Films and Coatings with Biomedical Applications

A special issue of Coatings (ISSN 2079-6412). This special issue belongs to the section "Surface Coatings for Biomedicine and Bioengineering".

Deadline for manuscript submissions: 10 March 2026 | Viewed by 620

Special Issue Editor


E-Mail Website
Guest Editor
Department of Organic, Biochemical and Food Engineering, Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iasi, Prof. dr. doc. D. Mangeron Street, no. 73, 700050 Iasi, Romania
Interests: biomaterials (hydroxyapatite, titanium and their alloys, etc.); coatings; scaffolds
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue is dedicated to highlighting the critical advancements achieved in the development of films and coatings for use in medical devices, such as implants, scaffolds for tissue engineering, etc. The surface properties of biomaterials are known to be crucial for clinical success. Currently, in addition to the development of novel biomaterials, specialists in the field are seeking to modify the biological and mechanical surface properties of existing biomaterials to meet specific needs and applications in the medical field. The deposition of thin films or coatings on substrates requires the modification of the surface and, ultimately, leads to an improvement in the properties of the biomaterials used.

In this Special Issue, the following biomaterials should be considered: metals (Ti, Mg, etc.) and their alloys; polymers; ceramics; and hydroxyapatite.

Potential topics:

This Special Issue will serve as a forum for papers addressing the application of films and coatings in medical devices, such as implants and scaffolds for tissue engineering. The scope of this Special Issue therefore includes, but is not limited to, the following topics:

- Composite films and coatings;

- Antimicrobial films and coatings;

- Antifouling films and coatings;

- Immobilization of biofunctional molecules and biomolecules to form biofunctional films and coatings;

- Drug delivery films and coatings;

- Medical implants and tissue scaffolds.

We kindly invite you to submit your contributions in the form of research articles, communications or reviews to this Special Issue.

Prof. Dr. Gabriela Ciobanu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Coatings is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • coating
  • film
  • surface treatment
  • biomaterial
  • medical device

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

29 pages, 19699 KiB  
Article
Comprehensive Evaluation of 45S5 Bioactive Glass Doped with Samarium: From Synthesis and Physical Properties to Biocompatibility and Antimicrobial Activity
by Maxim V. Maximov, Oana Cristina Maximov, Ludmila Motelica, Denisa Ficai, Ovidiu Cristian Oprea, Roxana Doina Trușcă, Liliana-Roxana Balahura (Stămat), Radu Pericleanu, Andreea Ștefania Dumbravă, Viorica Maria Corbu, Vasile-Adrian Surdu, Gabriel Vasilievici, Anton Ficai, Sorina Dinescu and Irina Gheorghe-Barbu
Coatings 2025, 15(4), 404; https://doi.org/10.3390/coatings15040404 - 28 Mar 2025
Viewed by 367
Abstract
This paper describes the synthesis and evaluation of samarium-doped 45S5 bioactive glass in various ratios. The bioactive glass samples were prepared using the sol–gel method and subjected to a heat treatment at 700 °C in normal atmosphere. The obtained samples were analyzed by [...] Read more.
This paper describes the synthesis and evaluation of samarium-doped 45S5 bioactive glass in various ratios. The bioactive glass samples were prepared using the sol–gel method and subjected to a heat treatment at 700 °C in normal atmosphere. The obtained samples were analyzed by thermogravimetric analysis (TGA) before and after the heat treatment to assess their thermal stability and compositional changes. The bioactivity of the samples was tested in vitro by immersion in simulated body fluid (SBF) at 36.5 ± 0.5 °C (normal human body temperature) and pH 7.4 (the pH of the human blood plasma), for several time periods. During the test, the pH and conductivity of the SBF solutions were monitored to track ion migration. After the in vitro test, the mass loss was evaluated and the formation of hydroxycarbonate apatite (HCA) was analyzed by FTIR spectroscopy. The microstructure of the bioactive glasses was examined using scanning electron microscopy (SEM) and the density of bioactive glass was also determined using Archimedes’ principle. This study also investigated the antimicrobial and anti-biofilm properties of both undoped and samarium-doped 45S5 bioactive glass through qualitative and quantitative assays against a range of microorganisms, including Gram-negative, Gram-positive, and yeast reference strains. The results were compared with literature data on melt-derived bioactive glass to evaluate the effects of Sm doping and the sol–gel synthesis method on bioactive glass performance. Full article
(This article belongs to the Special Issue Films and Coatings with Biomedical Applications)
Show Figures

Figure 1

Back to TopTop