MPa and sustained degradation, particularly under oxidative conditions simulating the post-injury microenvironment. In vitro, these scaffolds enhanced neuronal density up to fivefold and maintained ~80% viability over 10 days in primary neuron–glia cultures. Morphometric analysis revealed that DCM/THF-based scaffolds supported astrocytes with preserved process complexity and reduced circularity, indicative of a less reactive morphology. In contrast, scaffolds fabricated with 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) displayed reduced bioactivity and promoted morphological features associated with astrocyte reactivity, including cell rounding and process retraction. These findings demonstrate that solvent-driven control of scaffold microarchitecture is a powerful strategy to enhance neuronal integration and modulate glial morphology, positioning DCM/THF-processed PLA/PCL scaffolds as a promising platform for CNS tissue engineering. Full article
Show Figures

Graphical abstract

17 pages, 4361 KB  
Article
Surface Modification of Zirconia with Thick Hydroxyapatite Film Using RF Magnetron Sputtering Technique
by Ihab Nabeel Safi, Hasanain K. A. Alalwan, Mustafa S. Tukmachi, Dhuha H. Mohammed and Maryam Sinan Abdulaali Al-Yasari
Prosthesis 2026, 8(1), 11; https://doi.org/10.3390/prosthesis8010011 - 19 Jan 2026
Viewed by 99
Abstract
Background/Objectives: The use of zirconia implants is gaining traction as a potential alternative to titanium. Although having excellent properties, the zirconia surface has limited osteogenic potential. The purpose of this study was to produce, for the first time, mechanically stable, thick micron-scale [...] Read more.
Background/Objectives: The use of zirconia implants is gaining traction as a potential alternative to titanium. Although having excellent properties, the zirconia surface has limited osteogenic potential. The purpose of this study was to produce, for the first time, mechanically stable, thick micron-scale hydroxyapatite coatings on zirconia implant material using radiofrequency (RF) magnetron sputtering. Methods: Zirconia samples were coated with HA using an RF magnetron sputtering device at a temperature of 125 °C for 20 h with 155 W of power. The procedure included rotating the substrate at a speed of 10 rpm while an argon gas flow was maintained continuously. Field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX) analysis, atomic force microscopy, and Vickers hardness measurements were used to evaluate the coat’s characteristics. Results: A smooth hydroxyapatite coating layer that was consistent and free of cracks was observed in all FESEM pictures. The EDX study revealed that the substrate surface contains HA particles, and the ratio of calcium (Ca) to phosphorus (P) was 16.58 to 11.31, which is very close to the ratio in original HA. FESEM cross-section pictures showed good adhesion between the coating and substrate without any gaps, and the coating thickness was 5 µm on average. A statistically significant difference was found in the roughness analysis between the samples of uncoated Zr and HA-coated Zr (p-value < 0.05). Conclusions: Zirconia implant material can be coated with a uniform layer of HA, displaying good adhesion and a thickness of a few micrometers when using magnetron sputtering for an extended period of time. Full article
(This article belongs to the Collection Oral Implantology: Current Aspects and Future Perspectives)
Show Figures

Figure 1

19 pages, 4052 KB  
Article
Microstructure and Wear Resistance of (Mg2Si + SiCp)/Al Composites
by Dekun Zhou, Xiaobo Liu and Miao Yang
Metals 2026, 16(1), 111; https://doi.org/10.3390/met16010111 - 18 Jan 2026
Viewed by 169
Abstract
The microstructure and wear behaviors of Mg2Si/Al composites with 0 wt.%, 5 wt.%, and 10 wt.% SiC particles were studied using XRD, OM observation, SEM observation, EDS analysis, an extraction experiment, a hardness test, and the dry sliding wear test. It [...] Read more.
The microstructure and wear behaviors of Mg2Si/Al composites with 0 wt.%, 5 wt.%, and 10 wt.% SiC particles were studied using XRD, OM observation, SEM observation, EDS analysis, an extraction experiment, a hardness test, and the dry sliding wear test. It is shown by the results that after the addition of 10 wt.% SiC particles, the population of primary Mg2Si particles increased, while the mean size of these particles reduced from 40 ± 10 μm (in the SiC-free composite) to 25 ± 8 μm. Both the matrix and the eutectic structure were refined. The tetrakaidecahedral morphologies of Mg2Si crystals were confirmed by the results of extraction tests. The wear test results with GCr15 steel as the friction pair show that the Mg2Si/Al composite with 10 wt.% SiC particles displayed more favorable wear resistance than the specimens with 0 wt.% and 5 wt.% SiC particle additions under both constant load and constant sliding velocity conditions. Under applied loads of 10 N, 20 N, and 30 N at a fixed sliding speed of 300 r/min, the wear rate of the Mg2Si-Al composites reinforced with 10 wt.% SiC particles was 36.01%, 48.29%, and 23.32% lower than that of the SiC-free composites, respectively. When the sliding speed was set to 300 r/min, 550 r/min, 750 r/min, and 1000 r/min under a constant applied load of 20 N, the wear rate of the 10 wt.% SiC-reinforced Mg2Si-Al composites was reduced by 40.37%, 40.87%, 26.20%, and 25.78%, respectively, compared with the SiC-free counterparts. The wear failure mechanisms of (Mg2Si + SiCP)/Al composites were mainly adhesive wear and abrasive wear, but the proportion of oxidation wear increased after the addition of the SiC particles. Full article
(This article belongs to the Special Issue Recent Advances in Forming Processes of Lightweight Metals)
Show Figures

Figure 1

24 pages, 6689 KB  
Article
Reversible Joining Technology for Polyolefins Using Electromagnetic Energy and Homologous Hot-Melt Adhesives Containing Metallic and Ferrite Additives
by Romeo Cristian Ciobanu, Mihaela Aradoaei, George Andrei Ursan, Alina Ruxandra Caramitu, Virgil Marinescu and Rolland Luigi Eva
Polymers 2026, 18(2), 228; https://doi.org/10.3390/polym18020228 - 15 Jan 2026
Viewed by 178
Abstract
This research examined the development and testing of hot-melt adhesives incorporating metallic (Al and Fe powders averaging 800 nm) and ferrite additives, designed for reversible bonding technology of polyolefins through electromagnetic energy. The experimental models with Al displayed smooth particles that were fairly [...] Read more.
This research examined the development and testing of hot-melt adhesives incorporating metallic (Al and Fe powders averaging 800 nm) and ferrite additives, designed for reversible bonding technology of polyolefins through electromagnetic energy. The experimental models with Al displayed smooth particles that were fairly evenly distributed within the polymer matrix. Experimental models with Fe suggested that Fe nanopowders are more difficult to disperse within the polymer matrix, frequently resulting in agglomeration. For ferrite powder, there were fewer agglomerations noticed, and the dispersion was more uniform compared to similar composites containing Fe particles. Regarding water absorption, the extent of swelling was greater in the composites that included Al. Because of toluene’s affinity for the matrices, the swelling measurements stayed elevated even with reduced exposure times, and the composites with ferrite showed the lowest swelling compared to those with metallic particles. A remarkable evolution of the dielectric loss factor peak shifting towards higher frequencies with rising temperatures was observed, which is particularly important when the materials are exposed to thermal activation through electromagnetic energy. The reversible bonding experiments were performed on polyolefin samples which were connected longitudinally by overlapping at the ends; specialized hot-melts were employed, using electromagnetic energy at 2.45 GHz, with power levels between 140 and 850 × 103 W/kg and an exposure duration of up to 2 min. The feasibility of bonding polyolefins using homologous hot-melts that include metallic/ferrite elements was verified. Composites with both matrices showed that the hot-melts with Al displayed the highest mechanical tensile strength values, but also had a relatively greater elongation. All created hot-melts were suitable for reversible adhesion of similar polyolefins, with the one based on HDPE and Fe considered the most efficient for bonding HDPE, and the one based on PP and Al for PP bonding. When bonding dissimilar polyolefins, it seems that the technique is only effective with hot-melts that include Al. According to the reversible bonding diagrams for specific substrates and hot-melt combinations, and considering the optimization of energy consumption in relation to productivity, the most cost-effective way is to utilize 850 × 103 W/kg power with a maximum exposure time of 1 min. Full article
(This article belongs to the Special Issue Polymer Joining Techniques: Innovations, Challenges, and Applications)
Show Figures

Figure 1

30 pages, 4170 KB  
Article
EruA, a Regulator of Adherent-Invasive E. coli, Enhances Bacterial Pathogenicity by Promoting Adhesion to Epithelial Cells and Survival Within Macrophages
by Zeyan Xu, Chuyu Qin, Ruohan Zhang, Mengting Wu, Anqi Cui, Wei Chen, Lu Chen, Daqing Gao and Ruihua Shi
Biomolecules 2026, 16(1), 152; https://doi.org/10.3390/biom16010152 - 14 Jan 2026
Viewed by 249
Abstract
Adherent-invasive E. coli (AIEC) is closely related to inflammatory bowel disease (IBD). However, its pathogenic mechanism has not yet been fully elucidated. Using a BLASTP search, we discovered that the amino acid sequence of a putative protein (UFP37798.1) in the AIEC LF82 strain [...] Read more.
Adherent-invasive E. coli (AIEC) is closely related to inflammatory bowel disease (IBD). However, its pathogenic mechanism has not yet been fully elucidated. Using a BLASTP search, we discovered that the amino acid sequence of a putative protein (UFP37798.1) in the AIEC LF82 strain is highly homologous to some regulators in the SlyA family. We named it EruA. We displayed the secondary structures of EruA using bioinformatics, overexpressed the His6-tagged EruA protein using SDS-PAGE, and dissected the genetic organization of the eruA chromosomal region using 5′RACE. We constructed an eruA deletion mutant (ΔeruA) and a complementary strain (CΔeruA) of the LF82 strain. The transcriptomes of wild-type (WT) and ΔeruA bacteria were compared using RNA sequencing and qRT-PCR, thereby identifying 32 differentially expressed genes (DEGs). Based on YASARA software and EMSA analysis, EruA directly binds to the consensus sequences (PfimA and PtnaB) in the promoter region of the fimA and tnaB genes from these DEGs. By using a super-resolution confocal microscope (SCM), counting CFUs of colonies on plates, indole quantification, and crystal violet staining of biofilms adhered to tubes or 96-well plates, we found that EruA activates the fimA to promote bacterial adhesion to intestinal epithelial cells and activates the tnaB to enhance bacterial indole production and biofilm formation. Moreover, EruA helps AIEC resist environmental stress and enhances bacterial survival within macrophages as well as loading in mouse tissues. Notably, EruA promotes AIEC colonization in the colons of mice and exacerbates intestinal inflammation caused by bacterial infection in mice with DSS-induced inflammatory colitis, manifested by weight loss, colon length shortening, and pathological changes in colon tissues. Therefore, EruA plays a key role in the pathogenicity of AIEC. Full article
(This article belongs to the Special Issue Recent Advances in Molecular Genetics of Bacteria)
Show Figures

Figure 1

28 pages, 10428 KB  
Article
Biomedical Interpenetrated Hydrogels Fabricated via Quaternary Ammonium Chitosan and Dopamine-Conjugated Gelatin Integrated with Genipin and Epigallocatechin Gallate
by Ling Wang, Shuxin Hu, Zheng Wei, Peng Ding, Yaling Deng, Yanting Han, Yanfang Sun, Guohua Jiang and Lei Nie
Gels 2026, 12(1), 67; https://doi.org/10.3390/gels12010067 - 11 Jan 2026
Viewed by 217
Abstract
Multifunctional hydrogels with an interpenetrated network structure have shown great potential for biomedical and tissue-regeneration applications. In this work, the biomedical hydrogel was fabricated with an interpenetrated network based on dopamine grafted gelatin (DA-Gel), and genipin crosslinked quaternary ammonium chitosan (QCS), incorporating epigallocatechin [...] Read more.
Multifunctional hydrogels with an interpenetrated network structure have shown great potential for biomedical and tissue-regeneration applications. In this work, the biomedical hydrogel was fabricated with an interpenetrated network based on dopamine grafted gelatin (DA-Gel), and genipin crosslinked quaternary ammonium chitosan (QCS), incorporating epigallocatechin gallate (EGCG). The EDC/NHS and Schiff-base bond connections occurred in the hydrogels, as confirmed by Fourier-transform infrared (FT-IR) analysis. The properties of the fabricated hydrogels, including microstructure, degradation rate, adhesive strength, mechanical strength, and rheological behavior, can be regulated by adjusting the DA-Gel/QCS ratio or by using different crosslinking approaches. In addition, the fabricated hydrogels exhibited self-healing properties and strong adhesion to various materials and organs. Furthermore, the hydrogels performed good antibacterial activity against the typical bacteria, Escherichia coli and Staphylococcus aureus. EGCG encapsulated hydrogels displayed excellent antioxidant activities and good hemocompatibility. The hydrogels also demonstrated excellent cytocompatibility and good cell migration ability. The above results provide a facile approach to fabricate the biomedical hydrogels with a regulated network structure and multifunctional characteristics with potential in biomedical applications. Full article
(This article belongs to the Special Issue Hydrogel-Based Scaffolds with a Focus on Medical Use (3rd Edition))
Show Figures

Figure 1

12 pages, 1200 KB  
Article
In Vitro Evaluation of the Antimicrobial Properties of Chitosan–Vancomycin Coatings on Grade 4 Titanium Discs: A Preliminary Study
by João M. Pinto, Liliana Grenho, Susana J. Oliveira, Manuel A. Sampaio-Fernandes, Maria Helena Fernandes, Maria Helena Figueiral and Maria Margarida Sampaio-Fernandes
Coatings 2026, 16(1), 75; https://doi.org/10.3390/coatings16010075 - 8 Jan 2026
Viewed by 347
Abstract
Peri-implant infections pose a significant challenge in dental implantology. This study aimed to develop and characterize a chitosan–vancomycin coating for titanium surfaces, focusing on drug loading, release kinetics, antimicrobial performance, and cytocompatibility. Grade 4 titanium discs were coated with a chitosan film using [...] Read more.
Peri-implant infections pose a significant challenge in dental implantology. This study aimed to develop and characterize a chitosan–vancomycin coating for titanium surfaces, focusing on drug loading, release kinetics, antimicrobial performance, and cytocompatibility. Grade 4 titanium discs were coated with a chitosan film using the dip-coating technique and subsequently loaded with vancomycin through immersion in an aqueous solution. Coating morphology was examined by scanning electron microscopy (SEM). Vancomycin loading was quantified by spectrophotometry, and release kinetics were monitored over 144 h (6-day). Antimicrobial activity was assessed through agar diffusion assays against Staphylococcus aureus. Cytocompatibility was evaluated using human mesenchymal stem cells (hMSCs), whose metabolic activity, adhesion, and morphology were assessed over a 19-day culture period by resazurin assay and SEM. SEM analysis revealed a uniformly distributed, smooth, and crack-free chitosan film, which remained stable after drug loading. The coating exhibited a biphasic release profile, characterized by an initial burst followed by sustained release over six days, which maintained antimicrobial activity, as confirmed by inhibition zones. hMSCs adhered and proliferated on the coated surfaces, displaying normal morphology despite a transient reduction in metabolic activity on vancomycin-containing films. These findings support the potential of chitosan–vancomycin coatings as localized antimicrobial strategies for implant applications, warranting further in vivo and mechanical evaluations. Full article
(This article belongs to the Special Issue Films and Coatings with Biomedical Applications)
Show Figures

Figure 1

17 pages, 1952 KB  
Systematic Review
Microbial Adhesion on 3D-Printed Composite Polymers Used for Orthodontic Clear Aligners: A Systematic Review and Meta-Analysis of In Vitro Evidence
by Sandy Hazko, Ahmed A. Holiel, Rim Bourgi, Carlos Enrique Cuevas-Suárez, Roland Kmeid, Louis Hardan, Aly Osman, Abigailt Flores-Ledesma, Naji Kharouf and Nicolas Nassar
J. Compos. Sci. 2026, 10(1), 26; https://doi.org/10.3390/jcs10010026 - 6 Jan 2026
Viewed by 280
Abstract
Objectives: This systematic review and meta-analysis aimed to evaluate microbial adhesion and biofilm formation on additively manufactured composite-based orthodontic clear aligners compared with thermoformed aligners and other conventional polymeric materials. The influence of material composition, surface roughness, post-processing parameters, and cleaning protocols on [...] Read more.
Objectives: This systematic review and meta-analysis aimed to evaluate microbial adhesion and biofilm formation on additively manufactured composite-based orthodontic clear aligners compared with thermoformed aligners and other conventional polymeric materials. The influence of material composition, surface roughness, post-processing parameters, and cleaning protocols on microbial colonization was also assessed. Methods: A comprehensive search of PubMed, EMBASE, Scopus, Web of Science, and the Cochrane Library was conducted up to September 2025. Only in vitro studies investigating microbial adhesion, biofilm biomass, or microbiome changes on three-dimensional (3D)-printed aligner composites were included. Primary outcomes consisted of colony-forming units (CFU), optical density (OD) from crystal violet assays, viable microbial counts, and surface roughness. Risk of bias was assessed using the RoBDEMAT tool. Data were narratively synthesized, and a random-effects meta-analysis was performed for comparable datasets. Results: Five studies fulfilled the inclusion criteria, of which two in vitro studies were eligible for meta-analysis. Microbial adhesion and biofilm accumulation were influenced by the manufacturing technique, composite resin formulation, and surface characteristics. Certain additively manufactured aligners exhibited smoother surfaces and reduced bacterial adhesion compared with thermoformed controls, whereas others with increased surface roughness showed higher biofilm accumulation. Incorporating bioactive additives such as chitosan nanoparticles reduced Streptococcus mutans biofilm formation without compromising material properties. The meta-analysis, based on two in vitro studies, demonstrated higher OD values for bacterial biofilm on 3D-printed aligners compared with thermoformed aligners, indicating increased biofilm biomass (p < 0.05), but not necessarily viable bacterial load. Conclusions: Microbial adhesion and biofilm formation on 3D-printed composite clear aligners are governed by resin composition, additive manufacturing parameters, post-curing processes, and surface finishing. Although certain 3D-printed materials display antibacterial potential, the limited number of studies restricts the generalizability of these findings. Clinical Significance: Optimizing composite formulations for 3D printing, alongside careful post-curing and surface finishing, may help reduce microbial colonization. Further research is required before translating these findings into definitive clinical recommendations for clear aligner therapy. Full article
(This article belongs to the Special Issue Additive Manufacturing of Advanced Composites, 2nd Edition)
Show Figures

Figure 1

14 pages, 2191 KB  
Article
Evaluation Starch-Based Hemostatic Agents “BioSight” as Adhesion Prevention Barrier Tested in an Adhesion Model in Rats
by Yi-Xin Liu, Chen-Ying Su, Min-Hsuan Yen, Chih-Hwa Chen, Chih-Yu Chen and Hsu-Wei Fang
Polymers 2026, 18(1), 33; https://doi.org/10.3390/polym18010033 - 23 Dec 2025
Viewed by 485
Abstract
Background: Postoperative abdominal adhesions are a common and serious complication following abdominal surgery, often leading to chronic pain, bowel obstruction, or infertility. This study aimed to evaluate the efficacy of the new starch-based absorbable hemostatic agent and dressing, BioSight, in comparison with a [...] Read more.
Background: Postoperative abdominal adhesions are a common and serious complication following abdominal surgery, often leading to chronic pain, bowel obstruction, or infertility. This study aimed to evaluate the efficacy of the new starch-based absorbable hemostatic agent and dressing, BioSight, in comparison with a predicate device (4DryField® PH) for the prevention of abdominal adhesions in a rat model. Methods: A total of 90 Sprague–Dawley rats were used to establish an intra-abdominal adhesion model and assigned to the BioSight, 4DryField® PH, or control group. Standardized injuries were created on the cecum and parietal peritoneum, followed by application of the designated materials. Animals were sacrificed at 2, 4, and 12 weeks for macroscopic adhesion scoring and histopathological evaluation. Adhesion area, adhesion strength, and tissue thickness were assessed using established scoring systems, and local healing was examined by H&E staining. All quantitative data were analyzed using one-way ANOVA. Conclusions: In a rat peritoneal adhesion model, BioSight exhibited pronounced anti-adhesion efficacy comparable to 4DryField® PH. Macroscopic evaluation showed consistently low adhesion scores (≤0.4) across all time points up to 12 weeks, while histological analysis confirmed reduced adhesion thickness, with BioSight displaying numerically lower values, particularly at early stages (251.3 ± 137.4 µm vs. 323.2 ± 174.6 µm at Week 2). This performance is attributed to rapid in situ hydrogel formation that provides effective temporary tissue separation, limits early fibrin deposition and inflammatory cell infiltration, and supports hemostasis. Importantly, the starch-based hydrogel exhibits a balanced biodegradation profile—persisting long enough to protect injured tissues during the critical inflammatory and fibroproliferative phases, yet undergoing complete enzymatic resorption thereafter without adverse tissue reactions. Collectively, these results highlight the anti-adhesion functionality of BioSight and support the clinical potential of plant-derived starch-based bioresorbable surgical adjuncts. Full article
(This article belongs to the Special Issue Biopolymer-Based Materials in Medical Applications, Second Edition)
Show Figures

Graphical abstract

17 pages, 8204 KB  
Article
Advanced Microstructural Investigation of the Endodontic Sealing Ability of Three Different Obturation Techniques
by Mihaela Păstrav, Radu Marcel Chisnoiu, Marioara Moldovan, Lucian Barbu Tudoran, Ioan Petean, Andrea Maria Chisnoiu and Ovidiu Păstrav
Dent. J. 2026, 14(1), 9; https://doi.org/10.3390/dj14010009 - 23 Dec 2025
Viewed by 326
Abstract
Objectives: This study evaluated and compared the sealing ability and elemental composition of a resin-based endodontic sealer (AH Plus) used with three root canal obturation techniques: single cone (SC), lateral compaction (LC), and warm vertical condensation (WVC). The investigation focused on microstructural characteristics, [...] Read more.
Objectives: This study evaluated and compared the sealing ability and elemental composition of a resin-based endodontic sealer (AH Plus) used with three root canal obturation techniques: single cone (SC), lateral compaction (LC), and warm vertical condensation (WVC). The investigation focused on microstructural characteristics, interfacial integrity, and elemental distribution within filled root canals. Material and Methods: Sixty extracted single-root teeth were instrumented using the ProTaper Gold system and randomly assigned to three groups (n = 20) according to the obturation technique. The AH Plus Jet sealer was applied in all cases. Following obturation, samples were subjected to radiographic investigation and analyzed using optical microscopy and scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDX) to assess the sealing performance and chemical composition. Results: Radiographic and microscopic assessments indicated that the SC method showed strong gutta-percha adhesion to dentin with a thin cement layer, whereas WVC provided excellent adaptation and penetration of gutta-percha. The LC technique demonstrated good adhesion but displayed occasional structural irregularities. SC has the thicker adhesion layer with uneven distribution regarding coronal, median, and apical, regions ranging from 45 to 80 μm, while WVC ensures a thin and uniform sealing layer of about 35 μm in all regions. SEM and EDX analyses detailed the interfacial microstructure and confirmed the presence of carbon (C), oxygen (O), calcium (Ca), zinc (Zn), barium (Ba), and sulfur (S) across all groups. Conclusions: All three obturation techniques (SC, WVC, LC) achieved effective sealing when combined with the AH Plus sealer. The main difference between the methods consists of the sealer layer thickness and its even distribution regarding gutta-percha cones. Full article
(This article belongs to the Special Issue Present Status and Future Directions in Endodontics)
Show Figures

Graphical abstract

23 pages, 2331 KB  
Article
Life Cycle Impacts of Timber and Reinforced Concrete Floor Slabs: A Comparative Assessment
by Honghao Ren, Marita Wallhagen, Alireza Bahrami and Mathias Cehlin
Infrastructures 2025, 10(12), 346; https://doi.org/10.3390/infrastructures10120346 - 13 Dec 2025
Viewed by 375
Abstract
Due to their sustainability, lightweight qualities, and simplicity of installation, wood slab systems have gained increasing attention in the building industry. Cross-laminated timber (CLT), an engineered wood product (EWP), improves structural strength and stability, offering a good alternative to conventional reinforced concrete (RC) [...] Read more.
Due to their sustainability, lightweight qualities, and simplicity of installation, wood slab systems have gained increasing attention in the building industry. Cross-laminated timber (CLT), an engineered wood product (EWP), improves structural strength and stability, offering a good alternative to conventional reinforced concrete (RC) slab systems. Conventional CLT, however, contains adhesives that pose environmental and end-of-life (EOL) disposal challenges. Adhesive-free CLT (AFCLT) panels have recently been introduced as a sustainable option, but their environmental performance has not yet been thoroughly investigated. In this study, the environmental impacts of five slab systems are evaluated and compared using the life cycle assessment (LCA) methodology. The investigated slab systems include a standard CLT slab (SCLT), three different AFCLT slabs (AFCLT1, AFCLT2, and AFCLT3), and an RC slab. The assessment considered abiotic depletion potential (ADP), global warming potential (GWP), ozone layer depletion potential (ODP), human toxicity potential (HTP), freshwater aquatic ecotoxicity potential (FAETP), marine aquatic ecotoxicity potential (MAETP), terrestrial ecotoxicity potential (TETP), photochemical oxidation potential (POCP), acidification potential (AP), and eutrophication potential (EP), covering the entire life cycle from production to disposal, excluding part of the use stage (B2-B7). The results highlight the advantages and drawbacks of each slab system, providing insights into selecting sustainable slab solutions. AFCLT2 exhibited the lowest environmental impacts across the assessed categories. On the contrary, the RC slab showed the highest environmental impact among the studied products. For example, the RC slab had the highest GWP of 67.422 kg CO2 eq, which was 1784.3% higher than that of AFCLT2 (3.779 kg CO2 eq). Additionally, the simulation displayed that the analysis results vary depending on the electricity source, which is influenced by geographical location. Using the Norwegian electricity mix resulted in the most sustainable outcomes compared with Sweden, Finland, and Saudi Arabia. This study contributes to the advancement of low-carbon construction techniques and the development of building materials with reduced environmental impacts in the construction sector. Full article
(This article belongs to the Section Sustainable Infrastructures)
Show Figures

Figure 1

21 pages, 3569 KB  
Article
Dual Adhesion Pathways and Mechanotransduction of Adipose-Derived Mesenchymal Stem Cells on Glycated Collagen Substrates—Morphological Evidence
by Regina Komsa-Penkova, Borislav Dimitrov, Violina Ivanova, Svetoslava Stoycheva, Petar Temnishki, Konstantin Balashev and George Altankov
Polymers 2025, 17(24), 3275; https://doi.org/10.3390/polym17243275 - 10 Dec 2025
Viewed by 659
Abstract
Glycation-induced modifications of extracellular matrix (ECM) proteins, including collagen, are increasingly recognized as critical modulators of cellular behavior, particularly in pathophysiological contexts such as aging and diabetes. While their impact on general cell adhesion has been explored, the specific consequences for mesenchymal stem [...] Read more.
Glycation-induced modifications of extracellular matrix (ECM) proteins, including collagen, are increasingly recognized as critical modulators of cellular behavior, particularly in pathophysiological contexts such as aging and diabetes. While their impact on general cell adhesion has been explored, the specific consequences for mesenchymal stem cell (MSC) mechanotransduction remain poorly defined. In this study, we investigated the temporal and mechanistic aspects of adhesion and mechanosensitive signaling in adipose-derived MSCs (ADMSCs) cultured on native versus glycated collagen substrates. Our findings identify two temporally distinct adhesion mechanisms: an initial pathway mediated by the receptor for advanced glycation end-products (RAGE), which is activated within the first 30 min following substrate engagement, and a later-stage adhesion process predominantly governed by integrins. Immunofluorescence analysis demonstrated maximal nuclear localization of YAP/TAZ transcriptional regulators during the initial adhesion phase, coinciding with RAGE engagement. This nuclear enrichment was progressively attenuated as integrin-mediated focal adhesions matured, suggesting a dynamic shift in receptor usage and mechanotransductive signaling. Interestingly, glycated collagen substrates accelerated early cell attachment but impaired focal adhesion maturation, suggesting a disruption in integrin engagement. Endogenous collagen synthesis was consistently detected at all examined time points (30 min, 2 h, and 5 h), suggesting a constitutive biosynthetic activity that remains sensitive to the glycation state of the substrate. Atomic force microscopy (AFM) demonstrated that glycation disrupts collagen fibrillogenesis: while native collagen forms a well-organized network of long, interconnected fibrils, GL-1 substrates (glycated for 1 day) displayed sparse and disordered fibrillary structures, whereas GL-5 substrates (5-day glycation) exhibited partial restoration of fibrillar organization. These matrix alterations were closely associated with changes in adhesion kinetics and mechanotransduction profiles. Taken together, our findings demonstrate that collagen glycation modulates both adhesion dynamics and mechanosensitive signaling of MSCs through a dual-receptor mechanism. These insights have significant implications for the design of regenerative therapies targeting aged or metabolically compromised tissues, where ECM glycation is prevalent. Full article
(This article belongs to the Special Issue Polymer-Based Biomaterials for Tissue Engineering Applications)
Show Figures

Figure 1

Back to TopTop