Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,922)

Search Parameters:
Keywords = directional features

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4782 KiB  
Article
Enhanced Spatiotemporal Landslide Displacement Prediction Using Dynamic Graph-Optimized GNSS Monitoring
by Jiangfeng Li, Jiahao Qin, Kaimin Kang, Mingzhi Liang, Kunpeng Liu and Xiaohua Ding
Sensors 2025, 25(15), 4754; https://doi.org/10.3390/s25154754 (registering DOI) - 1 Aug 2025
Abstract
Landslide displacement prediction is crucial for disaster mitigation, yet traditional methods often fail to capture the complex, non-stationary spatiotemporal dynamics of slope evolution. This study introduces an enhanced prediction framework that integrates multi-scale signal processing with dynamic, geology-aware graph modeling. The proposed methodology [...] Read more.
Landslide displacement prediction is crucial for disaster mitigation, yet traditional methods often fail to capture the complex, non-stationary spatiotemporal dynamics of slope evolution. This study introduces an enhanced prediction framework that integrates multi-scale signal processing with dynamic, geology-aware graph modeling. The proposed methodology first employs the Maximum Overlap Discrete Wavelet Transform (MODWT) to denoise raw Global Navigation Satellite System (GNSS)-monitored displacement time series data, enhancing the underlying deformation features. Subsequently, a geology-aware graph is constructed, using the temporal correlation of displacement series as a practical proxy for physical relatedness between monitoring nodes. The framework’s core innovation lies in a dynamic graph optimization model with low-rank constraints, which adaptively refines the graph topology to reflect time-varying inter-sensor dependencies driven by factors like mining activities. Experiments conducted on a real-world dataset from an active open-pit mine demonstrate the framework’s superior performance. The DCRNN-proposed model achieved the highest accuracy among eight competing models, recording a Root Mean Square Error (RMSE) of 2.773 mm in the Vertical direction, a 39.1% reduction compared to its baseline. This study validates that the proposed dynamic graph optimization approach provides a robust and significantly more accurate solution for landslide prediction in complex, real-world engineering environments. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

30 pages, 2537 KiB  
Review
The State of Health Estimation of Lithium-Ion Batteries: A Review of Health Indicators, Estimation Methods, Development Trends and Challenges
by Kang Tang, Bingbing Luo, Dian Chen, Chengshuo Wang, Long Chen, Feiliang Li, Yuan Cao and Chunsheng Wang
World Electr. Veh. J. 2025, 16(8), 429; https://doi.org/10.3390/wevj16080429 (registering DOI) - 1 Aug 2025
Abstract
The estimation of the state of health (SOH) of lithium-ion batteries is a critical technology for enhancing battery lifespan and safety. When estimating SOH, it is essential to select representative features, commonly referred to as health indicators (HIs). Most existing studies primarily focus [...] Read more.
The estimation of the state of health (SOH) of lithium-ion batteries is a critical technology for enhancing battery lifespan and safety. When estimating SOH, it is essential to select representative features, commonly referred to as health indicators (HIs). Most existing studies primarily focus on HIs related to capacity degradation and internal resistance increase. However, due to the complexity of lithium-ion battery degradation mechanisms, the relationships between these mechanisms and health indicators remain insufficiently explored. This paper provides a comprehensive review of core methodologies for SOH estimation, with a particular emphasis on the classification and extraction of health indicators, direct measurement techniques, model-based and data-driven SOH estimation approaches, and emerging trends in battery management system applications. The findings indicate that capacity, internal resistance, and temperature-related indicators significantly impact SOH estimation accuracy, while machine learning models demonstrate advantages in multi-source data fusion. Future research should further explore composite health indicators and aging mechanisms of novel battery materials, and improve the interpretability of predictive models. This study offers theoretical support for the intelligent management and lifespan optimization of lithium-ion batteries. Full article
Show Figures

Figure 1

43 pages, 2466 KiB  
Article
Adaptive Ensemble Learning for Financial Time-Series Forecasting: A Hypernetwork-Enhanced Reservoir Computing Framework with Multi-Scale Temporal Modeling
by Yinuo Sun, Zhaoen Qu, Tingwei Zhang and Xiangyu Li
Axioms 2025, 14(8), 597; https://doi.org/10.3390/axioms14080597 (registering DOI) - 1 Aug 2025
Abstract
Financial market forecasting remains challenging due to complex nonlinear dynamics and regime-dependent behaviors that traditional models struggle to capture effectively. This research introduces the Adaptive Financial Reservoir Network with Hypernetwork Flow (AFRN–HyperFlow) framework, a novel ensemble architecture integrating Echo State Networks, temporal convolutional [...] Read more.
Financial market forecasting remains challenging due to complex nonlinear dynamics and regime-dependent behaviors that traditional models struggle to capture effectively. This research introduces the Adaptive Financial Reservoir Network with Hypernetwork Flow (AFRN–HyperFlow) framework, a novel ensemble architecture integrating Echo State Networks, temporal convolutional networks, mixture density networks, adaptive Hypernetworks, and deep state-space models for enhanced financial time-series prediction. Through comprehensive feature engineering incorporating technical indicators, spectral decomposition, reservoir-based representations, and flow dynamics characteristics, the framework achieves superior forecasting performance across diverse market conditions. Experimental validation on 26,817 balanced samples demonstrates exceptional results with an F1-score of 0.8947, representing a 12.3% improvement over State-of-the-Art baseline methods, while maintaining robust performance across asset classes from equities to cryptocurrencies. The adaptive Hypernetwork mechanism enables real-time regime-change detection with 2.3 days average lag and 95% accuracy, while systematic SHAP analysis provides comprehensive interpretability essential for regulatory compliance. Ablation studies reveal Echo State Networks contribute 9.47% performance improvement, validating the architectural design. The AFRN–HyperFlow framework addresses critical limitations in uncertainty quantification, regime adaptability, and interpretability, offering promising directions for next-generation financial forecasting systems incorporating quantum computing and federated learning approaches. Full article
(This article belongs to the Special Issue Financial Mathematics and Econophysics)
Show Figures

Figure 1

25 pages, 1206 KiB  
Article
Application of Protein Structure Encodings and Sequence Embeddings for Transporter Substrate Prediction
by Andreas Denger and Volkhard Helms
Molecules 2025, 30(15), 3226; https://doi.org/10.3390/molecules30153226 (registering DOI) - 1 Aug 2025
Abstract
Membrane transporters play a crucial role in any cell. Identifying the substrates they translocate across membranes is important for many fields of research, such as metabolomics, pharmacology, and biotechnology. In this study, we leverage recent advances in deep learning, such as amino acid [...] Read more.
Membrane transporters play a crucial role in any cell. Identifying the substrates they translocate across membranes is important for many fields of research, such as metabolomics, pharmacology, and biotechnology. In this study, we leverage recent advances in deep learning, such as amino acid sequence embeddings with protein language models (pLMs), highly accurate 3D structure predictions with AlphaFold 2, and structure-encoding 3Di sequences from FoldSeek, for predicting substrates of membrane transporters. We test new deep learning features derived from both sequence and structure, and compare them to the previously best-performing protein encodings, which were made up of amino acid k-mer frequencies and evolutionary information from PSSMs. Furthermore, we compare the performance of these features either using a previously developed SVM model, or with a regularized feedforward neural network (FNN). When evaluating these models on sugar and amino acid carriers in A. thaliana, as well as on three types of ion channels in human, we found that both the DL-based features and the FNN model led to a better and more consistent classification performance compared to previous methods. Direct encodings of 3D structures with Foldseek, as well as structural embeddings with ProstT5, matched the performance of state-of-the-art amino acid sequence embeddings calculated with the ProtT5-XL model when used as input for the FNN classifier. Full article
Show Figures

Figure 1

12 pages, 1055 KiB  
Article
Antibodies to Laminin β4 in Pemphigoid Diseases: Clinical–Laboratory Experience of a Single Central European Reference Centre
by Maciej Marek Spałek, Magdalena Jałowska, Natalia Welc, Monika Bowszyc-Dmochowska, Takashi Hashimoto, Justyna Gornowicz-Porowska and Marian Dmochowski
Antibodies 2025, 14(3), 66; https://doi.org/10.3390/antib14030066 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Anti-p200 pemphigoid is a rare and likely underdiagnosed autoimmune blistering disorder. Laminin γ1 and laminin β4 have been implicated as potential target antigens in its pathogenesis. Recently, a novel indirect immunofluorescence assay targeting anti-laminin β4 antibodies has been developed, demonstrating high sensitivity [...] Read more.
Background/Objectives: Anti-p200 pemphigoid is a rare and likely underdiagnosed autoimmune blistering disorder. Laminin γ1 and laminin β4 have been implicated as potential target antigens in its pathogenesis. Recently, a novel indirect immunofluorescence assay targeting anti-laminin β4 antibodies has been developed, demonstrating high sensitivity and specificity, and offering a valuable tool for improved diagnosis. Methods: Of the 451 patients, 21 were selected for further laboratory analysis based on medical records. Sera from 10 patients, which showed a positive direct immunofluorescence (DIF) result and negative results in multiplex enzyme-linked immunosorbent assays (ELISAs) and/or mosaic six-parameter indirect immunofluorescence (IIF) for various autoimmune bullous diseases, were tested for the presence of anti-laminin β4 antibodies. Additionally, sera from 11 patients with positive DIF and positive ELISA for antibodies against BP180 and/or BP230 were analyzed. Results: Among the 10 patients with positive DIF and negative ELISA and/or mosaic six-parameter IIF, 6 sera were positive for anti-laminin β4 antibodies. These patients presented with atypical clinical features. In contrast, all 11 sera from patients with both positive DIF and positive ELISA for BP180 and/or BP230 were negative for anti-laminin β4 antibodies. Conclusions: In patients with a positive DIF result but negative ELISA and/or mosaic six-parameter IIF findings, testing for anti-laminin β4 antibodies should be considered. Furthermore, in cases presenting with atypical clinical features—such as acral distribution of lesions, intense pruritus, or erythematous–edematous plaques—the possibility of anti-p200 pemphigoid should be included in the differential diagnosis. Full article
(This article belongs to the Section Antibody-Based Diagnostics)
Show Figures

Figure 1

17 pages, 5323 KiB  
Review
Contrast-Enhanced Harmonic Endoscopic Ultrasonography for Prediction of Aggressiveness and Treatment Response in Patients with Pancreatic Lesions
by Marco Spadaccini, Gianluca Franchellucci, Marta Andreozzi, Maria Terrin, Matteo Tacelli, Piera Zaccari, Maria Chiara Petrone, Gaetano Lauri, Matteo Colombo, Valeria Poletti, Giacomo Marcozzi, Antonella Durante, Roberto Leone, Maria Margherita Massaro, Antonio Facciorusso, Alessandro Fugazza, Alessandro Repici, Paolo Giorgio Arcidiacono and Silvia Carrara
Cancers 2025, 17(15), 2545; https://doi.org/10.3390/cancers17152545 - 1 Aug 2025
Abstract
Endoscopic ultrasonography represents a crucial aspect of the diagnosis of pancreatic lesions. The echo-endoscopic features of pancreatic lesions, particularly their contrast behavior with the advent of Contrast-Enhanced EUS (CE-EUS) and Contrast Enhanced Harmonic-EUS (CH-EUS), can predict a lesion’s aggressiveness, depending on its nature. [...] Read more.
Endoscopic ultrasonography represents a crucial aspect of the diagnosis of pancreatic lesions. The echo-endoscopic features of pancreatic lesions, particularly their contrast behavior with the advent of Contrast-Enhanced EUS (CE-EUS) and Contrast Enhanced Harmonic-EUS (CH-EUS), can predict a lesion’s aggressiveness, depending on its nature. According to this, CH-EUS could be applied to structure an even more dedicated approach to patient care, for example, to ascertain eligibility for surgical intervention of a pancreatic ductal adenocarcinoma (PDAC) or the response to neoadjuvant chemotherapy in cases deemed borderline resectable. In addition to PDAC, other significant issues pertain to the management of small neuroendocrine tumors (NETs) and intraductal papillary mucinous neoplasms (IPMNs). In this context, CH-EUS can be crucial. The aim of this review is to underline the most recent evidence for EUS and CH-EUS applications in pancreatic lesion aggressiveness assessment and to focus on possible future research directions to further extend the application of CH-EUS in this field. Full article
(This article belongs to the Special Issue Clinical Applications of Ultrasound in Cancer Imaging and Treatment)
Show Figures

Figure 1

15 pages, 2399 KiB  
Review
Cyclodextrin-Based Supramolecular Hydrogels in Tissue Engineering and Regenerative Medicine
by Jiamin Lin, Yuanyuan Chen and Xuemei Wang
Molecules 2025, 30(15), 3225; https://doi.org/10.3390/molecules30153225 (registering DOI) - 31 Jul 2025
Abstract
Cyclodextrins (CDs), cyclic oligosaccharides formed by α-1,4-glycosidic-bonded D-glucopyranose units, feature unique hydrophobic cavities and hydrophilic exteriors that enable molecular encapsulation via host–guest interactions. CDs form supramolecular host–guest complexes with diverse molecular entities, establishing their fundamental role in supramolecular chemistry. This review examines fabrication [...] Read more.
Cyclodextrins (CDs), cyclic oligosaccharides formed by α-1,4-glycosidic-bonded D-glucopyranose units, feature unique hydrophobic cavities and hydrophilic exteriors that enable molecular encapsulation via host–guest interactions. CDs form supramolecular host–guest complexes with diverse molecular entities, establishing their fundamental role in supramolecular chemistry. This review examines fabrication strategies for CD-based supramolecular hydrogels and their applications in tissue engineering and regenerative medicine, with focused analysis on wound healing, corneal regeneration, and bone repair. We critically analyze CD–guest molecular interaction mechanisms and innovative therapeutic implementations, highlighting the significant potential of CD hydrogels for tissue regeneration while addressing clinical translation challenges and future directions. Full article
(This article belongs to the Special Issue Cyclodextrin Chemistry and Toxicology III)
Show Figures

Figure 1

18 pages, 723 KiB  
Article
A Machine Learning-Based Model for Predicting High Deficiency Risk Ships in Port State Control: A Case Study of the Port of Singapore
by Ming-Cheng Tsou
J. Mar. Sci. Eng. 2025, 13(8), 1485; https://doi.org/10.3390/jmse13081485 - 31 Jul 2025
Abstract
This study developed a model to predict ships with high deficiency risk under Port State Control (PSC) through machine learning techniques, particularly the Random Forest algorithm. The study utilized actual ship inspection data from the Port of Singapore, comprehensively considering various operational and [...] Read more.
This study developed a model to predict ships with high deficiency risk under Port State Control (PSC) through machine learning techniques, particularly the Random Forest algorithm. The study utilized actual ship inspection data from the Port of Singapore, comprehensively considering various operational and safety indicators of ships, including but not limited to flag state, ship age, past deficiencies, and detention history. By analyzing these factors in depth, this research enhances the efficiency and accuracy of PSC inspections, provides decision support for port authorities, and offers strategic guidance for shipping companies to comply with international safety standards. During the research process, I first conducted detailed data preprocessing, including data cleaning and feature selection, to ensure the effectiveness of model training. Using the Random Forest algorithm, I identified key factors influencing the detention risk of ships and established a risk prediction model accordingly. The model validation results indicated that factors such as ship age, tonnage, company performance, and flag state significantly affect whether a ship exhibits a high deficiency rate. In addition, this study explored the potential and limitations of applying the Random Forest model in predicting high deficiency risk under PSC, and proposed future research directions, including further model optimization and the development of real-time prediction systems. By achieving these goals, I hope to provide valuable experience for other global shipping hubs, promote higher international maritime safety standards, and contribute to the sustainable development of the global shipping industry. This research not only highlights the importance of machine learning in the maritime domain but also demonstrates the potential of data-driven decision-making in improving ship safety management and port inspection efficiency. It is hoped that this study will inspire more maritime practitioners and researchers to explore advanced data analytics techniques to address the increasingly complex challenges of global shipping. Full article
(This article belongs to the Topic Digital Technologies in Supply Chain Risk Management)
19 pages, 9155 KiB  
Article
Microstructure Evolution in Homogenization Heat Treatment of Inconel 718 Manufactured by Laser Powder Bed Fusion
by Fang Zhang, Yifu Shen and Haiou Yang
Metals 2025, 15(8), 859; https://doi.org/10.3390/met15080859 (registering DOI) - 31 Jul 2025
Abstract
This study systematically investigates the homogenization-induced Laves phase dissolution kinetics and recrystallization mechanisms in laser powder bed fusion (L-PBF) processed IN718 superalloy. The as-built material exhibits a characteristic fine dendritic microstructure with interdendritic Laves phase segregation and high dislocation density, featuring directional sub-grain [...] Read more.
This study systematically investigates the homogenization-induced Laves phase dissolution kinetics and recrystallization mechanisms in laser powder bed fusion (L-PBF) processed IN718 superalloy. The as-built material exhibits a characteristic fine dendritic microstructure with interdendritic Laves phase segregation and high dislocation density, featuring directional sub-grain boundaries aligned with the build direction. Laves phase dissolution demonstrates dual-stage kinetics: initial rapid dissolution (0–15 min) governed by bulk atomic diffusion, followed by interface reaction-controlled deceleration (15–60 min) after 1 h at 1150 °C. Complete dissolution of the Laves phase is achieved after 3.7 h at 1150 °C. Recrystallization initiates preferentially at serrated grain boundaries through boundary bulging mechanisms, driven by localized orientation gradients and stored energy differentials. Grain growth kinetics obey a fourth-power time dependence, confirming Ostwald ripening-controlled boundary migration via grain boundary diffusion. Such a study is expected to be helpful in understanding the microstructural development of L-PBF-built IN718 under heat treatments. Full article
(This article belongs to the Section Additive Manufacturing)
18 pages, 4863 KiB  
Article
Evaluation of Explainable, Interpretable and Non-Interpretable Algorithms for Cyber Threat Detection
by José Ramón Trillo, Felipe González-López, Juan Antonio Morente-Molinera, Roberto Magán-Carrión and Pablo García-Sánchez
Electronics 2025, 14(15), 3073; https://doi.org/10.3390/electronics14153073 (registering DOI) - 31 Jul 2025
Abstract
As anonymity-enabling technologies such as VPNs and proxies become increasingly exploited for malicious purposes, detecting traffic associated with such services emerges as a critical first step in anticipating potential cyber threats. This study analyses a network traffic dataset focused on anonymised IP addresses—not [...] Read more.
As anonymity-enabling technologies such as VPNs and proxies become increasingly exploited for malicious purposes, detecting traffic associated with such services emerges as a critical first step in anticipating potential cyber threats. This study analyses a network traffic dataset focused on anonymised IP addresses—not direct attacks—to evaluate and compare explainable, interpretable, and opaque machine learning models. Through advanced preprocessing and feature engineering, we examine the trade-off between model performance and transparency in the early detection of suspicious connections. We evaluate explainable ML-based models such as k-nearest neighbours, fuzzy algorithms, decision trees, and random forests, alongside interpretable models like naïve Bayes, support vector machines, and non-interpretable algorithms such as neural networks. Results show that neural networks achieve the highest performance, with a macro F1-score of 0.8786, but explainable models like HFER offer strong performance (macro F1-score = 0.6106) with greater interpretability. The choice of algorithm depends on project-specific needs: neural networks excel in accuracy, while explainable algorithms are preferred for resource efficiency and transparency, as stated in this work. This work underscores the importance of aligning cybersecurity strategies with operational requirements, providing insights into balancing performance with interpretability. Full article
(This article belongs to the Special Issue Network Security and Cryptography Applications)
Show Figures

Graphical abstract

21 pages, 8446 KiB  
Article
Extraction of Corrosion Damage Features of Serviced Cable Based on Three-Dimensional Point Cloud Technology
by Tong Zhu, Shoushan Cheng, Haifang He, Kun Feng and Jinran Zhu
Materials 2025, 18(15), 3611; https://doi.org/10.3390/ma18153611 (registering DOI) - 31 Jul 2025
Abstract
The corrosion of high-strength steel wires is a key factor impacting the durability and reliability of cable-stayed bridges. In this study, the corrosion pit features on a high-strength steel wire, which had been in service for 27 years, were extracted and modeled using [...] Read more.
The corrosion of high-strength steel wires is a key factor impacting the durability and reliability of cable-stayed bridges. In this study, the corrosion pit features on a high-strength steel wire, which had been in service for 27 years, were extracted and modeled using three-dimensional point cloud data obtained through 3D surface scanning. The Otsu method was applied for image binarization, and each corrosion pit was geometrically represented as an ellipse. Key pit parameters—including length, width, depth, aspect ratio, and a defect parameter—were statistically analyzed. Results of the Kolmogorov–Smirnov (K–S) test at a 95% confidence level indicated that the directional angle component (θ) did not conform to any known probability distribution. In contrast, the pit width (b) and defect parameter (Φ) followed a generalized extreme value distribution, the aspect ratio (b/a) matched a Beta distribution, and both the pit length (a) and depth (d) were best described by a Gaussian mixture model. The obtained results provide valuable reference for assessing the stress state, in-service performance, and predicted remaining service life of operational stay cables. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 10604 KiB  
Article
A Safety-Based Approach for the Design of an Innovative Microvehicle
by Michelangelo-Santo Gulino, Susanna Papini, Giovanni Zonfrillo, Thomas Unger, Peter Miklis and Dario Vangi
Designs 2025, 9(4), 90; https://doi.org/10.3390/designs9040090 (registering DOI) - 31 Jul 2025
Abstract
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper [...] Read more.
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper presents the design and development of an innovative self-balancing microvehicle under the H2020 LEONARDO project, which aims to address these challenges through advanced engineering and user-centric design. The vehicle combines features of monowheels and e-scooters, integrating cutting-edge technologies to enhance safety, stability, and usability. The design adheres to European regulations, including Germany’s eKFV standards, and incorporates user preferences identified through representative online surveys of 1500 PLEV users. These preferences include improved handling on uneven surfaces, enhanced signaling capabilities, and reduced instability during maneuvers. The prototype features a lightweight composite structure reinforced with carbon fibers, a high-torque motorized front wheel, and multiple speed modes tailored to different conditions, such as travel in pedestrian areas, use by novice riders, and advanced users. Braking tests demonstrate deceleration values of up to 3.5 m/s2, comparable to PLEV market standards and exceeding regulatory minimums, while smooth acceleration ramps ensure rider stability and safety. Additional features, such as identification plates and weight-dependent motor control, enhance compliance with local traffic rules and prevent misuse. The vehicle’s design also addresses common safety concerns, such as curb navigation and signaling, by incorporating large-diameter wheels, increased ground clearance, and electrically operated direction indicators. Future upgrades include the addition of a second rear wheel for enhanced stability, skateboard-like rear axle modifications for improved maneuverability, and hybrid supercapacitors to minimize fire risks and extend battery life. With its focus on safety, regulatory compliance, and rider-friendly innovations, this microvehicle represents a significant advancement in promoting safe and sustainable urban mobility. Full article
(This article belongs to the Section Vehicle Engineering Design)
Show Figures

Figure 1

22 pages, 6138 KiB  
Article
DBSCAN-MFI Based Improved Clustering for Field-Road Classification in Mechanical Residual Film Recovery
by Huimin Fang, Jinshan Hu, Xuegeng Chen, Qingyi Zhang and Jing Bai
Agriculture 2025, 15(15), 1651; https://doi.org/10.3390/agriculture15151651 - 31 Jul 2025
Abstract
Accurate accounting of residual film recovery operation areas is essential for supporting targeted implementation of white pollution control policies in cotton fields and serves as a critical foundation for data-driven prevention and control of soil contamination. To address the reliance on manual screening [...] Read more.
Accurate accounting of residual film recovery operation areas is essential for supporting targeted implementation of white pollution control policies in cotton fields and serves as a critical foundation for data-driven prevention and control of soil contamination. To address the reliance on manual screening during preprocessing in traditional residual film recovery area calculation methods, this study proposes a DBSCAN-MFI field-road trajectory segmentation method. This approach combines DBSCAN density clustering with multi-feature inference. Building on DBSCAN clustering, the method incorporates a convex hull completion strategy and multi-feature inference rules utilizing speed-direction feature filtering to automatically identify and segment field and road areas, enabling precise operation area calculation. Experimental results demonstrate that compared to DBSCAN, OPTICS, the Grid-Based Method, and the DBSCAN-FR algorithm, the proposed algorithm improves the F1-Score by 7.01%, 7.13%, 7.28%, and 4.27%, respectively. Regarding the impact on operation area calculation, segmentation accuracy increased by 23.61%, 25.14%, 20.71%, and 6.87%, respectively. This study provides an effective solution for accurate field-road segmentation during mechanical residual film recovery operations to facilitate subsequent calculation of the recovered area. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

32 pages, 2108 KiB  
Review
Phytochemical Composition and Multifunctional Applications of Ricinus communis L.: Insights into Therapeutic, Pharmacological, and Industrial Potential
by Tokologo Prudence Ramothloa, Nqobile Monate Mkolo, Mmei Cheryl Motshudi, Mukhethwa Michael Mphephu, Mmamudi Anna Makhafola and Clarissa Marcelle Naidoo
Molecules 2025, 30(15), 3214; https://doi.org/10.3390/molecules30153214 (registering DOI) - 31 Jul 2025
Abstract
Ricinus communis (Euphorbiaceae), commonly known as the castor oil plant, is prized for its versatile applications in medicine, industry, and agriculture. It features large, deeply lobed leaves with vibrant colours, robust stems with anthocyanin pigments, and extensive root systems for nutrient absorption. Its [...] Read more.
Ricinus communis (Euphorbiaceae), commonly known as the castor oil plant, is prized for its versatile applications in medicine, industry, and agriculture. It features large, deeply lobed leaves with vibrant colours, robust stems with anthocyanin pigments, and extensive root systems for nutrient absorption. Its terminal panicle-like inflorescences bear monoecious flowers, and its seeds are enclosed in prickly capsules. Throughout its various parts, R. communis harbours a diverse array of bioactive compounds. Leaves contain tannins, which exhibit astringent and antimicrobial properties, and alkaloids like ricinine, known for anti-inflammatory properties, as well as flavonoids like rutin, offering antioxidant and antibacterial properties. Roots contain ellagitannins, lupeol, and indole-3-acetic acid, known for anti-inflammatory and liver-protective effects. Seeds are renowned for ricin, ricinine, and phenolic compounds crucial for industrial applications such as biodegradable polymers. Pharmacologically, it demonstrates antioxidant effects from flavonoids and tannins, confirmed through minimum inhibitory concentration (MIC) assays for antibacterial activity. It shows potential in managing diabetes via insulin signalling pathways and exhibits anti-inflammatory properties by activating nuclear factor erythroid 2-related factor 2 (Nrf2). Additionally, it has anti-fertility effects and potential anticancer activity against cancer stem cells. This review aims to summarize Ricinus communis’s botanical properties, therapeutic uses, chemical composition, pharmacological effects, and industrial applications. Integrating the current knowledge offers insights into future research directions, emphasizing the plant’s diverse roles in agriculture, medicine, and industry. Full article
Show Figures

Figure 1

18 pages, 74537 KiB  
Article
SDA-YOLO: Multi-Scale Dynamic Branching and Attention Fusion for Self-Explosion Defect Detection in Insulators
by Zhonghao Yang, Wangping Xu, Nanxing Chen, Yifu Chen, Kaijun Wu, Min Xie, Hong Xu and Enhui Zheng
Electronics 2025, 14(15), 3070; https://doi.org/10.3390/electronics14153070 (registering DOI) - 31 Jul 2025
Abstract
To enhance the performance of UAVs in detecting insulator self-explosion defects during power inspections, this paper proposes an insulator self-explosion defect recognition algorithm, SDA-YOLO, based on an improved YOLOv11s network. First, the SODL is added to YOLOv11 to fuse shallow features with deeper [...] Read more.
To enhance the performance of UAVs in detecting insulator self-explosion defects during power inspections, this paper proposes an insulator self-explosion defect recognition algorithm, SDA-YOLO, based on an improved YOLOv11s network. First, the SODL is added to YOLOv11 to fuse shallow features with deeper features, thereby improving the model’s focus on small-sized self-explosion defect features. The OBB is also employed to reduce interference from the complex background. Second, the DBB module is incorporated into the C3k2 module in the backbone to extract target features through a multi-branch parallel convolutional structure. Finally, the AIFI module replaces the C2PSA module, effectively directing and aggregating information between channels to improve detection accuracy and inference speed. The experimental results show that the average accuracy of SDA-YOLO reaches 96.0%, which is higher than the YOLOv11s baseline model of 6.6%. While maintaining high accuracy, the inference speed of SDA-YOLO can reach 93.6 frames/s, which achieves the purpose of the real-time detection of insulator faults. Full article
Show Figures

Figure 1

Back to TopTop